1887
Volume 2014, Issue 3
  • ISSN: 2305-7823
  • EISSN:

Abstract

Cardiovascular diseases are the leading cause of death worldwide. Thrombosis, the formation of blood clot (thrombus) in the circulatory system obstructing the blood flow, is one of the main causes behind various ischemic arterial syndromes such as ischemic stroke and myocardial infarction, as well as vein syndromes such as deep vein thrombosis, and consequently, pulmonary emboli. Several thrombolytic agents have been developed for treating thrombosis, the most common being tissue plasminogen activator (tPA), administrated systemically or locally via IV infusion directly proximal to the thrombus, with the aim of restoring and improving the blood flow. TPA triggers the dissolution of thrombi by inducing the conversion of plasminogen to protease plasmin followed by fibrin digestion that eventually leads to clot lysis. Although tPA provides powerful thrombolytic activity, it has many shortcomings, including poor pharmacokinetic profiles, impairment of the reestablishment of normal coronary flow, and impairment of hemostasis, leading to life-threatening bleeding consequences. The bleeding consequence is ascribed to the ability of tPA to circulate throughout the body and therefore can lysis all blood clots in the circulation system, even the good ones that prevent the bleeding and promote injury repair. This review provides an overview of the different delivery approaches for tPA including: liposomes, ultrasound-triggered thrombolysis, anti-fibrin antibody-targeted tPA, camouflaged-tPA, tpA-loaded microcarriers, and nano-modulated delivery approaches.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.46
2014-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/3/gcsp.2014.46.html?itemId=/content/journals/10.5339/gcsp.2014.46&mimeType=html&fmt=ahah

References

  1. Schussheim AE, Fuster V. Thrombosis, antithrombotic agents, and the antithrombotic approach in cardiac disease. Prog Cardiovasc Dis. 1997; 40:3:205238.
    [Google Scholar]
  2. Abbate R, Cioni G, Ricci I, Miranda M, Gori AM. Thrombosis and acute coronary syndrome. Thromb Res. 2012; 129:3:235240.
    [Google Scholar]
  3. Canon CP, Fuster V. Thrombogenesis, antithrombotic, and thrombolytic therapy. In: Fuster VAlexander RWO'Rourke R, eds. Hurst's The Heart. 10th ed. New York: McGraw Hill 2001;:13731386.
    [Google Scholar]
  4. Eisenberg PR, Ghigliotti G. Platelet-dependent and procoagulant mechanisms in arterial thrombosis. Int J Cardiol. 1999; 68:Suppl 1:S3S10.
    [Google Scholar]
  5. Verstraete M. Biology and chemistry of thrombosis. In: Haber EBraunwald E, eds. Thrombolysis: Basic Contributions and Clinical Progress. Vol. 1. St Louis, MO: CV Mosby Year Book 1991:p.3.
    [Google Scholar]
  6. Coller BS. The role of platelets in arterial thrombosis and the rationale for blockade of platelet GPIIb/IIIa receptors as antithrombotic therapy. Eur Heart J. 1995; 16:Suppl L:1115.
    [Google Scholar]
  7. Nguyen MC, Pride YB, Michael Gibson C. Chapter 36 Anticoagulation: Antithrombin therapy. In: Jeremias ABrown DL, eds. Cardiac Intensive Care. Philadelphia, PA: ELSEVIER 2010;:443451.
    [Google Scholar]
  8. Colman RW, Marder VJ, Salzman EW, Hirsh J. Overview of hemostasis. In: Colman RWHirsh JMarder VJSalzman EW, eds. Hemostasis and Thrombosis; Basic Principles and Clinical Practice. 3rd ed. Philadelphia, PA: JB Lippincott 1994;:318.
    [Google Scholar]
  9. Kleindorfer D, Lindsell C, Brass L, Koroshetz W, Broderick J. National US estimates of recombinant tissue plasminogen activator use. Stroke. 2008; 39::924928.
    [Google Scholar]
  10. Machado L, Sazonova I, Kozak A, Wiley D, El-Remessy A, Ergul A, Hess D, Waller J, Fagan S. Minocycline and tissue-type plasminogen activator for stroke: Assessment of interaction potential. Stroke. 2009; 40::30283033.
    [Google Scholar]
  11. Smith BJ. Thrombolysis in acute myocardial infarction: Analysis of studies comparing accelerated t-PA and streptokinase. J Accid Emerg Med. 1999; 16:6:407411.
    [Google Scholar]
  12. Baruah DB, Dash RN, Chaudhari MR, Kadam SS. Plasminogen activators: A comparison. Vascul Pharmacol. 2006; 44::19.
    [Google Scholar]
  13. Maizel AS, Bookstein JJ. Streptokinase, urokinase, and tissue plasminogen activator: Pharmacokinetics, relative advantages, and methods for maximizing rates and consistency of lysis. Cardiovasc Intervent Radiol. 1986; 9::234244.
    [Google Scholar]
  14. Vyas SP, Vaidya B. Targeted delivery of thrombolytic agents: Role of integrin receptors. Exp Opin Drug Deliv. 2009; 6::499508.
    [Google Scholar]
  15. Huber K, Runge MS, Bode C, Gulba D. Thrombolytic therapy in acute myocardial infarction. Ann Hematol. 1996; 73::S29S38.
    [Google Scholar]
  16. Stricker RB, Wong D, Shiu DT, Reyes PT, Shuman MA. Activation of plasminogen by tissue plasminogen activator on normal and thromb-asthenic platelets: Effects on surface proteins and platelet aggregation. Blood. 1986; 68::275280.
    [Google Scholar]
  17. Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Int J Pharm. 2011; 403:1-2:254261.
    [Google Scholar]
  18. Allison SD. Liposomal drug delivery. J Infus Nurs. 2007; 30:2:8995, quiz 120.
    [Google Scholar]
  19. Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008; 60:10:11671176.
    [Google Scholar]
  20. Nii T, Ishii F. Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm. 2005; 298:1:198205.
    [Google Scholar]
  21. Psarros C, Lee R, Margaritis M, Antoniades C. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Nanomedicine. 2012; 8:Suppl 1:S59S68.
    [Google Scholar]
  22. Torchilin VP. Targeting of drugs and drug carriers within the cardiovascular system. Adv Drug Deliv Rev. 1995; 17::75101.
    [Google Scholar]
  23. Heeremans JL, Gerritsen HR, Meusen SP, Mijnheer FW, Gangaram Panday RS, Prevost R, Kluft C, Crommelin DJ. The preparation of tissue-type plasminogen activator (t-PA) containing liposomes: Entrapment efficiency and ultracentrifugation damage. J Drug Target. 1995; 3:4:301310.
    [Google Scholar]
  24. Heeremans JL, Prevost R, Bekkers ME, Los P, Emeis JJ, Kluft C, Crommelin DJ. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: A comparison with free t-PA. Thromb Haemost. 1995; 73::488494.
    [Google Scholar]
  25. Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials. 2009; 30:29:57515765.
    [Google Scholar]
  26. Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm. 2009; 71::463474.
    [Google Scholar]
  27. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003; 2::214221.
    [Google Scholar]
  28. Bergstrand N. Liposomes for drug delivery: From physico-chemical studies to applications (PhD thesis) . Sweden: Uppsala University 2003.
    [Google Scholar]
  29. Nikolova AN, Jones MN. Effect of grafted PEG-2000 on the size and permeability of vesicles. Biochim Biophys Acta. 1996; 1304::120128.
    [Google Scholar]
  30. Levchenko TS, Hartner WC, Torchilin VP, Methodist Debakey Cardiovasc J. 2012; 8:1:3641.
    [Google Scholar]
  31. Absar S, Nahar K, Kwon YM, Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res. 2013; 30:6:16631676.
    [Google Scholar]
  32. Vaidya B, Agrawal GP, Vyas SP. Functionalized carriers for the improved delivery of plasminogen activators. Int J Pharm. 2012; 424:1-2:111.
    [Google Scholar]
  33. Trübestein G, Engel C, Etzel F, Sobbe A, Cremer H, Stumpff U. Thrombolysis by ultrasound. Clin Sci Mol Med. 1976; 3::697698.
    [Google Scholar]
  34. Tachibana K, Tachibana S. Ultrasonic vibration for boosting fibrinolytic effects of urokinase in vivo. Thromb Haemost. 1981; 46::211.
    [Google Scholar]
  35. Cintas P, Le Traon AP, Larrue V. High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. Stroke. 2002; 33::626628.
    [Google Scholar]
  36. Rosenschein U, Bernstein JJ, DiSegni E, Kaplinsky E, Bernheim J, Rozenzsajn LA. Experimental ultrasonic angioplasty: Disruption of atherosclerotic plaques and thrombi in vitro and arterial recanalization in vivo. J Am Coll Cardiol. 1990; 15::711717.
    [Google Scholar]
  37. Ariani M, Fishbein MC, Chae JS, Sadeghi H, DonMichael A, Dubin SB, Siegel RJ. Dissolution of peripheral arterial thrombi by ultrasound. Circulation. 1991; 84::16801688.
    [Google Scholar]
  38. Uesugi Y, Kawata H, Jo J, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release. 2010; 147::269277.
    [Google Scholar]
  39. Laing ST, Moody MR, Kim H, Smulevitz B, Huang SL, Holland CK, McPherson DD, Klegerman ME. Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res. 2012; 130::629635.
    [Google Scholar]
  40. Hitchcock KE, Caudell DN, Sutton,M JT, Klegerman E, Vela D, Pyne-Geithman GJ, Abruzzo T, Cyr PE, Geng YJ, McPherson DD, Holland CK. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model. J Control Release. 2010; 144::288295.
    [Google Scholar]
  41. Francis CW. Ultrasound-enhanced thrombolysis. Echocardiography. 2001; 18:3:239246.
    [Google Scholar]
  42. Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol. 1995; 21::419424.
    [Google Scholar]
  43. Siddiqi F, Blinc A, Braaten J, Francis CW. Ultrasound increases flow through fibrin gels. Thromb Haemost. 1995; 73::495498.
    [Google Scholar]
  44. Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol. 2000; 26:7:11531160.
    [Google Scholar]
  45. Nyborg WL, Ziskin MC. Biological Effects of Ultrasound. NewYork: Churchill Livingstone 1985, P 133.
    [Google Scholar]
  46. Alexandrov AV. Ultrasound enhanced thrombolysis for stroke. Int J Stroke. 2006; 1:1:2629.
    [Google Scholar]
  47. Rosenschein U, Frimerman A, Laniado S, Miller HI. Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta. Am J Cardiol. 1994; 74:12:12631266.
    [Google Scholar]
  48. Williams AR, Chater BV, Allen KA, Sherwood MR, Sanderson JH. Release of beta-thromboglobulin from human platelets by therapeutic intensities of ultrasound. Br J Haematol. 1978; 40:1:133142.
    [Google Scholar]
  49. Kornowski R, Meltzer RS, Chernine A, Vered Z, Battler A. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circulation. 1994; 89:1:339344.
    [Google Scholar]
  50. Kudo S, Furuhata H, Hara M, Maie K, Hamano K, Okamura T. Noninvasive thrombolysis with ultrasound. (abstract). Circulation. 1989; 80:suppl. I:I345.
    [Google Scholar]
  51. Kudo S. Thrombolysis with ultrasound effect. Tokyo Jikeikai Med J. 1989; 104::10051012.
    [Google Scholar]
  52. Hamano K, Fujinaga T, Muto M, Yoshizawa S, Kudo S, Hara M, Okamura T, Furuhata H. Thrombolysis by transcutaneous ultrasonic irradiation. (abstract). Circulation. 1990; 82:suppl III:III309.
    [Google Scholar]
  53. Kimura M, Iijima S, Kobayashi K, Furuhata H. Evaluation of the thrombolytic effect of tissue-type plasminogen activator with ultrasound irradiation: In vitro experiment involving assay of the fibrin degradation products from the clot. Biol Pharm Bull. 1994; 17::126130.
    [Google Scholar]
  54. Akiyama M, Ishibashi T, Yamada T, Furuhata H. Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro. Neurosurgery. 1998; 43::828832.
    [Google Scholar]
  55. Porter TR. The utilization of ultrasound and microbubbles for therapy in acute coronary syndromes. Cardiovascular Res. 2009; 83::636642.
    [Google Scholar]
  56. Porter TR, Kricsfeld D, Lof J, Everbach EC, Xie F. Effectiveness of transcranial and transthoracic ultrasound and microbubbles in dissolving intravascular thrombi. J Ultrasound Med. 2001; 20:12:13131325.
    [Google Scholar]
  57. Alexandrov AV, Demchuk AM, Felberg RA, Christou I, Barber PA, Burgin WS, Malkoff M, Wojner AW, Grotta JC. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored by 2-MHz transcranial Doppler monitoring. Stroke. 2000; 31::610614.
    [Google Scholar]
  58. Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J, Montaner J, Saqqur M, Demchuk AM, Moyé LA, Hill MD, Wojner AW, CLOTBUST Investigators . Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004; 351::21702178.
    [Google Scholar]
  59. Molina CA, Montaner J, Abilleira S, Ibarra B, Romero F, Arenillas JF, Alvarez-Sabin J. Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute cardioembolic stroke. Stroke. 2001; 32::10791084.
    [Google Scholar]
  60. Eggers J, Koch B, Meyer K, Konig I, Seidel G. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol. 2003; 53::797800.
    [Google Scholar]
  61. Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T, Sedlaczek O, Koroshetz WJ, Hennerici MG. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator. Stroke. 2005; 36::14411446.
    [Google Scholar]
  62. De Jong N, Ten Cate FJ. Principles and recent developments in ultrasound contrast agents. Ultrasonics. 1991; 29::324330.
    [Google Scholar]
  63. Feinstein SB, Shah PM. Advances in contrast two-dimensional echocardiography. Cardiovasc Clin. 1986; 17::95102.
    [Google Scholar]
  64. Burns PN. Ultrasound contrast agents in radiological diagnosis. Radiol Med (Torino). 1994; 87::7182.
    [Google Scholar]
  65. Moehring MA, Klepper JR. Pulse Doppler ultrasound detection, characterization and size estimation of emboli in flowing blood. IEEE Trans Biomed Eng. 1994; 41::3544.
    [Google Scholar]
  66. Becker A, Marxer E, Brüßler J, Sophia Hoormann A, Kuhnt D, Bakowsky U, Nimsky C. Ultrasound active nanoscaled lipid formulations for thrombus lysis. Eur J Pharm Biopharm. 2011; 77:3:424429.
    [Google Scholar]
  67. Molina CA, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R, Arenillas JF, Huertas R, Purroy F, Delgado P, Alvarez-Sabín J. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke. 2006; 37:2:425429.
    [Google Scholar]
  68. Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, ten Cate FJ, van Gilst W, Visser CA, de Jong N, Kamp O. Microbubbles and ultrasound: From diagnosis to therapy. Eur J Echocardiogr. 2004; 5:4:245256.
    [Google Scholar]
  69. Morgan KE, Allen JS, Dayton PA, Chomas JE, Klibaov AL, Ferrara KW. Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelectr Freq Control. 2000; 47:6:14941509.
    [Google Scholar]
  70. Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol. 2009; 35:6:976984.
    [Google Scholar]
  71. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev. 2004; 56::12911314.
    [Google Scholar]
  72. Sidhu PS, Allan PL, Cattin F, Cosgrove DO, Davies AH, Do DD, Karakagil S, Langholz J, Legemate DA, Martegani A, Llull JB, Pezzoli C, Spinazzi A. Diagnostic efficacy of SonoVue®, a second generation contrast agent, in the assessment of extracranial carotid or peripheral arteries using colour and spectral Doppler ultrasound: A multicentre study. Br J Radiol. 2006; 79::4451.
    [Google Scholar]
  73. Viguier A, Petit R, Rigal M, Cintas P, Larrue V. Continuous monitoring of middle cerebral artery recanalization with transcranial color-coded sonography and Levovist. J Thromb Thrombolysis. 2005; 19::5559.
    [Google Scholar]
  74. Alexandrov AV, Mikulik R, Ribo M, Sharma VK, Lao AY, Tsivgoulis G, Sugg RM, Barreto A, Sierzenski P, Malkoff MD, Grotta JC. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke. 2008; 39::14641469.
    [Google Scholar]
  75. Smith DA, Vaidya SS, Kopechek JA, Huang SL, Klegerman ME, McPherson DD, Holland CK. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol. 2010; 36:1:145157.
    [Google Scholar]
  76. Huang SL, MacDonald RC. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta. 2004; 1665::134141.
    [Google Scholar]
  77. Tiukinhoy-Laing SD, Huang S, Klegerman M, Holland CK, McPherson DD. Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res. 2007; 119:6:777784.
    [Google Scholar]
  78. Smith DAB, Porter TM, Martinez J, Huang S, MacDonald RC, McPherson DD, Holland CK. Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound. Ultrasound Med Biol. 2007; 33::797809.
    [Google Scholar]
  79. Smith DAB, Vaidya S, Kopechek JA, Hitchcock KE, Huang SL, McPherson DD, Holland CK. Echogenic liposomes loaded with recombinant tissue-type plasminogen activator (rt-PA) for image-guided, ultrasound-triggered drug release. J Acoust Soc Am. 2007; 122::3007.
    [Google Scholar]
  80. Gore JM, Sloan M, Price TR, Young Randall AM, Bovill E, Collen D, Forman S, Knatterud GL, Sopko G, Terrin ML. Intracerebral hemorrhage, cerebral infarction, and subdural hematoma after acute myocardial infarction and thrombolytic therapy in the thrombolysis in myocardial infarction study. Thrombolysis in myocardial infarction, Phase II, pilot and clinical trial. Circulation. 1991; 83::448459.
    [Google Scholar]
  81. Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res. 2009; 124:3:306310.
    [Google Scholar]
  82. Martina D, Alleiımann E, Bettinger T, Bussat P, Lassus A, Pochon S, Schneider M. Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa—characterization and in vitro testing. Eur J Pharm Biopharm. 2008; 68::555564.
    [Google Scholar]
  83. Mu Y, Li L, Ayoufu G. Experimental study of the preparation of targeted microbubble contrast agents carrying urokinase and RGDS. Ultrasonics. 2009; 49::676681.
    [Google Scholar]
  84. Klegerman ME, Zou Y, Mcpherson DD. Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J Liposome Res. 2008;:95112.
    [Google Scholar]
  85. Runge MS, Bode C, Matsueda GR, Haber E. Antibody-enhanced thrombolysis: Targeting of tissue plasminogen activator in vivo. Proc Natl Acad Sci U S A. 1987; 84:21:76597662.
    [Google Scholar]
  86. Marsh JN, Senpan A, Hu G, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond). 2007; 2:4:533543.
    [Google Scholar]
  87. Liang J-F, Li Y, Connell ME, Yang VC. Synthesis and characterization of positively charged tPA as a prodrug using a heparin/protamine-based drug delivery system. AAPS Pharmsci. 2000; 2:1:E7.
    [Google Scholar]
  88. Liang J-F, Li Y, Song H, Park Y-J, Naik SS, Yang VC. ATTEMPTS: A heparin/protamine-based delivery system for enzyme drugs. J Control Release. 2002; 78::6779.
    [Google Scholar]
  89. Park Y-J, Liang J-F, Song H, Li Y, Naik SS, Yang VC. ATTEMPTS: A heparin/protamine-based triggered release system for the delivery of enzyme drugs without associated side-effects. Adv Drug Delivery Rev. 2003; 55::251265.
    [Google Scholar]
  90. Yang VC, Naik SS, Song H, Dombkowski AA, Crippen G, Liang JF. Construction and characterization of a t-PA mutant for use in ATTEMPTS: A drug delivery system for achieving targeted thrombolysis. J Control Release. 2005; 110:1:164176.
    [Google Scholar]
  91. Naik SS, Liang J-F, Park Y-J, Lee W-K, Yang VC. Application of ATTEMPTS for drug delivery. J Contr Rel. 2005; 10::3445.
    [Google Scholar]
  92. Absar S, Choi S, Yang VC, Kwon YM. Heparin-triggered release of camouflaged tissue plasminogen activator for targeted thrombolysis. J Control Release. 2012; 157:1:4654.
    [Google Scholar]
  93. Absar S, Choi S, Ahsan F, Cobos E, Yang VC, Kwon YM. Preparation and characterization of anionic oligopeptide-modified tissue plasminogen activator for triggered delivery: An approach for localized thrombolysis. Thromb Res. 2013; 131:3:e91e99.
    [Google Scholar]
  94. Absar S, Kwon YM, Ahsan F. Bio-responsive delivery of tissue plasminogen activator for localized thrombolysis. J Control Release. 2014; 177::4250.
    [Google Scholar]
  95. Kaminski MD, Xie Y, Mertz CJ, Finck MR, Chen H, Rosengart AJ. Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. Eur J Pharm Sci. 2008; 35:1-2:96103.
    [Google Scholar]
  96. Torno MD, Kaminski MD, Xie Y, Meyers RE, Mertz CJ, Liu X, O'Brien WD Jr, Rosengart AJ. Improvement of in vitro thrombolysis employing magnetically-guided microspheres. Thrombo Res. 2008; 121::799811.
    [Google Scholar]
  97. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res. 2006; 67::5560.
    [Google Scholar]
  98. Horak D, Babic M, Mackova H, Benes MJ. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci. 2007; 30:1:17511772.
    [Google Scholar]
  99. Chen JP, Yang PC, Ma Y-H, Wu T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohy Polym. 2011; 84::364372.
    [Google Scholar]
  100. Kempe M, Kempe H, Snowball I, Wallén R, Arza CR, Götberg M, Olsson T. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials. 2010; 31:36:94999510.
    [Google Scholar]
  101. Ma Y-H, Hsu Y-W, Chang Y-J, Hua M-Y, Chen J-P, Wu T. Intra-arterial application of magnetic nanoparticles for targeted thrombolytic therapy: A rat embolic model. J Magn Magn Mater. 2007; 311::342346.
    [Google Scholar]
  102. Ma YH, Wu SY, Wu T, Chang YJ, Hua MY, Chen JP. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials. 2009; 30:19:33433351.
    [Google Scholar]
  103. Lin CL, Lee CF, Chiu WY. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci. 2005; 291:2:411420.
    [Google Scholar]
  104. Ravi Kumar MNV. A review of chitin and chitosan applications. React Funct Polym. 2000; 46:1:127.
    [Google Scholar]
  105. Uesugi Y, Kawata H, Saito Y, Tabata Y. Ultrasound-responsive thrombus treatment with zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator. J Drug Target. 2012; 20:3:224234.
    [Google Scholar]
  106. Kawata H, Uesugi Y, Soeda T, Takemoto Y, Sung JH, Umaki K, Kato K, Ogiwara K, Nogami K, Ishigami K, Horii M, Uemura S, Shima M, Tabata Y, Saito Y. A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. J Am Coll Cardiol. 2012; 60:24:25502557.
    [Google Scholar]
  107. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012; 337:6095:738742.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.46
Loading
/content/journals/10.5339/gcsp.2014.46
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): clot bustingcontrolled deliverythrombus and tissue plasminogen activator
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error