1887
Volume 2015, Issue 2
  • ISSN: 2305-7823
  • EISSN:

Abstract

Mass spectrometry is a powerful technique that is used to identify unknown compounds, to quantify known materials, and to elucidate the structure and chemical properties of molecules. Recent advances in the accuracy and speed of the technology have allowed data acquisition for the global analysis of lipids from complex samples such as blood plasma or serum. Here, mass spectrometry as a tool is described, its limitations explained and its application to biomarker discovery in coronary artery disease is considered. In particular an application of mass spectrometry for the discovery of lipid biomarkers that may indicate plaque morphology that could lead to myocardial infarction is elucidated.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.25
2015-07-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/2/gcsp.2015.25.html?itemId=/content/journals/10.5339/gcsp.2015.25&mimeType=html&fmt=ahah

References

  1. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev. 2012; 41:10:39123928.
    [Google Scholar]
  2. Niessen WM. Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-throughput screening. J Chromatogr A. 2003; 1000:1-2:413436.
    [Google Scholar]
  3. Smith RD. Trends in mass spectrometry instrumentation for proteomics. Trends Biotechnol. 2002; 20:12 Suppl:S3S7.
    [Google Scholar]
  4. Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, Koziol JA, Schnitzer JE. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol. 2010; 28:1:8389.
    [Google Scholar]
  5. Issaq HJ, Fox SD, Chan KC, Veenstra TD. Global proteomics and metabolomics in cancer biomarker discovery. Journal of Separation Science. 2011; 34:24:34843492.
    [Google Scholar]
  6. Keogh JB, Grieger JA, Noakes M, Clifton PM. Flow-mediated dilatation is Impaired by a high–saturated fat diet but not by a high-carbohydrate diet. Arteriosclerosis, thrombosis, and vascular biology. 2005; 25:6:12741279.
    [Google Scholar]
  7. Muller WA. Mechanisms of transendothelial migration of leukocytes. Circulation Research. 2009; 105:3:223230.
    [Google Scholar]
  8. Hartvigsen K, Chou MY, Hansen LF, Shaw PX, Tsimikas S, Binder CJ, Witztum JL. The role of innate immunity in atherogenesis. Journal of Lipid Research. 2009; 50:Supplement:S388S393.
    [Google Scholar]
  9. Libby P, Ridker PM, Hansson GK. Inflammation in AtherosclerosisFrom Pathophysiology to Practice. Journal of the American College of Cardiology. 2009; 54:23:21292138.
    [Google Scholar]
  10. Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, Montano E, Shaw PX, Tsimikas S, Binder CJ, Witztum JL. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circulation Research. 2011; 108:2:235248.
    [Google Scholar]
  11. Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clinical Immunology. 2010; 134:1:3346.
    [Google Scholar]
  12. Mulvihill ER, Jaeger J, Sengupta R, Ruzzo WL, Reimer C, Lukito S, Schwartz SM. Atherosclerotic plaque smooth muscle cells have a distinct phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004; 24:7:12831289.
    [Google Scholar]
  13. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. European heart journal. 2013; 34:10:719728. doi:10.1093/eurheartj/ehs411 .
    [Google Scholar]
  14. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet. 2004; 364:9438:937952.
    [Google Scholar]
  15. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. New England Journal of Medicine. 2012; 366:1:5463.
    [Google Scholar]
  16. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. New England Journal of Medicine. 2013; 368:21:20042013.
    [Google Scholar]
  17. Pitt B, Rubenfire M. Risk stratification for the detection of preclinical coronary artery disease. Circulation. 1999; 99:20:26102612.
    [Google Scholar]
  18. Taylor AJ, Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, Rubin GD. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR appropriate use criteria for cardiac computed tomography: a report of the American college of cardiology foundation appropriate use criteria task force, the society of cardiovascular computed tomography, the American college of radiology, the American heart association, the American society of echocardiography, the American society of nuclear cardiology, the north American society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. Journal of the American College of Cardiology. 2010; 56:22:18641894.
    [Google Scholar]
  19. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JMcB, Kushner FG, Lauer MS, Shaw LJ, Smith SC Jr, Taylor AJ, Weintraub WS, Wenger NK. 2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Society of Echocardiography, American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Journal of the American College of Cardiology. 2010; 56:25:e50e103.
    [Google Scholar]
  20. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nature Reviews Cardiology. 2014; 11:7:390402. doi:10.1038/nrcardio.2014.60 .
    [Google Scholar]
  21. Achenbach S, Can CT. detect the vulnerable coronary plaque? The international journal of cardiovascular imaging. 2008; 24:3:311312.
    [Google Scholar]
  22. van der Giessen AG, Toepker MH, Donelly PM, Bamberg F, Schlett CL, Raffle C, Irlbeck T, Lee H, vanWalsum T, Maurovich-Horvat P, Gijsen FJ, Wentzel JJ, Hoffmann U. Reproducibility, accuracy, and predictors of accuracy for the detection of coronary atherosclerotic plaque composition by computed tomography: an ex vivo comparison to intravascular ultrasound. Investigative radiology. 2010; 45:11:693701.
    [Google Scholar]
  23. Boogers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, Dijkstra J, Delgado V, Boersma E, de Roos A, Schuijf JD, Schalij MJ, Reiber JH, Bax JJ, Jukema JW. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. European heart journal. 2012; 33:8:10071016.
    [Google Scholar]
  24. Pflederer T, Marwan M, Schepis T, Ropers D, Seltmann M, Muschiol G, Daniel WG, Achenbach S. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010; 211:2:437444.
    [Google Scholar]
  25. Nicholls SJ, Hsu A, Wolski K, Hu B, Bayturan O, Lavoie A, Uno K, Tuzcu EM, Nissen SE. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. Journal of the American College of Cardiology. 2010; 55:21:23992407.
    [Google Scholar]
  26. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, Lauer MS, Post WS, Raggi P, Redberg RF, Rodgers GP, Shaw LJ, Taylor AJ, Weintraub WS. ACCF/AHA clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. Journal of the American College of Cardiology. 2007; 49:3:378402.
    [Google Scholar]
  27. Choi YH, Hong YJ, Park IH, Jeong MH, Ahmed K, Hwang SH, Lee MG, Park KH, Sim DS, Kim JH, Ahn Y, Cho JG, Park JC, Kang JC. Relationship between coronary artery calcium score by multidetector computed tomography and plaque components by virtual histology intravascular ultrasound. Journal of Korean medical science. 2011; 26:8:10521060.
    [Google Scholar]
  28. Nicholls SJ, Tuzcu EM, Wolski K, Sipahi I, Schoenhagen P, Crowe T, Kapadia SR, Hazen SL, Nissen SE. Coronary artery calcification and changes in atheroma burden in response to established medical therapies. Journal of the American College of Cardiology. 2007; 49:2:263270.
    [Google Scholar]
  29. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. Journal of the American College of Cardiology. 2007; 50:4:319326.
    [Google Scholar]
  30. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction an intravascular ultrasound study. Circulation. 2004; 110:22:34243429.
    [Google Scholar]
  31. Kataoka Y, Wolski K, Uno K, Puri R, Tuzcu EM, Nissen SE, Nicholls SJ. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. Journal of the American College of Cardiology. 2012; 59:18:15921597.
    [Google Scholar]
  32. Alluri K, Joshi PH, Henry TS, Blumenthal RS, Nasir K, Blaha MJ. Scoring of Coronary Artery Calcium Scans: History, Assumptions, Current Limitations, and Future Directions. Atherosclerosis. 2015; 239:1:109117. doi:10.1016/j.atherosclerosis.2014.12.040 .
    [Google Scholar]
  33. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K, Baum U, Anders K, Jang IK, Daniel WG, Brady TJ. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound. Circulation. 2004; 109:1:1417.
    [Google Scholar]
  34. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K, Kawai H, Sarai M, Takagi Y, Ishii J, Anno H, Virmani R, Serruys PW, Narula J, Coronary CT. angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. European heart journal. 2011; 32:22:28142823.
    [Google Scholar]
  35. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The napkin-ring sign: CT signature of high-risk coronary plaques? Journal of the American College of Cardiology: Cardiovascular Imaging. 2010; 3:4:440444.
    [Google Scholar]
  36. Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nature medicine. 2007; 13:5:636641.
    [Google Scholar]
  37. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJ, Proksa R, Fayad ZA. Atherosclerotic Plaque Composition: Analysis with Multicolor CT and Targeted Gold Nanoparticles 1. Radiology. 2010; 256:3:774782.
    [Google Scholar]
  38. Vasan RS. Biomarkers of Cardiovascular Disease: Molecular Basis and Practical Considerations. Circulation. 2006; 113:19:23352362.
    [Google Scholar]
  39. van Meer G. Cellular lipidomics. The EMBO journal. 2005; 24:18:31593165.
    [Google Scholar]
  40. VanMeer G, Voelker D, Feigenson G. Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology. 2008; 9::112124.
    [Google Scholar]
  41. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. Informatics and computational strategies for the study of lipids. Molecular BioSystems. 2008; 4:2:121127.
    [Google Scholar]
  42. Brown DA, London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. Journal of Biological Chemistry. 2000; 275:23:1722117224.
    [Google Scholar]
  43. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nature Reviews Cancer. 2003; 3:8:582591.
    [Google Scholar]
  44. Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Seminars in Cell & Developmental Biology. 2007; 18:5:616626.
    [Google Scholar]
  45. Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U, Menni C, Moayyeri A, Santer P, Rungger G, Spector TD, Willeit J, Kiechl S, Mayr M. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck Study. Circulation. 2014; 129::17991803.
    [Google Scholar]
  46. Stegemann C, Drozdov I, Shalhoub J, Humphries J, Ladroue C, Didangelos A, Baumert M, Allen M, Davies AH, Monaco C, Smith A, Xu Q, Mayr M. Comparative lipidomics profiling of human atherosclerotic plaques. Circulation: Cardiovascular Genetics. 2011; 4:3:232242.
    [Google Scholar]
  47. Meikle PJ, Wong G, Tsorotes D, Barlow CK, Weir JM, Christopher MJ, MacIntosh GL, Goudey B, Stern L, Kowalczyk A, Haviv I, White AJ, Dart AM, Duffy SJ, Jennings GL, Kingwell BA. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011; 31:11:27232732.
    [Google Scholar]
  48. LaValley MP. Logistic regression. Circulation. 2008; 117:18:23952399.
    [Google Scholar]
  49. Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA. Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Molecular & cellular proteomics. 2009; 8:10:23392349.
    [Google Scholar]
  50. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature biotechnology. 2009; 27:7:633641.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.25
Loading
/content/journals/10.5339/gcsp.2015.25
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error