1887
Volume 2025, Issue 4
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

Degenerative lumbar spinal diseases are a leading cause of disability worldwide, often requiring surgical intervention when conservative management fails. Transforaminal lumbar interbody fusion (TLIF) is a commonly employed procedure to stabilize the spine and alleviate symptoms. This systematic review and meta-analysis aimed to test the safety and efficacy of robotic-assisted minimally invasive transforaminal lumbar interbody fusion (RA MIS-TLIF) in managing degenerative lumbar spinal diseases. Our primary objective was to compare the robotic approach with the conventional open or minimally invasive approach for TLIF regarding patients’ perioperative and postoperative outcomes.

PubMed, Cochrane Library, Scopus, and Embase were searched from inception until October 2023. The selection criteria included only English-language articles focused on human participants aged 18 years and older with measurable outcomes. Prospective and retrospective cohort studies were included. Relevant data regarding perioperative outcomes and postoperative pain scores were then extracted. Review Manager (RevMan) 5.4 was used for statistical analysis. No restrictions were applied regarding the surgical approach compared to the robotic approach. This review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

Twelve observational studies, including 1,385 patients, were included in our final analysis. Robotic-assisted minimally invasive lumbar interbody fusion was associated with significantly lower blood loss compared to both open (MD: −161.11 mL [95% CI, −184.89 to −137.34]) and conventional minimally invasive surgery (MD: −25.18 mL [95% CI, −64.06 to 13.70]), with an overall significant reduction (MD: −76.27 mL [95% CI, −118.65 to −33.90]). Operative time was significantly longer in robotic surgery compared to non-robotic approaches (MD: 17.61 minutes [95% CI, 4.10 to 31.11]). Hospital stay was shorter in the robotic group than in the non-robotic surgery group (MD: −0.89 days [95% CI, −1.54, −0.24]). Radiation time and dose showed no significant differences. Postoperative pain and functional outcomes, including ODI and VAS scores, showed a trend toward improvement in the robotic group but did not reach statistical significance.

Robotic-assisted minimally invasive TLIF shows promising results in operative time and blood loss compared to open or minimally invasive TLIF.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2025.114
2025-12-11
2025-12-13

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/qmj/2025/4/qmj.2025.114.html?itemId=/content/journals/10.5339/qmj.2025.114&mimeType=html&fmt=ahah

References

  1. Fehlings MG, Tetreault L, Nater A, Choma T, Harrop J, Mroz T, et al. The aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery. 2015 Oct;77 Suppl 4:S1–5. https://doi.org/10.1227/NEU.0000000000000953
    [Google Scholar]
  2. Harms J, Rolinger H. [A one-stage procedure in the operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion (author’s transl)]. Z Orthop Ihre Grenzgeb. 1982 May-Jun; 120:343–7. https://doi.org/10.1055/s-2008-1051624
    [Google Scholar]
  3. Grob D. Surgery for degenerative lumbar disease: transforaminal lumbar interbody fusion. Eur Spine J. 2009 Dec; 18:(12):1991–2. https://doi.org/10.1007/s00586-009-1222-3
    [Google Scholar]
  4. Seng C, Siddiqui MA, Wong KP, Zhang K, Yeo W, Tan SB, et al. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine (Phila Pa 1976). 2013 Nov; 38:(23):2049–55. https://doi.org/10.1097/BRS.0b013e3182a8212d
    [Google Scholar]
  5. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res. 2014 Jun; 472:(6):1727–1737. https://doi.org/10.1007/s11999-014-3465-5
    [Google Scholar]
  6. Wong AP, Smith ZA, Stadler JA, 3rd, Hu XY, Yan JZ, Li XF, et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am. 2014 Apr; 25:(2):279–304. https://doi.org/10.1016/j.nec.2013.12.007
    [Google Scholar]
  7. Tian NF, Wu YS, Zhang XL, et al. Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence. Eur Spine J. 2013 Aug; 22:(8):1741–9. https://doi.org/10.1007/s00586-013-2747-z
    [Google Scholar]
  8. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014 Jun; 472:(6):1711–7. https://doi.org/10.1007/s11999-014-3495-z
    [Google Scholar]
  9. Lee JC, Jang HD, Shin BJ. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976). 2012 Aug; 37:(18):1548–57. https://doi.org/10.1097/BRS.0b013e318252d44b
    [Google Scholar]
  10. Sharif S, Afsar A. Learning curve and minimally invasive spine surgery. World Neurosurg. 2018 Nov; 119:472–8. https://doi.org/10.1016/j.wneu.2018.06.094
    [Google Scholar]
  11. Shunwu F, Xing Z, Fengdong Z, Xiangqian F. Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976). 2010 Aug; 35:(17):1615–20. https://doi.org/10.1097/BRS.0b013e3181c70fe3
    [Google Scholar]
  12. Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J. Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine. Eur Spine J. 2011 Apr; 20:(4):623–8. https://doi.org/10.1007/s00586-010-1578-4
    [Google Scholar]
  13. Mobbs RJ, Sivabalan P, Li J. Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. J Clin Neurosci. 2012 Jun; 19:(6):829–35. https://doi.org/10.1016/j.jocn.2011.10.004
    [Google Scholar]
  14. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000 Oct; 25:(20):2637–45. https://doi.org/10.1097/00007632-200010150-00016
    [Google Scholar]
  15. Kouyoumdjïan P, Gras-Combe G, Grelat M, Fuentes S, Blondel B, Tropiano P, et al. Surgeon’s and patient’s radiation exposure during percutaneous thoraco-lumbar pedicle screw fixation: a prospective multicenter study of 100 cases. Orthop Traumatol Surg Res. 2018 Sep; 104:(5):597–602. https://doi.org/10.1016/j.otsr.2018.05.009
    [Google Scholar]
  16. Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014 Feb; 20:(2):196–203. https://doi.org/10.3171/2013.11.Spine13413
    [Google Scholar]
  17. Nolte LP, Zamorano L, Visarius H, Berlemann U, Langlotz F, Arm E, et al. Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech (Bristol). 1995 Sep; 10:(6):293–303. https://doi.org/10.1016/0268-0033(95)00004-5
    [Google Scholar]
  18. Park P, Foley KT, Cowan JA, Marca FL. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results. Surg Neurol Int. 2010 Aug; 1:44. https://doi.org/10.4103/2152-7806.68705
    [Google Scholar]
  19. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2011 Jun; 20:(6):846–59. https://doi.org/10.1007/s00586-010-1577-5
    [Google Scholar]
  20. Theodore N, Ahmed AK. The history of robotics in spine surgery. Spine. 2018 Apr; 43:(7S):S23. https://doi.org/10.1097/brs.0000000000002553
    [Google Scholar]
  21. Dogangil G, Davies BL, Rodriguez y Baena F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H. 2010; 224:653–79. https://doi.org/10.1243/09544119jeim591
    [Google Scholar]
  22. Shweikeh F, Amadio JP, Arnell M et al. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus. 2014 Mar; 36:(3):E10. https://doi.org/10.3171/2014.1.Focus13526
    [Google Scholar]
  23. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976). 2015 Jan; 40:(2):87–94. https://doi.org/10.1097/brs.0000000000000680
    [Google Scholar]
  24. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976). 2010 Nov; 35:(24):2109–15. https://doi.org/10.1097/BRS.0b013e3181d323ab
    [Google Scholar]
  25. Han X, Tian W, Liu Y, Liu B, He D, Sun Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. 2019 Feb; 30:(5):615–22. https://doi.org/10.3171/2018.10.Spine18487
    [Google Scholar]
  26. Fan Y, Du JP, Liu JJ, Zhang JN, Qiao HH, Liu SC, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery: an updated meta-analysis. Medicine (Baltimore). 2018 Jun; 97:(22):e10970. https://doi.org/10.1097/md.0000000000010970
    [Google Scholar]
  27. Moher D, Liberati A, Tetzlaff J, Altman DGPRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul; 6:(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
    [Google Scholar]
  28. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003 Sep; 73:(9):712–6. https://doi.org/10.1046/j.1445-2197.2003.02748.x
    [Google Scholar]
  29. Chang M, Wang L, Yuan S, Tian Y, Zhao Y, Liu X. Percutaneous Endoscopic Robot-Assisted Transforaminal Lumbar Interbody Fusion (PE RA-TLIF) for lumbar spondylolisthesis: a technical note and two-year clinical results. Pain Physician. 2022 Jan; 25:(1):E73–6.
    [Google Scholar]
  30. Chen X, Song Q, Wang K, Chen Z, Han Y, Shen H, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a retrospective matched-control analysis for clinical and quality-of-life outcomes. J Comp Eff Res. 2021 Jul; 10:(10):845–56. https://doi.org/10.2217/cer-2021-0078
    [Google Scholar]
  31. Cui GY, Han XG, Wei Y, Liu YJ, He D, Sun YQ, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion in the treatment of lumbar spondylolisthesis. Orthop Surg. 2021 Oct; 13:(7):1960–8. https://doi.org/10.1111/os.13044
    [Google Scholar]
  32. De Biase G, Gassie K, Garcia D, Abode-Iyamah K, Deen G, Nottmeier E, et al. Perioperative comparison of robotic-assisted versus fluoroscopically guided minimally invasive transforaminal lumbar interbody fusion. World Neurosurg. 2021 May; 149:e570–5. https://doi.org/10.1016/j.wneu.2021.01.133
    [Google Scholar]
  33. Wang E, Manning J, Varlotta CG, Woo D, Ayres E, Abotsi E, et al. Radiation exposure in posterior lumbar fusion: a comparison of CT image-guided navigation, robotic assistance, and intraoperative fluoroscopy. Global Spine J. 2021 May; 11:(4):450–7. https://doi.org/10.1177/2192568220908242
    [Google Scholar]
  34. Lin MC, Liu HW, Su YK, Lo WL, Lin CM. Robot-guided versus freehand fluoroscopy-guided minimally invasive transforaminal lumbar interbody fusion: a single-institution, observational, case-control study. Neurosurg Focus. 2022 Jan; 52:(1):E9. https://doi.org/10.3171/2021.10.Focus21514
    [Google Scholar]
  35. Simonetta B, Engel C, Hirschl R, Matheus V. Robotic assistance improves efficiency for navigated TLIF surgery. J Minim Invasive Spine Surg Tech. 2021; 6:(2):83–9. https://doi.org/10.21182/jmisst.2021.00192
    [Google Scholar]
  36. Ver MLP, Gum JL, Crawford CH, Djurasovic M, Owens RK, Brown M, et al. Index episode-of-care propensity-matched comparison of transforaminal lumbar interbsody fusion (TLIF) techniques: open traditional TLIF versus midline lumbar interbody fusion (MIDLIF) versus robot-assisted MIDLIF. J Neurosurg Spine. 2020 Jan; 32:(5):741–7. https://doi.org/10.3171/2019.9.Spine1932
    [Google Scholar]
  37. Wang L, Li C, Wang Z, Li D, Tian Y, Yuan S, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up. J Robot Surg. 2023 Apr; 17:(2):473–85. https://doi.org/10.1007/s11701-022-01442-5
    [Google Scholar]
  38. Wang TY, Mehta VA, Sankey EW, Lavoie S, Abd-El-Barr MM, Yarbrough CK. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Clin Neurol Neurosurg. 2021 Jul; 206:106698. https://doi.org/10.1016/j.clineuro.2021.106698
    [Google Scholar]
  39. Zhang Q, Han X-G, Xu Y-F, Liu YJ, Liu B, He D, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease. World Neurosurg. 2019 May; 125:e429–34. https://doi.org/10.1016/j.wneu.2019.01.097
    [Google Scholar]
  40. Zhang Q, Xu YF, Tian W, Le XF, Liu B, Liu YJ, et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement. Orthop Surg. 2019 Oct; 11:(5):850–6. https://doi.org/10.1111/os.12534
    [Google Scholar]
  41. Lener S, Wipplinger C, Hernandez RN, Hussain I, Kirnaz S, Navarro-Ramirez R, et al. Defining the MIS-TLIF: a systematic review of techniques and technologies used by surgeons worldwide. Global Spine J. 2020 Apr; 10:(2):151s–167s. https://doi.org/10.1177/2192568219882346
    [Google Scholar]
  42. Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and robotics in spinal surgery: where are we now? Neurosurgery. 2017 Mar; 80:(3S):S86–S99. https://doi.org/10.1093/neuros/nyw077
    [Google Scholar]
  43. Gao S, Wei J, Li W, Zhang L, Cao C, Zhai J, et al. Accuracy of robot-assisted percutaneous pedicle screw placement under regional anesthesia: a retrospective cohort study. Pain Res Manag. 2021 Dec; 2021:6894001. https://doi.org/10.1155/2021/6894001
    [Google Scholar]
  44. Jiang B, Pennington Z, Azad T, Liu A, Ahmed AK, Zygourakis CC, et al. Robot-assisted versus freehand instrumentation in short-segment lumbar fusion: experience with real-time image-guided spinal robot. World Neurosurg. 2020 Apr; 136:e635–45. https://doi.org/10.1016/j.wneu.2020.01.119
    [Google Scholar]
  45. Snyder LA. Integrating robotics into a minimally invasive transforaminal interbody fusion workflow. Neurosurg Focus. 2018 Jul; 45:V4. https://doi.org/10.3171/2018.7.FocusVid.18111
    [Google Scholar]
  46. Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017 May; 42:(5):E2. https://doi.org/10.3171/2017.2.Focus16544
    [Google Scholar]
  47. Stüer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl. 2011; 109:241–5. https://doi.org/10.1007/978-3-211-99651-5_38
    [Google Scholar]
  48. Ravi B, Zahrai A, Rampersaud R. Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws. Spine (Phila Pa 1976). 2011 Jan; 36:(1):84–91. https://doi.org/10.1097/BRS.0b013e3181cbfd09
    [Google Scholar]
  49. Schröder ML, Staartjes VE. Revisions for screw malposition and clinical outcomes after robot-guided lumbar fusion for spondylolisthesis. Neurosurg Focus. 2017 May; 42:(5):E12. https://doi.org/10.3171/2017.3.Focus16534
    [Google Scholar]
  50. Hyun SJ, Kim KJ, Jahng TA, Kim HJ. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine (Phila Pa 1976). 2017 Mar; 42:(6):353–8. https://doi.org/10.1097/brs.0000000000001778
    [Google Scholar]
  51. Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012 Apr; 37:(8):E496–501. https://doi.org/10.1097/BRS.0b013e31824b7767
    [Google Scholar]
  52. Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014 Jun; 20:(6):636–43. https://doi.org/10.3171/2014.3.Spine13714
    [Google Scholar]
  53. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016 Mar; 25:(3):947–55. https://doi.org/10.1007/s00586-015-3758-8
    [Google Scholar]
  54. Ghasem A, Sharma A, Greif DN, Alam M, Maaieh MA. The arrival of robotics in spine surgery: a review of the literature. Spine (Phila Pa 1976). 2018 Dec; 43:(23):1670–7. https://doi.org/10.1097/brs.0000000000002695
    [Google Scholar]
  55. Marcus NJ, Schmidt FA. Soft tissue: a possible source of pain pre and post minimally invasive spine surgery. Global Spine J. 2020 Apr; 10:(2 Suppl):137s–142s. https://doi.org/10.1177/2192568219879114
    [Google Scholar]
  56. Perez-Cruet MJ, Hussain NS, White GZ, Begun EM, Collins RA, Fahim DK, et al. Quality-of-life outcomes with minimally invasive transforaminal lumbar interbody fusion based on long-term analysis of 304 consecutive patients. Spine (Phila Pa 1976). 2014 Feb; 39:(3):E191–8. https://doi.org/10.1097/brs.0000000000000078
    [Google Scholar]
  57. Siemionow K, Pelton MA, Hoskins JA, Singh K. Predictive factors of hospital stay in patients undergoing minimally invasive transforaminal lumbar interbody fusion and instrumentation. Spine (Phila Pa 1976). 2012 Nov; 37:(24):2046–54. https://doi.org/10.1097/brs.0b013e31825c6688
    [Google Scholar]
  58. Menger RP, Savardekar AR, Farokhi F, Sin A. A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine. 2018 Sep; 15:(3):216–24. https://doi.org/10.14245/ns.1836082.041
    [Google Scholar]
  59. Pennington Z, Judy BF, Zakaria HM, Lakomkin N, Mikula AL, Elder BD, et al. Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula. Neurosurg Focus. 2022 Jan; 52:(1):E3. https://doi.org/10.3171/2021.10.FOCUS21496
    [Google Scholar]
  60. Schatlo B, Martinez R, Alaid A, von Eckardstein K, Akhavan-Sigari R, Hahn A, et al. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir (Wien). 2015 Oct; 157:(10):1819–23; discussion 1823. https://doi.org/10.1007/s00701-015-2535-0
    [Google Scholar]
  61. Yuan W, Cao W, Meng X, Zhu H, Liu X, Cui C, et al. Learning curve of robot-assisted percutaneous kyphoplasty for osteoporotic vertebral compression fractures. World Neurosurg. 2020 Jun; 138:e323–9. https://doi.org/10.1016/j.wneu.2020.02.110
    [Google Scholar]
  62. Hu X, Lieberman IH. What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res. 2014 Jun; 472:(6):1839–44. https://doi.org/10.1007/s11999-013-3291-1
    [Google Scholar]
  63. Silva PS, Pereira P, Monteiro P, Silva PA, Vaz R. Learning curve and complications of minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2013 Aug; 35:(2):E7. https://doi.org/10.3171/2013.5.Focus13157
    [Google Scholar]
  64. Lee KH, Yeo W, Soeharno H, Yue WM. Learning curve of a complex surgical technique: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). J Spinal Disord Tech. 2014 Oct; 27:(7):E234–240. https://doi.org/10.1097/bsd.0000000000000089
    [Google Scholar]
/content/journals/10.5339/qmj.2025.114
Loading
/content/journals/10.5339/qmj.2025.114
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Intervertebral discminimally invasive surgical proceduresrobotics and spinal fusion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error