1887
Volume 2019, Issue 1
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

We aimed to report and compare accuracy, reproducibility, and reporting confidence between thoracic dual-energy subtraction (DES) and routine posterior–anterior chest radiography (PA-CR) techniques. We obtained DES (D1–D4) images from 96 patients using DES and a high-resolution dynamic flat-panel detector in combination. We compared the DES images of these patients with their PA-CR images. The maximum time interval between performing DES and PA-CR was nine weeks. Two radiologists evaluated abnormal findings on DES and PA-CR images using a three-point scale, and reporting confidence was scored using a four-point scale. The intra- and interobserver agreement values of the scores were analyzed. Further, the radiation exposure doses during PA-CR and DES acquisitions were calculated. The intra- and interobserver agreement values of PA-CR and DES images were good. The reporting confidence scores for DES were generally higher than those for PA-CR. Between bone-subtracted (D3) and soft-tissue-subtracted (D4) images, the former was more successful and useful in the evaluation of bone structures, whereas the latter was better in the evaluation of consolidation and/or solitary nodules. DES has the potential to improve the accuracy, reproducibility, and reporting confidence of thoracic radiography. It also has the potential to provide a better diagnosis of chest pathologies using relatively low dose radiation.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2019.9
2019-09-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2019/1/qmj.2019.9.html?itemId=/content/journals/10.5339/qmj.2019.9&mimeType=html&fmt=ahah

References

  1. Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop CM. Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med. 2014 Feb; 35:1:316.
    [Google Scholar]
  2. Xu T, Ducote JL, Wong JT, Molloi S. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study. Phys Med Biol. 2011 Feb 21; 56:4:11911205.
    [Google Scholar]
  3. Algin O, Gökalp G, Topal U. Signs in chest imaging. Diagn Interv Radiol. 2011 Mar; 17:1:1829.
    [Google Scholar]
  4. Schaefer-Prokop C, Neitzel U, Venema HW, Uffmann M, Prokop M. Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol. 2008 Sep; 18:9:18181830.
    [Google Scholar]
  5. McAdams HP, Samei E, Dobbins J III, Tourassi GD, Ravin CE. Recent advances in chest radiography. Radiology. 2006 Dec; 241:3:663683.
    [Google Scholar]
  6. Tanaka R, Sanada S, Matsui T, Hayashi N, Matsui O. Sequential dual-energy subtraction technique with a dynamic flat-panel detector (FPD): primary study for image-guided radiation therapy (IGRT). Radiol Phys Technol. 2008 Jul; 1:2:144150.
    [Google Scholar]
  7. Shkumat NA. High-performance dual-energy imaging with a flat-panel detector [dissertation] . Toronto: University of Toronto 2008.
    [Google Scholar]
  8. Macmahon H, Li F, Engelmann R, Roberts R, Armato S. Dual energy subtraction and temporal subtraction chest radiography. J Thorac Imaging. 2008 May; 23:2:7785.
    [Google Scholar]
  9. Gilkeson RC, Sachs PB. Dual energy subtraction digital radiography: technical considerations, clinical applications, and imaging pitfalls. J Thorac Imaging. 2006 Nov; 21:4:303313.
    [Google Scholar]
  10. Vock P, Zsolt SF. Dual energy subtraction: principles and clinical applications. Eur J Radiol. 2009 Nov; 72:2:231237.
    [Google Scholar]
  11. Gomi T, Koshida K, Miyati T, Miyagawa J, Hirano H. An experimental comparison of flat-panel detector performance for direct and indirect systems (initial experiences and physical evaluation). J Digit Imaging. 2006 Dec; 19:4:362370.
    [Google Scholar]
  12. Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003 Apr; 30:4:608622.
    [Google Scholar]
  13. Niklason LT, Chan HP, Cascade PN, Chang CL, Chee PW, Mathews JF. Portable chest imaging: comparison of storage phosphor digital, asymmetric screen-film and conventional screen-film systems. Radiology. 1993 Feb; 186:2:387393.
    [Google Scholar]
  14. Rühl R, Wozniak MM, Werk M, Laurent F, Mager G, Montaudon M, Pattermann A, Scherrer A, Tasu JP, Pech M, Ricke J. CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial. Eur Radiol. 2008 Sep; 18:9:18311839.
    [Google Scholar]
  15. Swensen SJ, Gray JE, Brown LR, Aughenbaugh GL, Harms GF, Stears J. A new asimetric screen-film combination for conventional chest radiography: evaluation in 50 patients. AJR Am J Roentgenol. 1993 Mar; 160:3:483486.
    [Google Scholar]
  16. Tagashira H, Arakawa K, Yoshimoto M. Detectability of lung nodules using flat panel detector with dual energy subtraction by two shot method: evaluation by ROC method. Eur J Radiol. 2007 Nov; 64:2:279284.
    [Google Scholar]
  17. Del Ciello A, Franchi P, Contegiacomo A, Cicchetti G, Bonomo L, Larici AR. Missed lung cancer: when, where, and why? Diagn Interv Radiol. 2017 Mar; 23:2:118126.
    [Google Scholar]
  18. Austin JHM, Romney BM, Goldsmith LS. Missed bronchogenic carcinoma: radiographicfindings in 27 patients with potentially resectable lesion evident inretrospect. Radiology. 1992 Jan; 182:1:1522.
    [Google Scholar]
  19. Uemura M, Miyagawa M, Yasuhara Y, Murakami T, Ikura H, Sakamoto K, et al.  Clinical evaluation of pulmonary nodules with dual-exposure dual-energy subtraction chest radiography. Radiat Med. 2005 Sep; 23:6:391397.
    [Google Scholar]
  20. Ricke J, Fischbach F, Freund T, Teichgräber U, Hänninen EL, Röttgen R, et al.  Clinical results of CSI-detector-based dual exposure dual energy in chest radiography. Eur Radiol. 2003 Dec; 13:12:25772582.
    [Google Scholar]
  21. Kuhlman JE, Collins J, Brooks GN, Yandow DR, Broderick SL. Dual-energy subtraction chest radiography: what to look for beyond calcified nodules. Radiographics. 2006 Jan-Feb; 26:1:7992.
    [Google Scholar]
  22. Martini K, Baessler M, Baumueller S, Frauenfelder T. Diagnostic accuracy and added value of dual-energy subtraction radiography compared to standard conventional radiography using computed tomography as standard of reference. PLoS One. 2017 Mar 16; 12:3:e0174285.
    [Google Scholar]
  23. Manji F, Wang J, Norman G, Wang Z, Koff D. Comparison of dual energy subtraction chest radiography and traditional chest X-rays in the detection of pulmonary nodules. Quant Imaging Med Surg. 2016 Feb; 6:1:15.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2019.9
Loading
/content/journals/10.5339/qmj.2019.9
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): chest radiographycomputed tomographyDirect digital radiographydosedual-energy subtraction and thorax
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error