1887
6 The Anbar 2nd International Medical Conference (AIMCO 2022)
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Since 2019, it has spread all over the globe, causing a pandemic that is still ongoing. COVID-19 vaccines protect against this disease through different strategies. Pfizer-BioNTech and Sinopharm vaccines were the most used vaccines in Iraq. Both vaccines have a specific mechanism to trigger the immune system in cells. This research aims to compare the biochemical and immunological responses in vaccinated individuals with either the Pfizer-BioNTech COVID-19 vaccine or the Sinopharm vaccine. This cohort study included 120 Iraqi adults vaccinated with two doses, 21 days apart, using either the Pfizer or the Sinopharm vaccine. Forty subjects received the Pfizer vaccine, 40 subjects received the Sinopharm vaccine, and the other 40 subjects were unvaccinated. After 6 weeks, the second dose was administered, and the blood samples were collected. Our findings revealed that the biochemical biomarkers, urea, creatinine, aspartate aminotransferase, and alkaline phosphatase, seem to be not affected by the vaccines used. However, both vaccines significantly reduced alanine aminotransferase levels ( < 0.05). In contrast, the immunological biomarkers such as IgG, IgM, C3, IL-2, and hs-CRP remarkably responded to both vaccines ( < 0.01), while procalcitonin levels were significantly increased by the Pfizer vaccine ( < 0.05). The study concluded that the Pfizer-BioNTech vaccine boosted the immune system more than the Sinopharm vaccine. A booster dose is advised for people who have already taken Sinopharm or have long-term immunosuppressive diseases.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2022.aimco.18
2022-12-22
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2022/6/jemtac.2022.aimco.18.html?itemId=/content/journals/10.5339/jemtac.2022.aimco.18&mimeType=html&fmt=ahah

References

  1. Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020 Jul; 14:. doi:10.1177/1753466620937175.
    [Google Scholar]
  2. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021; 21:(4):195–7. doi:10.1038/s41577-021-00526-x.
    [Google Scholar]
  3. Adam L, Rosenbaum P, Bonduelle O, Combadière B. Strategies for immunomonitoring after vaccination and during infection. Vaccines. 2021; 9:(4):365. doi:10.3390/vaccines9040365.
    [Google Scholar]
  4. Snell AM. Liver function tests and their interpretation. Gastroenterol. 1958; 34:(4):675–82. doi:10.1016/S0016-5085(58)80052-9.
    [Google Scholar]
  5. Li Q, Ding X, Xia G, Chen H-G, Chen F, Geng Z, et al. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: A retrospective case-control study. EClinicalMedicine. 2020 Jun; 23::100375. doi:10.1016/J.ECLINM.2020.100375.
    [Google Scholar]
  6. Sekar A, Campbell R, Tabbara J, Rastogi P. ANCA glomerulonephritis after the Moderna COVID-19 vaccination. Kidney Int. 2021; 100:(2):473–4. doi:10.1016/j.kint.2021.05.017.
    [Google Scholar]
  7. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007; 171:(3):715–27. doi:10.2353/ajpath.2007.070166.
    [Google Scholar]
  8. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003; 112:(2):299. doi:10.1172/jci18921c1.
    [Google Scholar]
  9. Azra K. Estimation of blood urea (Bun) and serum creatinine. Indian J Fundam Appl Life Sci. 2014; 4:(4):199–202 [Online]. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1062.2480&rep=rep1&type=pdf%0Aglomerular
    [Google Scholar]
  10. Park JW, Yu SN, Chang SH, Ahn YH, Jeon MH. Multisystem inflammatory syndrome in an adult after COVID-19 vaccination: a case report and literature review. J Korean Med Sci. 2021 Nov; 36:(45):1–7. doi:10.3346/JKMS.2021.36.E312.
    [Google Scholar]
  11. Center SA. Interpretation of liver enzymes. Vet Clin North Am - Small Anim Pract. 2007; 37:(2):297–333. doi:10.1016/j.cvsm.2006.11.009.
    [Google Scholar]
  12. Hou H, Wang T, Zhang B, Luo Y, Mao L, Wang F, et al. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin Transl Immunol. 2020; 9:(5):1–8. doi:10.1002/cti2.1136.
    [Google Scholar]
  13. Bagherimoghaddam A, Rafatpanah H, Mansouritorghabeh H. Elevated levels of C3, C4, and CH50 of the complement system in ICU and non-ICU patients with COVID-19. Heal Sci Reports. 2022 Mar; 5:(2):e519. doi:10.1002/HSR2.519.
    [Google Scholar]
  14. Nizar SM, Kesavaraman B, Priyanka E, Jayasri R. Detection of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies using circular photonic crystal fiber sensor. J Phys Conf Ser. 2021; 1717:(1):012039. doi:10.1088/1742-6596/1717/1/012039.
    [Google Scholar]
  15. Zhao Y, Zhao Y, Li M, Zhou Y, Zhang Y, Su X, et al. Association of COVID-19 vaccination before conception with maternal liver function during early pregnancy: a cohort study of 7745 Chinese pregnant women. Emerg Microbes Infect. 2022 Dec; 11:(1):2222–8. doi:10.1080/22221751.2022.2117100/SUPPL_FILE/TEMI_A_2117100_SM8336.DOCX.
    [Google Scholar]
  16. Kurtovic L, Beeson JG. Complement factors in COVID-19 therapeutics and vaccines. Trends Immunol. 2021 Feb; 42:(2):94–103. doi:10.1016/J.IT.2020.12.002.
    [Google Scholar]
  17. [Google Scholar]
  18. Chen Z, Wherry EJ. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020; 20:(9):529–36. doi:10.1038/s41577-020-0402-6.
    [Google Scholar]
  19. Shroff H, Satapathy SK, Crawford JM, Todd NJ, VanWagnerLB. Liver injury following SARS-CoV-2 vaccination: A multicenter case series. J Hepatol. 2022 Jan; 76:(1):211–4. doi:10.1016/j.jhep.2021.07.024.
    [Google Scholar]
  20. Babel N, Hugo C, Westhoff TH. Vaccination in patients with kidney failure: lessons from COVID-19. Nat Rev Nephrol. 2022 Nov; 18:(11):708−23. doi:10.1038/s41581-022-00617-5.
    [Google Scholar]
  21. Ghielmetti M, Schaufelberger HD, Mieli-Vergani G, Cerny A, Dayer E, Vergani D, et al. Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: A novel clinical entity?J Autoimmun. 2021 Sep; 123::102706. doi: 10.1016/j.jaut.2021.102706.
    [Google Scholar]
  22. Verma S, Kaplowitz N. Diagnosis, management and prevention of drug-induced liver injury. Gut. 2009; 58:(11):1555–64. doi:10.1136/gut.2008.163675.
    [Google Scholar]
  23. Zhu J, Chen C, Shi R, Li B. Correlations of ct scan with high-sensitivity c-reactive protein and ddimer in patients with coronavirus disease 2019. Pakistan J Med Sci. 2020; 36:(6):1391–401. doi:10.12669/PJMS.36.6.2961.
    [Google Scholar]
  24. Kaur RJ, Dutta S, Bhardwaj P, Charan J, Dhingra S, Mitra P, et al. Adverse events reported from COVID-19 vaccine trials: A systematic review. Indian J Clin Biochem. 2021; 36:(4):427–39. doi:10.1007/s12291-021-00968-z.
    [Google Scholar]
  25. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett. 2020; 7:(7):511–6. doi:10.1021/acs.estlett.0c00357.
    [Google Scholar]
  26. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021; 33:(2): 155–62. doi:10.1097/BOR.0000000000000776.
    [Google Scholar]
  27. Abd ZH, Muter SA, Saeed RAM, Ammar O. Effects of Covid-19 vaccination on different semen parameters. Basic Clin Androl. 2022; 32:(1):1–5. doi:10.1186/s12610-022-00163-x.
    [Google Scholar]
  28. Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol. 2004; 172:(7):3983–8. doi:10.4049/jimmunol.172.7.3983.
    [Google Scholar]
  29. Doumatey AP, Zhou J, Adeyemo A, Rotimi C. High sensitivity C-reactive protein (Hs-CRP) remains highly stable in long-term archived human serum. Clin Biochem. 2014; 47:(4–5):315–8. doi:10.1016/j.clinbiochem.2013.12.014.
    [Google Scholar]
  30. Lebedev L, Sapojnikov M, Wechsler A, Varadi-Levi R, Zamir D, Tobar A, et al. Minimal change disease following the Pfizer-BioNTech COVID-19 vaccine. Am J Kidney Dis. 2021; 78:(1):142–5. doi:10.1053/j.ajkd.2021.03.010.
    [Google Scholar]
  31. Aylward RB, Heymann DL. Can we capitalize on the virtues of vaccines? Insights from the polio eradication initiative. Am J Public Health. 2005; 95:(5):773–7. doi:10.2105/AJPH.2004.055897.
    [Google Scholar]
  32. Reed SE. The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E-related strains. J Med Virol. 1984; 13:(2):179–92. doi:10.1002/jmv.1890130208.
    [Google Scholar]
  33. Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis. 2018; 18:(1):95–107. doi:10.1016/S1473-3099(17)30592-3.
    [Google Scholar]
  34. Fatima S, Zafar A, Afzal H, Ejaz T, Shamim S, Saleemi S, et al. COVID-19 infection among vaccinated and unvaccinated: Does it make any difference? PLoS One, 2022 Jul; 17:(7):e0270485. doi:10.1371/JOURNAL.PONE.0270485.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jemtac.2022.aimco.18
Loading
/content/journals/10.5339/jemtac.2022.aimco.18
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error