1887
Volume 2015, Issue 2
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Mass spectrometry is a powerful technique that is used to identify unknown compounds, to quantify known materials, and to elucidate the structure and chemical properties of molecules. Recent advances in the accuracy and speed of the technology have allowed data acquisition for the global analysis of lipids from complex samples such as blood plasma or serum. Here, mass spectrometry as a tool is described, its limitations explained and its application to biomarker discovery in coronary artery disease is considered. In particular an application of mass spectrometry for the discovery of lipid biomarkers that may indicate plaque morphology that could lead to myocardial infarction is elucidated.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.25
2015-07-04
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/2/gcsp.2015.25.html?itemId=/content/journals/10.5339/gcsp.2015.25&mimeType=html&fmt=ahah

References

  1. [1]. Angel   TE., , Aryal   UK., , Hengel   SM., , Baker   ES., , Kelly   RT., , Robinson   EW., , Smith   RD. . Mass spectrometry-based proteomics: existing capabilities and future directions. . Chem Soc Rev . 2012; ;41: 10 : 3912– 3928 .
    [Google Scholar]
  2. [2]. Niessen   WM. . Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-throughput screening. . J Chromatogr A . 2003; ;1000: 1-2 : 413– 436 .
    [Google Scholar]
  3. [3]. Smith   RD. . Trends in mass spectrometry instrumentation for proteomics. . Trends Biotechnol . 2002; ;20: 12 Suppl : S3– S7 .
    [Google Scholar]
  4. [4]. Griffin   NM., , Yu   J., , Long   F., , Oh   P., , Shore   S., , Li   Y., , Koziol   JA., , Schnitzer   JE. . Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. . Nat Biotechnol . 2010; ;28: 1 : 83– 89 .
    [Google Scholar]
  5. [5]. Issaq   HJ., , Fox   SD., , Chan   KC., , Veenstra   TD. . Global proteomics and metabolomics in cancer biomarker discovery. . Journal of Separation Science . 2011; ;34: 24 : 3484– 3492 .
    [Google Scholar]
  6. [6]. Keogh   JB., , Grieger   JA., , Noakes   M., , Clifton   PM. . Flow-mediated dilatation is Impaired by a high–saturated fat diet but not by a high-carbohydrate diet. . Arteriosclerosis, thrombosis, and vascular biology . 2005; ;25: 6 : 1274– 1279 .
    [Google Scholar]
  7. [7]. Muller   WA. . Mechanisms of transendothelial migration of leukocytes. . Circulation Research . 2009; ;105: 3 : 223– 230 .
    [Google Scholar]
  8. [8]. Hartvigsen   K., , Chou   MY., , Hansen   LF., , Shaw   PX., , Tsimikas   S., , Binder   CJ., , Witztum   JL. . The role of innate immunity in atherogenesis. . Journal of Lipid Research . 2009; ;50: Supplement : S388– S393 .
    [Google Scholar]
  9. [9]. Libby   P., , Ridker   PM., , Hansson   GK. . Inflammation in AtherosclerosisFrom Pathophysiology to Practice. . Journal of the American College of Cardiology . 2009; ;54: 23 : 2129– 2138 .
    [Google Scholar]
  10. [10]. Miller   YI., , Choi   SH., , Wiesner   P., , Fang   L., , Harkewicz   R., , Hartvigsen   K., , Boullier   A., , Gonen   A., , Diehl   CJ., , Que   X., , Montano   E., , Shaw   PX., , Tsimikas   S., , Binder   CJ., , Witztum   JL. . Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. . Circulation Research . 2011; ;108: 2 : 235– 248 .
    [Google Scholar]
  11. [11]. Andersson   J., , Libby   P., , Hansson   GK. . Adaptive immunity and atherosclerosis. . Clinical Immunology . 2010; ;134: 1 : 33– 46 .
    [Google Scholar]
  12. [12]. Mulvihill   ER., , Jaeger   J., , Sengupta   R., , Ruzzo   WL., , Reimer   C., , Lukito   S., , Schwartz   SM. . Atherosclerotic plaque smooth muscle cells have a distinct phenotype. . Arteriosclerosis, Thrombosis, and Vascular Biology . 2004; ;24: 7 : 1283– 1289 .
    [Google Scholar]
  13. [13]. Falk   E., , Nakano   M., , Bentzon   JF., , Finn   AV., , Virmani   R. . Update on acute coronary syndromes: the pathologists’ view. . European heart journal . 2013; ;34: 10 : 719– 728 . doi:10.1093/eurheartj/ehs411 .
    [Google Scholar]
  14. [14]. Yusuf   S., , Hawken   S., , Ounpuu   S., , Dans   T., , Avezum   A., , Lanas   F., , McQueen   M., , Budaj   A., , Pais   P., , Varigos   J., , Lisheng   L. . Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. . The Lancet . 2004; ;364: 9438 : 937– 952 .
    [Google Scholar]
  15. [15]. Nabel   EG., , Braunwald   E. . A tale of coronary artery disease and myocardial infarction. . New England Journal of Medicine . 2012; ;366: 1 : 54– 63 .
    [Google Scholar]
  16. [16]. Libby   P. . Mechanisms of acute coronary syndromes and their implications for therapy. . New England Journal of Medicine . 2013; ;368: 21 : 2004– 2013 .
    [Google Scholar]
  17. [17]. Pitt   B., , Rubenfire   M. . Risk stratification for the detection of preclinical coronary artery disease. . Circulation . 1999; ;99: 20 : 2610– 2612 .
    [Google Scholar]
  18. [18]. Taylor   AJ., , Taylor   AJ., , Cerqueira   M., , Hodgson   JM., , Mark   D., , Min   J., , O'Gara   P., , Rubin   GD. . ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR appropriate use criteria for cardiac computed tomography: a report of the American college of cardiology foundation appropriate use criteria task force, the society of cardiovascular computed tomography, the American college of radiology, the American heart association, the American society of echocardiography, the American society of nuclear cardiology, the north American society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. . Journal of the American College of Cardiology . 2010; ;56: 22 : 1864– 1894 .
    [Google Scholar]
  19. [19]. Greenland   P., , Alpert   JS., , Beller   GA., , Benjamin   EJ., , Budoff   MJ., , Fayad   ZA., , Foster   E., , Hlatky   MA., , Hodgson   JMcB., , Kushner   FG., , Lauer   MS., , Shaw   LJ., , Smith   SC Jr., , Taylor   AJ., , Weintraub   WS., , Wenger   NK. . 2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Society of Echocardiography, American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. . Journal of the American College of Cardiology . 2010; ;56: 25 : e50– e103 .
    [Google Scholar]
  20. [20]. Maurovich-Horvat   P., , Ferencik   M., , Voros   S., , Merkely   B., , Hoffmann   U. . Comprehensive plaque assessment by coronary CT angiography. . Nature Reviews Cardiology . 2014; ;11: 7 : 390– 402 . doi:10.1038/nrcardio.2014.60 .
    [Google Scholar]
  21. [21]. Achenbach   S., , Can   CT. . detect the vulnerable coronary plaque?.   The international journal of cardiovascular imaging . 2008; ;24: 3 : 311– 312 .
    [Google Scholar]
  22. [22]. van der Giessen   AG., , Toepker   MH., , Donelly   PM., , Bamberg   F., , Schlett   CL., , Raffle   C., , Irlbeck   T., , Lee   H., , vanWalsum   T., , Maurovich-Horvat   P., , Gijsen   FJ., , Wentzel   JJ., , Hoffmann   U. . Reproducibility, accuracy, and predictors of accuracy for the detection of coronary atherosclerotic plaque composition by computed tomography: an ex vivo comparison to intravascular ultrasound. . Investigative radiology . 2010; ;45: 11 : 693– 701 .
    [Google Scholar]
  23. [23]. Boogers   MJ., , Broersen   A., , van Velzen   JE., , de Graaf   FR., , El-Naggar   HM., , Kitslaar   PH., , Dijkstra   J., , Delgado   V., , Boersma   E., , de Roos   A., , Schuijf   JD., , Schalij   MJ., , Reiber   JH., , Bax   JJ., , Jukema   JW. . Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. . European heart journal . 2012; ;33: 8 : 1007– 1016 .
    [Google Scholar]
  24. [24]. Pflederer   T., , Marwan   M., , Schepis   T., , Ropers   D., , Seltmann   M., , Muschiol   G., , Daniel   WG., , Achenbach   S. . Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. . Atherosclerosis . 2010; ;211: 2 : 437– 444 .
    [Google Scholar]
  25. [25]. Nicholls   SJ., , Hsu   A., , Wolski   K., , Hu   B., , Bayturan   O., , Lavoie   A., , Uno   K., , Tuzcu   EM., , Nissen   SE. . Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. . Journal of the American College of Cardiology . 2010; ;55: 21 : 2399– 2407 .
    [Google Scholar]
  26. [26]. Greenland   P., , Bonow   RO., , Brundage   BH., , Budoff   MJ., , Eisenberg   MJ., , Grundy   SM., , Lauer   MS., , Post   WS., , Raggi   P., , Redberg   RF., , Rodgers   GP., , Shaw   LJ., , Taylor   AJ., , Weintraub   WS. . ACCF/AHA clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. . Journal of the American College of Cardiology . 2007; ;49: 3 : 378– 402 .
    [Google Scholar]
  27. [27]. Choi   YH., , Hong   YJ., , Park   IH., , Jeong   MH., , Ahmed   K., , Hwang   SH., , Lee   MG., , Park   KH., , Sim   DS., , Kim   JH., , Ahn   Y., , Cho   JG., , Park   JC., , Kang   JC. . Relationship between coronary artery calcium score by multidetector computed tomography and plaque components by virtual histology intravascular ultrasound. . Journal of Korean medical science . 2011; ;26: 8 : 1052– 1060 .
    [Google Scholar]
  28. [28]. Nicholls   SJ., , Tuzcu   EM., , Wolski   K., , Sipahi   I., , Schoenhagen   P., , Crowe   T., , Kapadia   SR., , Hazen   SL., , Nissen   SE. . Coronary artery calcification and changes in atheroma burden in response to established medical therapies. . Journal of the American College of Cardiology . 2007; ;49: 2 : 263– 270 .
    [Google Scholar]
  29. [29]. Motoyama   S., , Kondo   T., , Sarai   M., , Sugiura   A., , Harigaya   H., , Sato   T., , Inoue   K., , Okumura   M., , Ishii   J., , Anno   H., , Virmani   R., , Ozaki   Y., , Hishida   H., , Narula   J. . Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. . Journal of the American College of Cardiology . 2007; ;50: 4 : 319– 326 .
    [Google Scholar]
  30. [30]. Ehara   S., , Kobayashi   Y., , Yoshiyama   M., , Shimada   K., , Shimada   Y., , Fukuda   D., , Nakamura   Y., , Yamashita   H., , Yamagishi   H., , Takeuchi   K., , Naruko   T., , Haze   K., , Becker   AE., , Yoshikawa   J., , Ueda   M. . Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction an intravascular ultrasound study. . Circulation . 2004; ;110: 22 : 3424– 3429 .
    [Google Scholar]
  31. [31]. Kataoka   Y., , Wolski   K., , Uno   K., , Puri   R., , Tuzcu   EM., , Nissen   SE., , Nicholls   SJ. . Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. . Journal of the American College of Cardiology . 2012; ;59: 18 : 1592– 1597 .
    [Google Scholar]
  32. [32]. Alluri   K., , Joshi   PH., , Henry   TS., , Blumenthal   RS., , Nasir   K., , Blaha   MJ. . Scoring of Coronary Artery Calcium Scans: History, Assumptions, Current Limitations, and Future Directions. . Atherosclerosis . 2015; ;239: 1 : 109– 117 . doi:10.1016/j.atherosclerosis.2014.12.040 .
    [Google Scholar]
  33. [33]. Achenbach   S., , Moselewski   F., , Ropers   D., , Ferencik   M., , Hoffmann   U., , MacNeill   B., , Pohle   K., , Baum   U., , Anders   K., , Jang   IK., , Daniel   WG., , Brady   TJ. . Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound. . Circulation . 2004; ;109: 1 : 14– 17 .
    [Google Scholar]
  34. [34]. Ozaki   Y., , Okumura   M., , Ismail   TF., , Motoyama   S., , Naruse   H., , Hattori   K., , Kawai   H., , Sarai   M., , Takagi   Y., , Ishii   J., , Anno   H., , Virmani   R., , Serruys   PW., , Narula   J., , Coronary   CT. . angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. . European heart journal . 2011; ;32: 22 : 2814– 2823 .
    [Google Scholar]
  35. [35]. Maurovich-Horvat   P., , Hoffmann   U., , Vorpahl   M., , Nakano   M., , Virmani   R., , Alkadhi   H. . The napkin-ring sign: CT signature of high-risk coronary plaques?.   Journal of the American College of Cardiology: Cardiovascular Imaging . 2010; ;3: 4 : 440– 444 .
    [Google Scholar]
  36. [36]. Hyafil   F., , Cornily   JC., , Feig   JE., , Gordon   R., , Vucic   E., , Amirbekian   V., , Fisher   EA., , Fuster   V., , Feldman   LJ., , Fayad   ZA. . Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. . Nature medicine . 2007; ;13: 5 : 636– 641 .
    [Google Scholar]
  37. [37]. Cormode   DP., , Roessl   E., , Thran   A., , Skajaa   T., , Gordon   RE., , Schlomka   JP., , Fuster   V., , Fisher   EA., , Mulder   WJ., , Proksa   R., , Fayad   ZA. . Atherosclerotic Plaque Composition: Analysis with Multicolor CT and Targeted Gold Nanoparticles 1. . Radiology . 2010; ;256: 3 : 774– 782 .
    [Google Scholar]
  38. [38]. Vasan   RS. . Biomarkers of Cardiovascular Disease: Molecular Basis and Practical Considerations. . Circulation . 2006; ;113: 19 : 2335– 2362 .
    [Google Scholar]
  39. [39]. van Meer   G. . Cellular lipidomics. . The EMBO journal . 2005; ;24: 18 : 3159– 3165 .
    [Google Scholar]
  40. [40]. VanMeer   G., , Voelker   D., , Feigenson   G. . Membrane lipids: where they are and how they behave. . Nature Reviews Molecular Cell Biology . 2008; ;9: : 112– 124 .
    [Google Scholar]
  41. [41]. Yetukuri   L., , Ekroos   K., , Vidal-Puig   A., , Oresic   M. . Informatics and computational strategies for the study of lipids. . Molecular BioSystems . 2008; ;4: 2 : 121– 127 .
    [Google Scholar]
  42. [42]. Brown   DA., , London   E. . Structure and function of sphingolipid-and cholesterol-rich membrane rafts. . Journal of Biological Chemistry . 2000; ;275: 23 : 17221– 17224 .
    [Google Scholar]
  43. [43]. Mills   GB., , Moolenaar   WH. . The emerging role of lysophosphatidic acid in cancer. . Nature Reviews Cancer . 2003; ;3: 8 : 582– 591 .
    [Google Scholar]
  44. [44]. Gupta   N., , DeFranco   AL. . Lipid rafts and B cell signaling. . Seminars in Cell & Developmental Biology . 2007; ;18: 5 : 616– 626 .
    [Google Scholar]
  45. [45]. Stegemann   C., , Pechlaner   R., , Willeit   P., , Langley   SR., , Mangino   M., , Mayr   U., , Menni   C., , Moayyeri   A., , Santer   P., , Rungger   G., , Spector   TD., , Willeit   J., , Kiechl   S., , Mayr   M. . Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck Study. . Circulation . 2014; ;129: : 1799– 1803 .
    [Google Scholar]
  46. [46]. Stegemann   C., , Drozdov   I., , Shalhoub   J., , Humphries   J., , Ladroue   C., , Didangelos   A., , Baumert   M., , Allen   M., , Davies   AH., , Monaco   C., , Smith   A., , Xu   Q., , Mayr   M. . Comparative lipidomics profiling of human atherosclerotic plaques. . Circulation: Cardiovascular Genetics . 2011; ;4: 3 : 232– 242 .
    [Google Scholar]
  47. [47]. Meikle   PJ., , Wong   G., , Tsorotes   D., , Barlow   CK., , Weir   JM., , Christopher   MJ., , MacIntosh   GL., , Goudey   B., , Stern   L., , Kowalczyk   A., , Haviv   I., , White   AJ., , Dart   AM., , Duffy   SJ., , Jennings   GL., , Kingwell   BA. . Plasma lipidomic analysis of stable and unstable coronary artery disease. . Arteriosclerosis, Thrombosis, and Vascular Biology . 2011; ;31: 11 : 2723– 2732 .
    [Google Scholar]
  48. [48]. LaValley   MP. . Logistic regression. . Circulation . 2008; ;117: 18 : 2395– 2399 .
    [Google Scholar]
  49. [49]. Keshishian   H., , Addona   T., , Burgess   M., , Mani   DR., , Shi   X., , Kuhn   E., , Sabatine   MS., , Gerszten   RE., , Carr   SA. . Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. . Molecular & cellular proteomics . 2009; ;8: 10 : 2339– 2349 .
    [Google Scholar]
  50. [50]. Addona   TA., , Abbatiello   SE., , Schilling   B., , Skates   SJ., , Mani   DR., , Bunk   DM., , Spiegelman   CH., , Zimmerman   LJ., , Ham   AJ., , Keshishian   H., , Hall   SC., , Allen   S., , Blackman   RK., , Borchers   CH., , Buck   C., , Cardasis   HL., , Cusack   MP., , Dodder   NG., , Gibson   BW., , Held   JM., , Hiltke   T. . Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. . Nature biotechnology . 2009; ;27: 7 : 633– 641 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.25
Loading
/content/journals/10.5339/gcsp.2015.25
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error