1887
Volume 2022, Issue 3
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

Background: COVID-19 infection has been spreading across the globe since the end of 2019, and it continues to cause chronic multi-system sequelae, of which thyroid dysfunction appears to be the major one. We have discussed here 10 cases of thyroid dysfunction after COVID-19 infection.

Methods: Case series report. From October 2020 to July 2021, a series of 10 cases of thyroid dysfunction after COVID-19 infection were recorded and managed in a single outpatient endocrine center in Doha, Qatar.

Cases presentation: We have reported 5 cases of Graves's hyperthyroidism, 2 of chronic primary hypothyroidism (including one with Grave's disease [GD]) who was treated through radioactive iodine (RAI) therapy, one case of subacute thyroiditis, one case with “Sick euthyroid disease,” and one case of central hypothyroidism. Presently, patients with GD are being treated with carbimazole and those with hypothyroidism are being treated with levothyroxine. The remaining patients had recovered with euthyroid.

Conclusion: This is the largest case series reported from a single center to date. The findings of this series indicate a bimodal distribution of thyroid dysfunction in patients with COVID-19 infection. A review of the literature and discussion of potential pathophysiological mechanisms has been presented. We have emphasized the importance of screening for thyroid dysfunction in “post-COVID-19” cases, considering that the prevalence may be underestimated.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2022.39
2022-08-05
2022-08-15
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2022/3/qmj.2022.39.html?itemId=/content/journals/10.5339/qmj.2022.39&mimeType=html&fmt=ahah

References

  1. Sharma A, Tiwari S, Deb MK, Marty JL. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int J Antimicrob Agents. 2020 Aug; 56:(2):106054.
    [Google Scholar]
  2. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene AEC in a wide variety of human tissues. Infect Dis Pover. 2020; 9:(1):45.
    [Google Scholar]
  3. Croce L, Gangemi D, Ancona G, et al. The cytokine storm and thyroid hormone changes in COVID-19. J Endocrinol Invest. 2021; 44:(5):891–904.
    [Google Scholar]
  4. Li Q, Wang B, Mu K, Zhang JA. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes-cytokines circuit beyond the Th1-Th2 paradigm. J Cell Physiol. 2019; 234:(3):2204–2216.
    [Google Scholar]
  5. The Human Protein Atlas-Tissue Expression of ACE. Available, https:\\www.proteinatlasorg/ENSG00000130234-ACE2/tissue).
  6. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 2020; 177:104759.
    [Google Scholar]
  7. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormones. Nat Rev Endocrinol. 2016; 12:(2):111–121.
    [Google Scholar]
  8. Davis PJ, Lin HY, Hercbergs A, Keating KA, Mousa SA. Coronaviruses and integrins αvβ3; does thyroid hormones modify the relationship? Endocr Res. 2020; 45:(3):210–215.
    [Google Scholar]
  9. Kerslake R, Hall M, Randeva HS, et al. Co-expression of peripheral receptors with SARSCov2 infection mediators: potential implications beyond loss of smell as a COVID-19 symptom. Int J Mol Med. 2020; 46:(3):949–56.
    [Google Scholar]
  10. Pellegrino R, Cooper KW, Di PizioA, et al. Corona viruses and the chemical senses: Past, present, and future. Chem Senses. 2020:bjaa031.
    [Google Scholar]
  11. Tomer Y, Davies TF. Infection, thyroid disease, and autoimmunity. Endocr Rev. 1993 Feb; 14:(1):107–120. doi: 10.1210/edrv-14-1-107.
    [Google Scholar]
  12. Damara FA, Muchamad GR, Ikhsani R, et al. Thyroid disease and hypothyroidism are associated with poor COVID-19 outcomes: A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. Nov-Dec 2021; 15:(6):102312.
    [Google Scholar]
  13. Duntas LH, Jonklaas JJ. COVID-19 and thyroid diseases: A bidirectional impact. Endocr Soc. 2021 Apr 27; 5:(8):bvab076. doi: 10.1210/jendso/bvab076.
    [Google Scholar]
  14. Liu Y, Sawalha AH, Lu Q. Covid 19 and Autoimmune disease. Curr Opin Rheumatol. 2021 Mar 1; 33:(2):155–162.
    [Google Scholar]
  15. Zou R, Wu C, Zhang S, et al. Euthyroid sick syndrome in patients with COVID-19. Front Endocrinol(Lausanne). 2020 Oct 7;: 11:566439. doi: 10.3389/fendo.2020.566439.
    [Google Scholar]
  16. Khoo B, Tan T, Clarke SA, et al. Thyroid function before, during, and after COVID-19. J Clin Endocrinol Metab. 2021 Jan 23; 106:(2):e803-e811.
    [Google Scholar]
  17. Lui DTW, Lee CH, Chow WS, et al. Thyroid dysfunction in relation to immune profile, disease status, and outcome in 191 patients with COVID-19. J Clin Endocrinol Metab. 2021 Jan 23; 106:(2):e926-e935. doi: 10.1210/clinem/dgaa813. PMID: 33141191 Free PMC article.
    [Google Scholar]
  18. Chen M, Zhou W, Xu W. Thyroid function analysis in 50 patients with COVID-19: A retrospective study. Thyroid. 2021 Jan; 31:(1):8–11.
    [Google Scholar]
  19. Prummel MF, Strieder T, Wiersinga WM. The environment and autoimmune thyroid diseases. Eur J Endocrinol. 2004 May; 150:(5):605–618. doi: 10.1530/eje.0.1500605.
    [Google Scholar]
  20. Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020; 43:(10):1527–1528.
    [Google Scholar]
  21. Jiménez-Blanco S, Pla-Peris B, Marazuela M. COVID-19: A cause of recurrent Graves’ hyperthyroidism? J Endocrinol Invest. 2021; 44:(2):387–388.
    [Google Scholar]
  22. Feghali K, Atallah J, Norman C. Manifestations of thyroid disease post COVID-19 illness: Report of Hashimoto thyroiditis, Graves’ disease, and subacute thyroiditis J Clin Transl Endocrinol Case Rep. 2021 Dec; 22:100094. doi: 10.1016/j.jecr.2021.100094. Epub 2021 Aug 26.PMID: 34462717.
    [Google Scholar]
  23. Lanzolla G, Marcocci C, Marinò M. Graves’ disease and Graves’ orbitopathy following COVID-19 J Endocrinol Invest. 2021 Sep; 44:(9):2011–2012. doi: 10.1007/s40618-021-01576-7.
    [Google Scholar]
  24. Harris A, Al Mushref M. Graves’ Thyrotoxicosis Following SARS-CoV-2 Infection. AACE Clin Case Rep. 2021; 7:(1):14–16.
    [Google Scholar]
  25. Lania A, Sandri MT, Cellini M, et al. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur J Endocrinol. 2020; 183:(4):381–387.
    [Google Scholar]
  26. Güven M, Gültekin H. The prognostic impact of thyroid disorders on the clinical severity of COVID-19: Results of single-centre pandemic hospital. Int J Clin Pract. 2021; 75:(6):e14129?.
    [Google Scholar]
  27. Volpé R, Row VV, Ezrin C. Circulating viral and thyroid antibodies in subacute thyroiditis. J Clin Endocrinol Metab. 1967 Sep; 27:(9):1275–1284.
    [Google Scholar]
  28. Desailloud R, Hober D. Viruses and thyroiditis: An update. Virol J. 2009 Jan 12; 6:5. doi: 10.1186/1743-422X-6-5.
    [Google Scholar]
  29. Brancatella A, Ricci D, Viola N, et al. Subacute thyroiditis after Sars-COV-2 infection. J Clin Endocrinol Metab. 2020 Jul 1; 105:(7):dgaa276.
    [Google Scholar]
  30. Ashraf S, Imran MA, Ashraf S, et al. COVID-19: A potential trigger for thyroid dysfunction. Am J Med Sci. 2021 Sep; 362:(3):303–307.
    [Google Scholar]
  31. Ashraf S, Imran MA, Ashraf S, et al.COVID-19: A Potential Trigger for Thyroid Dysfunction. Am J Med Sci. 2021 Sep; 362:(3):303–307.
    [Google Scholar]
  32. Brancatella A, Ricci D, Cappellani D, et al. Is subacute thyroiditis an underestimated manifestation of SARS-CoV-2 infection? Insights from a case series. J Clin Endocrinol Metab. 2020 Oct 1; 105:(10): dgaa537. doi: 10.1210/clinem/dgaa537.PMID: 32780854.
    [Google Scholar]
  33. Ippolito S, Dentali F, Tanda ML. SARS-CoV-2: A potential trigger for subacute thyroiditis? Insights from a case report. J Endocrinol Invest. 2020, Aug; 43:(8):1171–1172.
    [Google Scholar]
  34. Grondman I, de Nooijer AH, Antonakos N, et al. The association of TSH and thyroid hormones with lymphopenia in bacterial sepsis and COVID-19. J Clin Endocrinol Metab. 2021 Jun 16; 106:(7):1994–2009.
    [Google Scholar]
  35. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015 Oct; 3:(10):816–825.doi:10.1016/S2213-8587(15)00225-9.
    [Google Scholar]
  36. Trimboli P, Cappelli C, Croce L, et al. Trimboli P, Cappelli C, Croce L et al. COVID-19-Associated subacute thyroiditis: Evidence-based data from a systematic review. Front Endocrinol (Lausanne). 2021 Sep 29;: 12:707726. doi: 10.3389/fendo.2021.707726.
    [Google Scholar]
  37. Daraei M, Hasibi M, Abdollahi H, et al. Possible role of hypothyroidism in the prognosis of COVID-19. Intern Med J. 2020 Nov; 50:(11):1410–1412.
    [Google Scholar]
  38. Muller I, Cannavaro D, Dazzi D, et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020 Sep; 8:(9):739–741.
    [Google Scholar]
  39. Leow MK, Kwek DS, Ng AW, et al. Hypocortisolism in survivors of sever acute respiratory syndrome (SARS). Clin Endocrinol (Oxf). 2005 Aug; 63:(2):197–202.
    [Google Scholar]
  40. Murugan AK, Alzahrani AS. SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves’ disease. Endocrine. 2021; 73:(2):243–254.
    [Google Scholar]
  41. Wei L, Sun S, Xu CH, et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007 Jan; 38:(1):95–102. doi: 10.1016/j.humpath.2006.06.011.
    [Google Scholar]
  42. Tang C, Wang Y, Lv H, Guan Z, Gu J. Caution against corticosteroid-based COVID-19 treatment. Lancet. 2020; 395:(10239):1759–1760.
    [Google Scholar]
  43. Gu J, Gong E, Zhang B et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005 Aug 1; 202:(3):415–424. doi: 10.1084/jem.20050828.
    [Google Scholar]
  44. Wei L, Sun S, Zhang J, et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010 Aug; 88:(4):723–730. doi: 10.1139/O10-022.
    [Google Scholar]
  45. Sriphrapradang C, Shantavasinkul, PC. Graves’ disease following SARS-CoV2 vaccination. Endocrine. 2021. https://doi.org/10.1007/s12020-021-02879-8.
    [Google Scholar]
  46. Zettinig G, Krebs M. Two further cases of Graves’ disease following SARS-Cov-2 vaccination. J Endocrinol Invest. 2021. https://doi.org/10.1089/thy.2021.0142.
    [Google Scholar]
  47. Vera-Lastra O, Ordinola Navaro A, Cruz Dominguez MP, et al. Two cases of Graves’ disease following SARS-CoV-2 Vaccination: An autoimmune/inflammatory syndrome induced by adjuvants. Thyroid. 2021. https://doi.org/10.1089/thy.2021.0142.
    [Google Scholar]
  48. Sriphrapradang C. Aggravation of hyperthyroidism after heterolous prime-boost immunization with inactivated and adenovirus vectored SARS-CoV-2 vaccine in a patient with Graves’ disease. Endocrine. 2021; 74:(2):226–227. https://doi.org/10.1007/s12020-021-02879-8.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2022.39
Loading
/content/journals/10.5339/qmj.2022.39
Loading

Data & Media loading...

  • Article Type: Case Report
Keyword(s): Case SeriesCOVID-19Hyperthyroidismhypothyroidism and Thyroiditis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error