1887
Volume 2014, Issue 3
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Cardiovascular diseases are the leading cause of death worldwide. Thrombosis, the formation of blood clot (thrombus) in the circulatory system obstructing the blood flow, is one of the main causes behind various ischemic arterial syndromes such as ischemic stroke and myocardial infarction, as well as vein syndromes such as deep vein thrombosis, and consequently, pulmonary emboli. Several thrombolytic agents have been developed for treating thrombosis, the most common being tissue plasminogen activator (tPA), administrated systemically or locally via IV infusion directly proximal to the thrombus, with the aim of restoring and improving the blood flow. TPA triggers the dissolution of thrombi by inducing the conversion of plasminogen to protease plasmin followed by fibrin digestion that eventually leads to clot lysis. Although tPA provides powerful thrombolytic activity, it has many shortcomings, including poor pharmacokinetic profiles, impairment of the reestablishment of normal coronary flow, and impairment of hemostasis, leading to life-threatening bleeding consequences. The bleeding consequence is ascribed to the ability of tPA to circulate throughout the body and therefore can lysis all blood clots in the circulation system, even the good ones that prevent the bleeding and promote injury repair. This review provides an overview of the different delivery approaches for tPA including: liposomes, ultrasound-triggered thrombolysis, anti-fibrin antibody-targeted tPA, camouflaged-tPA, tpA-loaded microcarriers, and nano-modulated delivery approaches.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.46
2014-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/3/gcsp.2014.46.html?itemId=/content/journals/10.5339/gcsp.2014.46&mimeType=html&fmt=ahah

References

  1. [1]. Schussheim   AE., , Fuster   V. . Thrombosis, antithrombotic agents, and the antithrombotic approach in cardiac disease. . Prog Cardiovasc Dis . 1997; ;40: 3 : 205– 238 .
    [Google Scholar]
  2. [2]. Abbate   R., , Cioni   G., , Ricci   I., , Miranda   M., , Gori   AM. . Thrombosis and acute coronary syndrome. . Thromb Res . 2012; ;129: 3 : 235– 240 .
    [Google Scholar]
  3. [3]. Canon   CP., , Fuster   V. . Thrombogenesis, antithrombotic, and thrombolytic therapy. . In: Fuster   V., Alexander   RW., O'Rourke   R. , eds. Hurst's The Heart . , 10th ed..   New York: : McGraw Hill;   2001; ; : 1373– 1386 .
    [Google Scholar]
  4. [4]. Eisenberg   PR., , Ghigliotti   G. . Platelet-dependent and procoagulant mechanisms in arterial thrombosis. . Int J Cardiol . 1999; ;68: Suppl 1 : S3– S10 .
    [Google Scholar]
  5. [5]. Verstraete   M. . Biology and chemistry of thrombosis. . In: Haber   E., Braunwald   E. , eds. Thrombolysis: Basic Contributions and Clinical Progress . Vol. 1 . St Louis, MO: : CV Mosby Year Book;   1991; :p. 3 .
    [Google Scholar]
  6. [6]. Coller   BS. . The role of platelets in arterial thrombosis and the rationale for blockade of platelet GPIIb/IIIa receptors as antithrombotic therapy. . Eur Heart J . 1995; ;16: Suppl L : 11– 15 .
    [Google Scholar]
  7. [7]. Nguyen   MC., , Pride   YB., , Michael Gibson   C. . Chapter 36 Anticoagulation: Antithrombin therapy. . In: Jeremias   A., Brown   DL. , eds. Cardiac Intensive Care . Philadelphia, PA: : ELSEVIER;   2010; ; : 443– 451 .
    [Google Scholar]
  8. [8]. Colman   RW., , Marder   VJ., , Salzman   EW., , Hirsh   J. . Overview of hemostasis. . In: Colman   RW., Hirsh   J., Marder   VJ., Salzman   EW. , eds. Hemostasis and Thrombosis; Basic Principles and Clinical Practice . , 3rd ed..   Philadelphia, PA: : JB Lippincott;   1994; ; : 3– 18 .
    [Google Scholar]
  9. [9]. Kleindorfer   D., , Lindsell   C., , Brass   L., , Koroshetz   W., , Broderick   J. . National US estimates of recombinant tissue plasminogen activator use. . Stroke . 2008; ;39: : 924– 928 .
    [Google Scholar]
  10. [10]. Machado   L., , Sazonova   I., , Kozak   A., , Wiley   D., , El-Remessy   A., , Ergul   A., , Hess   D., , Waller   J., , Fagan   S. . Minocycline and tissue-type plasminogen activator for stroke: Assessment of interaction potential. . Stroke . 2009; ;40: : 3028– 3033 .
    [Google Scholar]
  11. [11]. Smith   BJ. . Thrombolysis in acute myocardial infarction: Analysis of studies comparing accelerated t-PA and streptokinase. . J Accid Emerg Med . 1999; ;16: 6 : 407– 411 .
    [Google Scholar]
  12. [12]. Baruah   DB., , Dash   RN., , Chaudhari   MR., , Kadam   SS. . Plasminogen activators: A comparison. . Vascul Pharmacol . 2006; ;44: : 1– 9 .
    [Google Scholar]
  13. [13]. Maizel   AS., , Bookstein   JJ. . Streptokinase, urokinase, and tissue plasminogen activator: Pharmacokinetics, relative advantages, and methods for maximizing rates and consistency of lysis. . Cardiovasc Intervent Radiol . 1986; ;9: : 234– 244 .
    [Google Scholar]
  14. [14]. Vyas   SP., , Vaidya   B. . Targeted delivery of thrombolytic agents: Role of integrin receptors. . Exp Opin Drug Deliv . 2009; ;6: : 499– 508 .
    [Google Scholar]
  15. [15]. Huber   K., , Runge   MS., , Bode   C., , Gulba   D. . Thrombolytic therapy in acute myocardial infarction. . Ann Hematol . 1996; ;73: : S29– S38 .
    [Google Scholar]
  16. [16]. Stricker   RB., , Wong   D., , Shiu   DT., , Reyes   PT., , Shuman   MA. . Activation of plasminogen by tissue plasminogen activator on normal and thromb-asthenic platelets: Effects on surface proteins and platelet aggregation. . Blood . 1986; ;68: : 275– 280 .
    [Google Scholar]
  17. [17]. Vaidya   B., , Nayak   MK., , Dash   D., , Agrawal   GP., , Vyas   SP. . Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. . Int J Pharm . 2011; ;403: 1-2 : 254– 261 .
    [Google Scholar]
  18. [18]. Allison   SD. . Liposomal drug delivery. . J Infus Nurs . 2007; ;30: 2 : 89– 95 , quiz 120 .
    [Google Scholar]
  19. [19]. Huang   SL. . Liposomes in ultrasonic drug and gene delivery. . Adv Drug Deliv Rev . 2008; ;60: 10 : 1167– 1176 .
    [Google Scholar]
  20. [20]. Nii   T., , Ishii   F. . Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. . Int J Pharm . 2005; ;298: 1 : 198– 205 .
    [Google Scholar]
  21. [21]. Psarros   C., , Lee   R., , Margaritis   M., , Antoniades   C. . Nanomedicine for the prevention, treatment and imaging of atherosclerosis. . Nanomedicine . 2012; ;8: Suppl 1 : S59– S68 .
    [Google Scholar]
  22. [22]. Torchilin   VP. . Targeting of drugs and drug carriers within the cardiovascular system. . Adv Drug Deliv Rev . 1995; ;17: : 75– 101 .
    [Google Scholar]
  23. [23]. Heeremans   JL., , Gerritsen   HR., , Meusen   SP., , Mijnheer   FW., , Gangaram Panday   RS., , Prevost   R., , Kluft   C., , Crommelin   DJ. . The preparation of tissue-type plasminogen activator (t-PA) containing liposomes: Entrapment efficiency and ultracentrifugation damage. . J Drug Target . 1995; ;3: 4 : 301– 310 .
    [Google Scholar]
  24. [24]. Heeremans   JL., , Prevost   R., , Bekkers   ME., , Los   P., , Emeis   JJ., , Kluft   C., , Crommelin   DJ. . Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: A comparison with free t-PA. . Thromb Haemost . 1995; ;73: : 488– 494 .
    [Google Scholar]
  25. [25]. Kim   JY., , Kim   JK., , Park   JS., , Byun   Y., , Kim   CK. . The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. . Biomaterials . 2009; ;30: 29 : 5751– 5765 .
    [Google Scholar]
  26. [26]. Christian   DA., , Cai   S., , Bowen   DM., , Kim   Y., , Pajerowski   JD., , Discher   DE. . Polymersome carriers: From self-assembly to siRNA and protein therapeutics. . Eur J Pharm Biopharm . 2009; ;71: : 463– 474 .
    [Google Scholar]
  27. [27]. Harris   JM., , Chess   RB. . Effect of pegylation on pharmaceuticals. . Nat Rev Drug Discov . 2003; ;2: : 214– 221 .
    [Google Scholar]
  28. [28]. Bergstrand   N. . Liposomes for drug delivery: From physico-chemical studies to applications (PhD thesis) . Sweden: : Uppsala University;   2003; .
    [Google Scholar]
  29. [29]. Nikolova   AN., , Jones   MN. . Effect of grafted PEG-2000 on the size and permeability of vesicles. . Biochim Biophys Acta . 1996; ;1304: : 120– 128 .
    [Google Scholar]
  30. [30]. Levchenko   TS., , Hartner   WC., , Torchilin   VP. , Methodist Debakey Cardiovasc J . 2012; ;8: 1 : 36– 41 .
    [Google Scholar]
  31. [31]. Absar   S., , Nahar   K., , Kwon   YM., , Ahsan   F. . Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. . Pharm Res . 2013; ;30: 6 : 1663– 1676 .
    [Google Scholar]
  32. [32]. Vaidya   B., , Agrawal   GP., , Vyas   SP. . Functionalized carriers for the improved delivery of plasminogen activators. . Int J Pharm . 2012; ;424: 1-2 : 1– 11 .
    [Google Scholar]
  33. [33]. Trübestein   G., , Engel   C., , Etzel   F., , Sobbe   A., , Cremer   H., , Stumpff   U. . Thrombolysis by ultrasound. . Clin Sci Mol Med . 1976; ;3: : 697– 698 .
    [Google Scholar]
  34. [34]. Tachibana   K., , Tachibana   S. . Ultrasonic vibration for boosting fibrinolytic effects of urokinase in vivo. . Thromb Haemost . 1981; ;46: : 211 .
    [Google Scholar]
  35. [35]. Cintas   P., , Le Traon   AP., , Larrue   V. . High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. . Stroke . 2002; ;33: : 626– 628 .
    [Google Scholar]
  36. [36]. Rosenschein   U., , Bernstein   JJ., , DiSegni   E., , Kaplinsky   E., , Bernheim   J., , Rozenzsajn   LA. . Experimental ultrasonic angioplasty: Disruption of atherosclerotic plaques and thrombi in vitro and arterial recanalization in vivo. . J Am Coll Cardiol . 1990; ;15: : 711– 717 .
    [Google Scholar]
  37. [37]. Ariani   M., , Fishbein   MC., , Chae   JS., , Sadeghi   H., , DonMichael   A., , Dubin   SB., , Siegel   RJ. . Dissolution of peripheral arterial thrombi by ultrasound. . Circulation . 1991; ;84: : 1680– 1688 .
    [Google Scholar]
  38. [38]. Uesugi   Y., , Kawata   H., , Jo   J., , Saito   Y., , Tabata   Y. . An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. . J Control Release . 2010; ;147: : 269– 277 .
    [Google Scholar]
  39. [39]. Laing   ST., , Moody   MR., , Kim   H., , Smulevitz   B., , Huang   SL., , Holland   CK., , McPherson   DD., , Klegerman   ME. . Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. . Thromb Res . 2012; ;130: : 629– 635 .
    [Google Scholar]
  40. [40]. Hitchcock   KE., , Caudell   DN., , Sutton,M   JT., , Klegerman   E., , Vela   D., , Pyne-Geithman   GJ., , Abruzzo   T., , Cyr   PE., , Geng   YJ., , McPherson   DD., , Holland   CK. . Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model. . J Control Release . 2010; ;144: : 288– 295 .
    [Google Scholar]
  41. [41]. Francis   CW. . Ultrasound-enhanced thrombolysis. . Echocardiography . 2001; ;18: 3 : 239– 246 .
    [Google Scholar]
  42. [42]. Francis   CW., , Blinc   A., , Lee   S., , Cox   C. . Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. . Ultrasound Med Biol . 1995; ;21: : 419– 424 .
    [Google Scholar]
  43. [43]. Siddiqi   F., , Blinc   A., , Braaten   J., , Francis   CW. . Ultrasound increases flow through fibrin gels. . Thromb Haemost . 1995; ;73: : 495– 498 .
    [Google Scholar]
  44. [44]. Everbach   EC., , Francis   CW. . Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. . Ultrasound Med Biol . 2000; ;26: 7 : 1153– 1160 .
    [Google Scholar]
  45. [45]. Nyborg   WL., , Ziskin   MC. . Biological Effects of Ultrasound . NewYork: : Churchill Livingstone;   1985;, P 1– 33 .
    [Google Scholar]
  46. [46]. Alexandrov   AV. . Ultrasound enhanced thrombolysis for stroke. . Int J Stroke . 2006; ;1: 1 : 26– 29 .
    [Google Scholar]
  47. [47]. Rosenschein   U., , Frimerman   A., , Laniado   S., , Miller   HI. . Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta. . Am J Cardiol . 1994; ;74: 12 : 1263– 1266 .
    [Google Scholar]
  48. [48]. Williams   AR., , Chater   BV., , Allen   KA., , Sherwood   MR., , Sanderson   JH. . Release of beta-thromboglobulin from human platelets by therapeutic intensities of ultrasound. . Br J Haematol . 1978; ;40: 1 : 133– 142 .
    [Google Scholar]
  49. [49]. Kornowski   R., , Meltzer   RS., , Chernine   A., , Vered   Z., , Battler   A. . Does external ultrasound accelerate thrombolysis? Results from a rabbit model. . Circulation . 1994; ;89: 1 : 339– 344 .
    [Google Scholar]
  50. [50]. Kudo   S., , Furuhata   H., , Hara   M., , Maie   K., , Hamano   K., , Okamura   T. . Noninvasive thrombolysis with ultrasound. (abstract). . Circulation . 1989; ;80: suppl. I : I– 345 .
    [Google Scholar]
  51. [51]. Kudo   S. . Thrombolysis with ultrasound effect. . Tokyo Jikeikai Med J . 1989; ;104: : 1005– 1012 .
    [Google Scholar]
  52. [52]. Hamano   K., , Fujinaga   T., , Muto   M., , Yoshizawa   S., , Kudo   S., , Hara   M., , Okamura   T., , Furuhata   H. . Thrombolysis by transcutaneous ultrasonic irradiation. (abstract). . Circulation . 1990; ;82: suppl III : III– 309 .
    [Google Scholar]
  53. [53]. Kimura   M., , Iijima   S., , Kobayashi   K., , Furuhata   H. . Evaluation of the thrombolytic effect of tissue-type plasminogen activator with ultrasound irradiation: In vitro experiment involving assay of the fibrin degradation products from the clot. . Biol Pharm Bull . 1994; ;17: : 126– 130 .
    [Google Scholar]
  54. [54]. Akiyama   M., , Ishibashi   T., , Yamada   T., , Furuhata   H. . Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro. . Neurosurgery . 1998; ;43: : 828– 832 .
    [Google Scholar]
  55. [55]. Porter   TR. . The utilization of ultrasound and microbubbles for therapy in acute coronary syndromes. . Cardiovascular Res . 2009; ;83: : 636– 642 .
    [Google Scholar]
  56. [56]. Porter   TR., , Kricsfeld   D., , Lof   J., , Everbach   EC., , Xie   F. . Effectiveness of transcranial and transthoracic ultrasound and microbubbles in dissolving intravascular thrombi. . J Ultrasound Med . 2001; ;20: 12 : 1313– 1325 .
    [Google Scholar]
  57. [57]. Alexandrov   AV., , Demchuk   AM., , Felberg   RA., , Christou   I., , Barber   PA., , Burgin   WS., , Malkoff   M., , Wojner   AW., , Grotta   JC. . High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored by 2-MHz transcranial Doppler monitoring. . Stroke . 2000; ;31: : 610– 614 .
    [Google Scholar]
  58. [58]. Alexandrov   AV., , Molina   CA., , Grotta   JC., , Garami   Z., , Ford   SR., , Alvarez-Sabin   J., , Montaner   J., , Saqqur   M., , Demchuk   AM., , Moyé   LA., , Hill   MD., , Wojner   AW., , CLOTBUST Investigators. . Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. . N Engl J Med . 2004; ;351: : 2170– 2178 .
    [Google Scholar]
  59. [59]. Molina   CA., , Montaner   J., , Abilleira   S., , Ibarra   B., , Romero   F., , Arenillas   JF., , Alvarez-Sabin   J. . Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute cardioembolic stroke. . Stroke . 2001; ;32: : 1079– 1084 .
    [Google Scholar]
  60. [60]. Eggers   J., , Koch   B., , Meyer   K., , Konig   I., , Seidel   G. . Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. . Ann Neurol . 2003; ;53: : 797– 800 .
    [Google Scholar]
  61. [61]. Daffertshofer   M., , Gass   A., , Ringleb   P., , Sitzer   M., , Sliwka   U., , Els   T., , Sedlaczek   O., , Koroshetz   WJ., , Hennerici   MG. . Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator. . Stroke . 2005; ;36: : 1441– 1446 .
    [Google Scholar]
  62. [62]. De Jong   N., , Ten Cate   FJ. . Principles and recent developments in ultrasound contrast agents. . Ultrasonics . 1991; ;29: : 324– 330 .
    [Google Scholar]
  63. [63]. Feinstein   SB., , Shah   PM. . Advances in contrast two-dimensional echocardiography. . Cardiovasc Clin . 1986; ;17: : 95– 102 .
    [Google Scholar]
  64. [64]. Burns   PN. . Ultrasound contrast agents in radiological diagnosis. . Radiol Med (Torino) . 1994; ;87: : 71– 82 .
    [Google Scholar]
  65. [65]. Moehring   MA., , Klepper   JR. . Pulse Doppler ultrasound detection, characterization and size estimation of emboli in flowing blood. . IEEE Trans Biomed Eng . 1994; ;41: : 35– 44 .
    [Google Scholar]
  66. [66]. Becker   A., , Marxer   E., , Brüßler   J., , Sophia Hoormann   A., , Kuhnt   D., , Bakowsky   U., , Nimsky   C. . Ultrasound active nanoscaled lipid formulations for thrombus lysis. . Eur J Pharm Biopharm . 2011; ;77: 3 : 424– 429 .
    [Google Scholar]
  67. [67]. Molina   CA., , Ribo   M., , Rubiera   M., , Montaner   J., , Santamarina   E., , Delgado-Mederos   R., , Arenillas   JF., , Huertas   R., , Purroy   F., , Delgado   P., , Alvarez-Sabín   J. . Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. . Stroke . 2006; ;37: 2 : 425– 429 .
    [Google Scholar]
  68. [68]. Dijkmans   PA., , Juffermans   LJ., , Musters   RJ., , van Wamel   A., , ten Cate   FJ., , van Gilst   W., , Visser   CA., , de Jong   N., , Kamp   O. . Microbubbles and ultrasound: From diagnosis to therapy. . Eur J Echocardiogr . 2004; ;5: 4 : 245– 256 .
    [Google Scholar]
  69. [69]. Morgan   KE., , Allen   JS., , Dayton   PA., , Chomas   JE., , Klibaov   AL., , Ferrara   KW. . Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size. . IEEE Trans Ultrason Ferroelectr Freq Control . 2000; ;47: 6 : 1494– 1509 .
    [Google Scholar]
  70. [70]. Alter   J., , Sennoga   CA., , Lopes   DM., , Eckersley   RJ., , Wells   DJ. . Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. . Ultrasound Med Biol . 2009; ;35: 6 : 976– 984 .
    [Google Scholar]
  71. [71]. Unger   EC., , Porter   T., , Culp   W., , Labell   R., , Matsunaga   T., , Zutshi   R. . Therapeutic applications of lipid-coated microbubbles. . Adv Drug Deliv Rev . 2004; ;56: : 1291– 1314 .
    [Google Scholar]
  72. [72]. Sidhu   PS., , Allan   PL., , Cattin   F., , Cosgrove   DO., , Davies   AH., , Do   DD., , Karakagil   S., , Langholz   J., , Legemate   DA., , Martegani   A., , Llull   JB., , Pezzoli   C., , Spinazzi   A. . Diagnostic efficacy of SonoVue®, a second generation contrast agent, in the assessment of extracranial carotid or peripheral arteries using colour and spectral Doppler ultrasound: A multicentre study. . Br J Radiol . 2006; ;79: : 44– 51 .
    [Google Scholar]
  73. [73]. Viguier   A., , Petit   R., , Rigal   M., , Cintas   P., , Larrue   V. . Continuous monitoring of middle cerebral artery recanalization with transcranial color-coded sonography and Levovist. . J Thromb Thrombolysis . 2005; ;19: : 55– 59 .
    [Google Scholar]
  74. [74]. Alexandrov   AV., , Mikulik   R., , Ribo   M., , Sharma   VK., , Lao   AY., , Tsivgoulis   G., , Sugg   RM., , Barreto   A., , Sierzenski   P., , Malkoff   MD., , Grotta   JC. . A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. . Stroke . 2008; ;39: : 1464– 1469 .
    [Google Scholar]
  75. [75]. Smith   DA., , Vaidya   SS., , Kopechek   JA., , Huang   SL., , Klegerman   ME., , McPherson   DD., , Holland   CK. . Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. . Ultrasound Med Biol . 2010; ;36: 1 : 145– 157 .
    [Google Scholar]
  76. [76]. Huang   SL., , MacDonald   RC. . Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. . Biochim Biophys Acta . 2004; ;1665: : 134– 141 .
    [Google Scholar]
  77. [77]. Tiukinhoy-Laing   SD., , Huang   S., , Klegerman   M., , Holland   CK., , McPherson   DD. . Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. . Thromb Res . 2007; ;119: 6 : 777– 784 .
    [Google Scholar]
  78. [78]. Smith   DAB., , Porter   TM., , Martinez   J., , Huang   S., , MacDonald   RC., , McPherson   DD., , Holland   CK. . Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound. . Ultrasound Med Biol . 2007; ;33: : 797– 809 .
    [Google Scholar]
  79. [79]. Smith   DAB., , Vaidya   S., , Kopechek   JA., , Hitchcock   KE., , Huang   SL., , McPherson   DD., , Holland   CK. . Echogenic liposomes loaded with recombinant tissue-type plasminogen activator (rt-PA) for image-guided, ultrasound-triggered drug release. . J Acoust Soc Am . 2007; ;122: : 3007 .
    [Google Scholar]
  80. [80]. Gore   JM., , Sloan   M., , Price   TR., , Young Randall   AM., , Bovill   E., , Collen   D., , Forman   S., , Knatterud   GL., , Sopko   G., , Terrin   ML. . Intracerebral hemorrhage, cerebral infarction, and subdural hematoma after acute myocardial infarction and thrombolytic therapy in the thrombolysis in myocardial infarction study. Thrombolysis in myocardial infarction, Phase II, pilot and clinical trial. . Circulation . 1991; ;83: : 448– 459 .
    [Google Scholar]
  81. [81]. Shaw   GJ., , Meunier   JM., , Huang   SL., , Lindsell   CJ., , McPherson   DD., , Holland   CK. . Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. . Thromb Res . 2009; ;124: 3 : 306– 310 .
    [Google Scholar]
  82. [82]. Martina   D., , Alleiımann   E., , Bettinger   T., , Bussat   P., , Lassus   A., , Pochon   S., , Schneider   M. . Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa—characterization and in vitro testing. . Eur J Pharm Biopharm . 2008; ;68: : 555– 564 .
    [Google Scholar]
  83. [83]. Mu   Y., , Li   L., , Ayoufu   G. . Experimental study of the preparation of targeted microbubble contrast agents carrying urokinase and RGDS. . Ultrasonics . 2009; ;49: : 676– 681 .
    [Google Scholar]
  84. [84]. Klegerman   ME., , Zou   Y., , Mcpherson   DD. . Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. . J Liposome Res . 2008; ; : 95– 112 .
    [Google Scholar]
  85. [85]. Runge   MS., , Bode   C., , Matsueda   GR., , Haber   E. . Antibody-enhanced thrombolysis: Targeting of tissue plasminogen activator in vivo. . Proc Natl Acad Sci U S A . 1987; ;84: 21 : 7659– 7662 .
    [Google Scholar]
  86. [86]. Marsh   JN., , Senpan   A., , Hu   G., , Scott   MJ., , Gaffney   PJ., , Wickline   SA., , Lanza   GM. . Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. . Nanomedicine (Lond) . 2007; ;2: 4 : 533– 543 .
    [Google Scholar]
  87. [87]. Liang   J-F., , Li   Y., , Connell   ME., , Yang   VC. . Synthesis and characterization of positively charged tPA as a prodrug using a heparin/protamine-based drug delivery system. . AAPS Pharmsci . 2000; ;2: 1 : E7 .
    [Google Scholar]
  88. [88]. Liang   J-F., , Li   Y., , Song   H., , Park   Y-J., , Naik   SS., , Yang   VC. . ATTEMPTS: A heparin/protamine-based delivery system for enzyme drugs. . J Control Release . 2002; ;78: : 67– 79 .
    [Google Scholar]
  89. [89]. Park   Y-J., , Liang   J-F., , Song   H., , Li   Y., , Naik   SS., , Yang   VC. . ATTEMPTS: A heparin/protamine-based triggered release system for the delivery of enzyme drugs without associated side-effects. . Adv Drug Delivery Rev . 2003; ;55: : 251– 265 .
    [Google Scholar]
  90. [90]. Yang   VC., , Naik   SS., , Song   H., , Dombkowski   AA., , Crippen   G., , Liang   JF. . Construction and characterization of a t-PA mutant for use in ATTEMPTS: A drug delivery system for achieving targeted thrombolysis. . J Control Release . 2005; ;110: 1 : 164– 176 .
    [Google Scholar]
  91. [91]. Naik   SS., , Liang   J-F., , Park   Y-J., , Lee   W-K., , Yang   VC. . Application of ATTEMPTS for drug delivery. . J Contr Rel . 2005; ;10: : 34– 45 .
    [Google Scholar]
  92. [92]. Absar   S., , Choi   S., , Yang   VC., , Kwon   YM. . Heparin-triggered release of camouflaged tissue plasminogen activator for targeted thrombolysis. . J Control Release . 2012; ;157: 1 : 46– 54 .
    [Google Scholar]
  93. [93]. Absar   S., , Choi   S., , Ahsan   F., , Cobos   E., , Yang   VC., , Kwon   YM. . Preparation and characterization of anionic oligopeptide-modified tissue plasminogen activator for triggered delivery: An approach for localized thrombolysis. . Thromb Res . 2013; ;131: 3 : e91– e99 .
    [Google Scholar]
  94. [94]. Absar   S., , Kwon   YM., , Ahsan   F. . Bio-responsive delivery of tissue plasminogen activator for localized thrombolysis. . J Control Release . 2014; ;177: : 42– 50 .
    [Google Scholar]
  95. [95]. Kaminski   MD., , Xie   Y., , Mertz   CJ., , Finck   MR., , Chen   H., , Rosengart   AJ. . Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. . Eur J Pharm Sci . 2008; ;35: 1-2 : 96– 103 .
    [Google Scholar]
  96. [96]. Torno   MD., , Kaminski   MD., , Xie   Y., , Meyers   RE., , Mertz   CJ., , Liu   X., , O'Brien   WD Jr., , Rosengart   AJ. . Improvement of in vitro thrombolysis employing magnetically-guided microspheres. . Thrombo Res . 2008; ;121: : 799– 811 .
    [Google Scholar]
  97. [97]. Dobson   J. . Magnetic nanoparticles for drug delivery. . Drug Dev Res . 2006; ;67: : 55– 60 .
    [Google Scholar]
  98. [98]. Horak   D., , Babic   M., , Mackova   H., , Benes   MJ. . Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. . J Sep Sci . 2007; ;30: 1 : 1751– 1772 .
    [Google Scholar]
  99. [99]. Chen   JP., , Yang   PC., , Ma   Y-H., , Wu   T. . Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. . Carbohy Polym . 2011; ;84: : 364– 372 .
    [Google Scholar]
  100. [100]. Kempe   M., , Kempe   H., , Snowball   I., , Wallén   R., , Arza   CR., , Götberg   M., , Olsson   T. . The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. . Biomaterials . 2010; ;31: 36 : 9499– 9510 .
    [Google Scholar]
  101. [101]. Ma   Y-H., , Hsu   Y-W., , Chang   Y-J., , Hua   M-Y., , Chen   J-P., , Wu   T. . Intra-arterial application of magnetic nanoparticles for targeted thrombolytic therapy: A rat embolic model. . J Magn Magn Mater . 2007; ;311: : 342– 346 .
    [Google Scholar]
  102. [102]. Ma   YH., , Wu   SY., , Wu   T., , Chang   YJ., , Hua   MY., , Chen   JP. . Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. . Biomaterials . 2009; ;30: 19 : 3343– 3351 .
    [Google Scholar]
  103. [103]. Lin   CL., , Lee   CF., , Chiu   WY. . Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. . J Colloid Interface Sci . 2005; ;291: 2 : 411– 420 .
    [Google Scholar]
  104. [104]. Ravi Kumar   MNV. . A review of chitin and chitosan applications. . React Funct Polym . 2000; ;46: 1 : 1– 27 .
    [Google Scholar]
  105. [105]. Uesugi   Y., , Kawata   H., , Saito   Y., , Tabata   Y. . Ultrasound-responsive thrombus treatment with zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator. . J Drug Target . 2012; ;20: 3 : 224– 234 .
    [Google Scholar]
  106. [106]. Kawata   H., , Uesugi   Y., , Soeda   T., , Takemoto   Y., , Sung   JH., , Umaki   K., , Kato   K., , Ogiwara   K., , Nogami   K., , Ishigami   K., , Horii   M., , Uemura   S., , Shima   M., , Tabata   Y., , Saito   Y. . A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. . J Am Coll Cardiol . 2012; ;60: 24 : 2550– 2557 .
    [Google Scholar]
  107. [107]. Korin   N., , Kanapathipillai   M., , Matthews   BD., , Crescente   M., , Brill   A., , Mammoto   T., , Ghosh   K., , Jurek   S., , Bencherif   SA., , Bhatta   D., , Coskun   AU., , Feldman   CL., , Wagner   DD., , Ingber   DE. . Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. . Science . 2012; ;337: 6095 : 738– 742 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.46
Loading
/content/journals/10.5339/gcsp.2014.46
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): clot busting , controlled delivery , thrombus and tissue plasminogen activator
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error