1887
Volume 2019, Issue 1
  • ISSN: 0253-8253
  • E-ISSN: 2227-0426

Abstract

We aimed to report and compare accuracy, reproducibility, and reporting confidence between thoracic dual-energy subtraction (DES) and routine posterior–anterior chest radiography (PA-CR) techniques. We obtained DES (D1–D4) images from 96 patients using DES and a high-resolution dynamic flat-panel detector in combination. We compared the DES images of these patients with their PA-CR images. The maximum time interval between performing DES and PA-CR was nine weeks. Two radiologists evaluated abnormal findings on DES and PA-CR images using a three-point scale, and reporting confidence was scored using a four-point scale. The intra- and interobserver agreement values of the scores were analyzed. Further, the radiation exposure doses during PA-CR and DES acquisitions were calculated. The intra- and interobserver agreement values of PA-CR and DES images were good. The reporting confidence scores for DES were generally higher than those for PA-CR. Between bone-subtracted (D3) and soft-tissue-subtracted (D4) images, the former was more successful and useful in the evaluation of bone structures, whereas the latter was better in the evaluation of consolidation and/or solitary nodules. DES has the potential to improve the accuracy, reproducibility, and reporting confidence of thoracic radiography. It also has the potential to provide a better diagnosis of chest pathologies using relatively low dose radiation.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2019.9
2019-09-20
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2019/1/qmj.2019.9.html?itemId=/content/journals/10.5339/qmj.2019.9&mimeType=html&fmt=ahah

References

  1. Schalekamp   S., , van Ginneken   B., , Karssemeijer   N., , Schaefer-Prokop   CM. . Chest radiography: new technological developments and their applications. . Semin Respir Crit Care Med . 2014 Feb; ;35: 1 : 3– 16 .
    [Google Scholar]
  2. Xu   T., , Ducote   JL., , Wong   JT., , Molloi   S. . Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study. . Phys Med Biol . 2011 Feb 21; ;56: 4 : 1191– 1205 .
    [Google Scholar]
  3. Algin   O., , Gökalp   G., , Topal   U. . Signs in chest imaging. . Diagn Interv Radiol . 2011 Mar; ;17: 1 : 18– 29 .
    [Google Scholar]
  4. Schaefer-Prokop   C., , Neitzel   U., , Venema   HW., , Uffmann   M., , Prokop   M. . Digital chest radiography: an update on modern technology, dose containment and control of image quality. . Eur Radiol . 2008 Sep; ;18: 9 : 1818– 1830 .
    [Google Scholar]
  5. McAdams   HP., , Samei   E., , Dobbins   J III., , Tourassi   GD., , Ravin   CE. . Recent advances in chest radiography. . Radiology . 2006 Dec; ;241: 3 : 663– 683 .
    [Google Scholar]
  6. Tanaka   R., , Sanada   S., , Matsui   T., , Hayashi   N., , Matsui   O. . Sequential dual-energy subtraction technique with a dynamic flat-panel detector (FPD): primary study for image-guided radiation therapy (IGRT). . Radiol Phys Technol . 2008 Jul; ;1: 2 : 144– 150 .
    [Google Scholar]
  7. Shkumat   NA. . High-performance dual-energy imaging with a flat-panel detector [dissertation] . Toronto: : University of Toronto;   2008; .
    [Google Scholar]
  8. Macmahon   H., , Li   F., , Engelmann   R., , Roberts   R., , Armato   S. . Dual energy subtraction and temporal subtraction chest radiography. . J Thorac Imaging . 2008 May; ;23: 2 : 77– 85 .
    [Google Scholar]
  9. Gilkeson   RC., , Sachs   PB. . Dual energy subtraction digital radiography: technical considerations, clinical applications, and imaging pitfalls. . J Thorac Imaging . 2006 Nov; ;21: 4 : 303– 313 .
    [Google Scholar]
  10. Vock   P., , Zsolt   SF. . Dual energy subtraction: principles and clinical applications. . Eur J Radiol . 2009 Nov; ;72: 2 : 231– 237 .
    [Google Scholar]
  11. Gomi   T., , Koshida   K., , Miyati   T., , Miyagawa   J., , Hirano   H. . An experimental comparison of flat-panel detector performance for direct and indirect systems (initial experiences and physical evaluation). . J Digit Imaging . 2006 Dec; ;19: 4 : 362– 370 .
    [Google Scholar]
  12. Samei   E., , Flynn   MJ. . An experimental comparison of detector performance for direct and indirect digital radiography systems. . Med Phys . 2003 Apr; ;30: 4 : 608– 622 .
    [Google Scholar]
  13. Niklason   LT., , Chan   HP., , Cascade   PN., , Chang   CL., , Chee   PW., , Mathews   JF. . Portable chest imaging: comparison of storage phosphor digital, asymmetric screen-film and conventional screen-film systems. . Radiology . 1993 Feb; ;186: 2 : 387– 393 .
    [Google Scholar]
  14. Rühl   R., , Wozniak   MM., , Werk   M., , Laurent   F., , Mager   G., , Montaudon   M., , Pattermann   A., , Scherrer   A., , Tasu   JP., , Pech   M., , Ricke   J. . CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial. . Eur Radiol . 2008 Sep; ;18: 9 : 1831– 1839 .
    [Google Scholar]
  15. Swensen   SJ., , Gray   JE., , Brown   LR., , Aughenbaugh   GL., , Harms   GF., , Stears   J. . A new asimetric screen-film combination for conventional chest radiography: evaluation in 50 patients. . AJR Am J Roentgenol . 1993 Mar; ;160: 3 : 483– 486 .
    [Google Scholar]
  16. Tagashira   H., , Arakawa   K., , Yoshimoto   M. . Detectability of lung nodules using flat panel detector with dual energy subtraction by two shot method: evaluation by ROC method. . Eur J Radiol . 2007 Nov; ;64: 2 : 279– 284 .
    [Google Scholar]
  17. Del Ciello   A., , Franchi   P., , Contegiacomo   A., , Cicchetti   G., , Bonomo   L., , Larici   AR. . Missed lung cancer: when, where, and why?.   Diagn Interv Radiol . 2017 Mar; ;23: 2 : 118– 126 .
    [Google Scholar]
  18. Austin   JHM., , Romney   BM., , Goldsmith   LS. . Missed bronchogenic carcinoma: radiographicfindings in 27 patients with potentially resectable lesion evident inretrospect. . Radiology . 1992 Jan; ;182: 1 : 15– 22 .
    [Google Scholar]
  19. Uemura   M., , Miyagawa   M., , Yasuhara   Y., , Murakami   T., , Ikura   H., , Sakamoto   K. , et al.   Clinical evaluation of pulmonary nodules with dual-exposure dual-energy subtraction chest radiography. . Radiat Med . 2005 Sep; ;23: 6 : 391– 397 .
    [Google Scholar]
  20. Ricke   J., , Fischbach   F., , Freund   T., , Teichgräber   U., , Hänninen   EL., , Röttgen   R. , et al.   Clinical results of CSI-detector-based dual exposure dual energy in chest radiography. . Eur Radiol . 2003 Dec; ;13: 12 : 2577– 2582 .
    [Google Scholar]
  21. Kuhlman   JE., , Collins   J., , Brooks   GN., , Yandow   DR., , Broderick   SL. . Dual-energy subtraction chest radiography: what to look for beyond calcified nodules. . Radiographics . 2006 Jan-Feb; ;26: 1 : 79– 92 .
    [Google Scholar]
  22. Martini   K., , Baessler   M., , Baumueller   S., , Frauenfelder   T. . Diagnostic accuracy and added value of dual-energy subtraction radiography compared to standard conventional radiography using computed tomography as standard of reference. . PLoS One . 2017 Mar 16; ;12: 3 : e0174285 .
    [Google Scholar]
  23. Manji   F., , Wang   J., , Norman   G., , Wang   Z., , Koff   D. . Comparison of dual energy subtraction chest radiography and traditional chest X-rays in the detection of pulmonary nodules. . Quant Imaging Med Surg . 2016 Feb; ;6: 1 : 1– 5 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2019.9
Loading
/content/journals/10.5339/qmj.2019.9
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error