1887
Volume 2014, Issue 2
  • ISSN: 0253-8253
  • E-ISSN: 2227-0426

Abstract

The prevalence of type 2 diabetes (T2D) in Qatar and the Middle East is one of the highest in the world. It is estimated that about one quarter of the individuals with T2D are undiagnosed. Elevated HbA1c levels are an indicator of T2D or a pre-diabetic state. In this study we set out to examine which factors, such as anthropometric and socio-demographic risk factors, are associated with elevated HbA1c levels in a population without T2D. We examined 191 subjects with no record of T2D. Anthropometrics and HbA1c were measured. Socio-demographic (age, gender, ethnicity and educational level) and health information were assessed through questionnaires. Elevated HbA1c levels were defined as >6.0% (>42 mmol/mol). Individual risk factors were examined in relationship to having elevated HbA1c levels using logistic regression. Thirty-eight (20%) study participants had elevated HbA1c levels. Participants from South Asian and Filipino descent were more likely to present with elevated HbA1c levels than Arab participants (adjusted odds ratios (OR): 13.30 (95% confidence interval (CI): 4.24, 41.79), p < 0.001 for South Asian and 4.54 (95% CI: 1.04, 19.83), p = 0.04 for Filipinos). A body mass index of above 30 kg/m2 was associated with elevated HbA1c levels (adjusted OR: 2.90 (95% CI: 1.29, 6.51), p = 0.01). Neither gender nor educational level was associated with elevated HbA1c levels. Elevated HbA1c levels in individuals not diagnosed with diabetes were most frequently found in the South Asian and Filipino immigrant population. Special attention should therefore be given to the early identification of T2D in these subjects.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2014.17
2015-02-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2014/2/qmj.2014.17.html?itemId=/content/journals/10.5339/qmj.2014.17&mimeType=html&fmt=ahah

References

  1. Scully T. Diabetes in numbers. Nature. 2012; 485:7398:S2S3, Epub 2012/05/23.
    [Google Scholar]
  2. Degeling C, Rock M, Rogers WA. Testing relationships: Ethical arguments for screening for type 2 diabetes mellitus with HbA1C. Journal of Medical Ethics. 2012; 38:3:180183, Epub 2011/10/06.
    [Google Scholar]
  3. Feldman PJ, Steptoe A. Psychosocial and socioeconomic factors associated with glycated hemoglobin in nondiabetic middle-aged men and women. Health Psychology: Official Journal of the Division of Health Psychology, American Psychological Association. 2003; 22:4:398405, Epub 2003/08/28.
    [Google Scholar]
  4. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. The New England Journal of Medicine. 2010; 362:9:800811, Epub 2010/03/05.
    [Google Scholar]
  5. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, Brown-Friday JO, Goldberg R, Venditti E, Nathan DM. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009; 374:9702:16771686, Epub 2009/11/03.
    [Google Scholar]
  6. Mook-Kanamori DO, El-Din Selim MM, Takiddin AH, Al-Homsi H, Al-Mahmoud KA, Al-Obaidli A, Zirie MA, Rowe J, Yousri NA, Karoly ED, Kocher T, Sekkal Gherbi W, Chidiac OM, Mook-Kanamori MJ, Abdul Kader S, Al Muftah WA, McKeon C, Suhre K. 1,5-anhydroglucitol in saliva is a non-invasive marker of short-term glycemic control. The Journal of Clinical Endocrinology and Metabolism. 2014; 99:3:E479E483. http://www.ncbi.nlm.nih.gov/pubmed/24423354.
    [Google Scholar]
  7. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013; 36:Suppl 1:S67S74. http://www.ncbi.nlm.nih.gov/pubmed/23264425.
    [Google Scholar]
  8. Exebio JC, Zarini GG, Vaccaro JA, Exebio C, Huffman FG. Use of hemoglobin A1C to detect Haitian-Americans with undiagnosed Type 2 diabetes. Arquivos brasileiros de endocrinologia e metabologia. 2012; 56:7:449455, Epub 2012/10/31.
    [Google Scholar]
  9. Menchine MD, Arora S, Camargo CA, Ginde AA. Prevalence of undiagnosed and suboptimally controlled diabetes by point-of-care HbA1C in unselected emergency department patients. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine. 2011; 18:3:326329, Epub 2011/03/03.
    [Google Scholar]
  10. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. 2005;:17. http://www.idf.org/webdata/docs/MetSyndrome_FINAL.pdf.
    [Google Scholar]
  11. Hauner H, Hanisch J, Bramlage P, Steinhagen-Thiessen E, Schunkert H, Jockel KH, Wasem J, Moebus S. Prevalence of undiagnosed Type-2-diabetes mellitus and impaired fasting glucose in German primary care: Data from the German Metabolic and Cardiovascular Risk Project (GEMCAS). Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association. 2008; 116:1:1825, Epub 2007/10/11.
    [Google Scholar]
  12. Heianza Y, Arase Y, Saito K, Hsieh SD, Tsuji H, Kodama S, Tanaka S, Ohashi Y, Shimano H, Yamada N, Hara S, Sone H. Development of a screening score for undiagnosed diabetes and its application in estimating absolute risk of future type 2 diabetes in Japan: Toranomon Hospital Health Management Center Study 10 (TOPICS 10). The Journal of Clinical Endocrinology and Metabolism. 2013; 98:3:10511060, Epub 2013/02/09.
    [Google Scholar]
  13. Creatore MI, Booth GL, Manuel DG, Moineddin R, Glazier RH. Diabetes screening among immigrants: A population-based urban cohort study. Diabetes Care. 2012; 35:4:754761, Epub 2012/02/24.
    [Google Scholar]
  14. Zhuo X, Zhang P, Selvin E, Hoerger TJ, Ackermann RT, Li R, Bullard KM, Gregg EW. Alternative HbA1c cutoffs to identify high-risk adults for diabetes prevention: A cost-effectiveness perspective. American Journal of Preventive Medicine. 2012; 42:4:374381, Epub 2012/03/20.
    [Google Scholar]
  15. Feskens EJ, Virtanen SM, Rasanen L, Tuomilehto J, Stengard J, Pekkanen J, Nissinen A, Kromhout D. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care. 1995; 18:8:11041112, Epub 1995/08/01.
    [Google Scholar]
  16. Marshall JA, Hamman RF, Baxter J. High-fat, low-carbohydrate diet and the etiology of non-insulin-dependent diabetes mellitus: The San Luis Valley Diabetes Study. American Journal of Epidemiology. 1991; 134:6:590603, Epub 1991/09/15.
    [Google Scholar]
  17. Marshall JA, Hoag S, Shetterly S, Hamman RF. Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care. 1994; 17:1:5056, Epub 1994/01/01.
    [Google Scholar]
  18. Stern MP, Gonzalez C, Mitchell BD, Villalpando E, Haffner SM, Hazuda HP. Genetic and environmental determinants of type II diabetes in Mexico City and San Antonio. Diabetes. 1992; 41:4:484492, Epub 1992/04/01.
    [Google Scholar]
  19. Storlien LH, Baur LA, Kriketos AD, Pan DA, Cooney GJ, Jenkins AB, Calvert GD, Campbell LV. Dietary fats and insulin action. Diabetologia. 1996; 39:6:621631, Epub 1996/06/01.
    [Google Scholar]
  20. Lovejoy J, DiGirolamo M. Habitual dietary intake and insulin sensitivity in lean and obese adults. The American Journal of Clinical Nutrition. 1992; 55:6:11741179, Epub 1992/06/01.
    [Google Scholar]
  21. Miller WC, Lindeman AK, Wallace J, Niederpruem M. Diet composition, energy intake, and exercise in relation to body fat in men and women. The American Journal of Clinical Nutrition. 1990; 52:3:426430, Epub 1990/09/01.
    [Google Scholar]
  22. Kirk JK, Bell RA, Bertoni AG, Arcury TA, Quandt SA, Goff DC Jr, Narayan KM. Ethnic disparities: Control of glycemia, blood pressure, and LDL cholesterol among US adults with type 2 diabetes. The Annals of Pharmacotherapy. 2005; 39:9:14891501, Epub 2005/08/04.
    [Google Scholar]
  23. Adams AS, Trinacty CM, Zhang F, Kleinman K, Grant RW, Meigs JB, Soumerai SB, Ross-Degnan D. Medication adherence and racial differences in A1C control. Diabetes Care. 2008; 31:5:916921, Epub 2008/02/01.
    [Google Scholar]
  24. Boltri JM, Okosun IS, Davis-Smith M, Vogel RL. Hemoglobin A1c levels in diagnosed and undiagnosed black, Hispanic, and white persons with diabetes: Results from NHANES 1999-2000. Ethnicity & Disease. 2005; 15:4:562567, Epub 2005/11/02.
    [Google Scholar]
  25. Saydah S, Cowie C, Eberhardt MS, De Rekeneire N, Narayan KM. Race and ethnic differences in glycemic control among adults with diagnosed diabetes in the United States. Ethnicity & Disease. 2007; 17:3:529535, Epub 2007/11/08.
    [Google Scholar]
  26. AlGhamdi AS, Merdad K, Sonbul H, Bukhari SM, Elias WY. Dental clinics as potent sources for screening undiagnosed diabetes and prediabetes. The American Journal of the Medical Sciences. 2013; 345:4:331334, Epub 2013/03/28.
    [Google Scholar]
  27. American Diabetes Association. Standards of medical care in diabetes–2014. Diabetes care. 2014; 37:Suppl 1:S14S80. http://www.ncbi.nlm.nih.gov/pubmed/24357209.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2014.17
Loading
/content/journals/10.5339/qmj.2014.17
Loading

Data & Media loading...

Supplements

Supplementary File 1

  • Article Type: Research Article
Keyword(s): ethnic differences , HbA1c , pre-diabetes , public health and undiagnosed type 2 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error