1887
Volume 2015, Issue 3
  • ISSN: 2305-7823
  •  E-ISSN:  Will be obtained soon

Abstract

Recent technological advances in cardiology have resulted in new guidelines for the diagnosis, treatment and prevention of diseases. Despite these improvements, sudden death remains one of the main challenges to clinicians because the majority of diseases associated with sudden cardiac death are characterized by incomplete penetrance and variable expressivity. Hence, patients may be unaware of their illness, and physical activity can be the trigger for syncope as first symptom of the disease. Most common causes of sudden cardiac death are congenital alterations and structural heart diseases, although a significant number remain unexplained after comprehensive autopsy. In these unresolved cases, channelopathies are considered the first potential cause of death. Since all these diseases are of genetic origin, family members could be at risk, despite being asymptomatic. Genetics has also benefited from technological advances, and genetic testing has been incorporated into the sudden death field, identifying the cause in clinically affected patients, asymptomatic family members and post-mortem cases without conclusive diagnosis. This review focuses on recent advances in the genetics of channelopathies associated with sudden cardiac death.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.39
2015-10-13
2020-05-29
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/3/gcsp.2015.39.html?itemId=/content/journals/10.5339/gcsp.2015.39&mimeType=html&fmt=ahah

References

  1. Basso C, Carturan E, Pilichou K, Rizzo S, Corrado D, Thiene G. Sudden cardiac death with normal heart molecular autopsy. Cardiovasc Pathol. 2010 Nov-Dec; 19:6:321325.
    [Google Scholar]
  2. Oliva A, Brugada R, D'Aloja E, Boschi I, Partemi S, Brugada J, Pascali VL. State of the art in forensic investigation of sudden cardiac death. Am J Forensic Med Pathol. 2010 Mar; 32:1:116.
    [Google Scholar]
  3. Campuzano O, Allegue C, Partemi S, Iglesias A, Oliva A, Brugada R. Negative autopsy and sudden cardiac death. International journal of legal medicine. 2014; 128::599606.
    [Google Scholar]
  4. Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, Huikuri HV, Kaab S, La Rovere MT, Malik M, Myerburg RJ, Simoons ML, Swedberg K, Tijssen J, Voors AA, Wilde AA. Risk stratification for sudden cardiac death: Current status and challenges for the future. Eur Heart J. 2014; 35::16421651.
    [Google Scholar]
  5. Arzamendi D, Benito B, Tizon-Marcos H, Flores J, Tanguay JF, Ly H, Doucet S, Leduc L, Leung TK, Campuzano O, Iglesias A, Talajic M, Brugada R. Increase in sudden death from coronary artery disease in young adults. Am Heart J. 2011; 161::574580.
    [Google Scholar]
  6. Campuzano O, Sanchez-Molero O, Allegue C, Coll M, Mademont-Soler I, Selga E, Ferrer-Costa C, Mates J, Iglesias A, Sarquella-Brugada G, Cesar S, Brugada J, Castella J, Medallo J, Brugada R. Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci Int. 2014; 245C::3037.
    [Google Scholar]
  7. Wolpert C, Parade U, Herrera-Siklody C, Strotmann C, Rub N. [ion channel diseases in children]. Herzschrittmacherther Elektrophysiol. 2014; 25::148157.
    [Google Scholar]
  8. Shimizu W. Clinical and genetic diagnosis for inherited cardiac arrhythmias. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi. 2014; 81::203210.
    [Google Scholar]
  9. Campuzano O, Allegue C, Brugada R. [genetics of sudden unexplained death]. Med clin. 2014; 142::265269.
    [Google Scholar]
  10. Martin CA, Huang CL, Matthews GD. The role of ion channelopathies in sudden cardiac death: Implications for clinical practice. Ann Med. 2013; 45::364374.
    [Google Scholar]
  11. Giudicessi JR, Ackerman MJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Translational research: the journal of laboratory and clinical medicine. 2013; 161::114.
    [Google Scholar]
  12. Shimizu W. Update of diagnosis and management of inherited cardiac arrhythmias. Circ J. 2013; 77::28672872.
    [Google Scholar]
  13. van Hoeijen DA, Blom MT, Tan HL. Cardiac sodium channels and inherited electrophysiological disorders: An update on the pharmacotherapy. Expert Opin Pharmacother. 2014; 15::18751887.
    [Google Scholar]
  14. Amin AS, Pinto YM, Wilde AA. Long qt syndrome: Beyond the causal mutation. J Physiol. 2013; 591::41254139.
    [Google Scholar]
  15. Mizusawa Y, Horie M, Wilde AA. Genetic and clinical advances in congenital long qt syndrome. Circ J. 2014; 78::28272833.
    [Google Scholar]
  16. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusie-Luna MT, Makielski JC, Ackerman MJ. Scn4b-encoded sodium channel beta4 subunit in congenital long-qt syndrome. Circulation. 2007; 116::134142.
    [Google Scholar]
  17. Riuro H, Campuzano O, Arbelo E, Iglesias A, Batlle M, Perez-Villa F, Brugada J, Perez GJ, Scornik FS, Brugada R. A missense mutation in the sodium channel beta1b subunit reveals scn1b as a susceptibility gene underlying long qt syndrome. Heart Rhythm. 2014; 11::12021209.
    [Google Scholar]
  18. Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA. Mutant caveolin-3 induces persistent late sodium current and is associated with long-qt syndrome. Circulation. 2006; 114::21042112.
    [Google Scholar]
  19. Wu G, Ai T, Kim JJ, Mohapatra B, Xi Y, Li Z, Abbasi S, Purevjav E, Samani K, Ackerman MJ, Qi M, Moss AJ, Shimizu W, Towbin JA, Cheng J, Vatta M. Alpha-1-syntrophin mutation and the long-qt syndrome: A disease of sodium channel disruption. Circ Arrhythm Electrophysiol. 2008; 1::193201.
    [Google Scholar]
  20. Brugada R, Campuzano O, Sarquella-Brugada G, Brugada J, Brugada P. Brugada syndrome. Methodist DeBakey cardiovascular journal. 2014; 10::2528.
    [Google Scholar]
  21. Campuzano O, Brugada R, Iglesias A. Genetics of brugada syndrome. Curr Opin Cardiol. 2010 May; 25:3:210215.
    [Google Scholar]
  22. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O'Brien RE, Schulze-Bahr E, Keating MT, Towbin JA, Wang Q. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998; 392::293296.
    [Google Scholar]
  23. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, Demolombe S, Probst V, Anselme F, Escande D, Wiesfeld AC, Pfeufer A, Kaab S, Wichmann HE, Hasdemir C, Aizawa Y, Wilde AA, Roden DM, Bezzina CR. Sodium channel beta1 subunit mutations associated with brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008; 118::22602268.
    [Google Scholar]
  24. Riuro H, Beltran-Alvarez P, Tarradas A, Selga E, Campuzano O, Verges M, Pagans S, Iglesias A, Brugada J, Brugada P, Vazquez FM, Perez GJ, Scornik FS, Brugada R. A missense mutation in the sodium channel beta2 subunit reveals scn2b as a new candidate gene for brugada syndrome. Hum Mutat. 2013; 34::961966.
    [Google Scholar]
  25. Hu D, Barajas-Martinez H, Burashnikov E, Springer M, Wu Y, Varro A, Pfeiffer R, Koopmann TT, Cordeiro JM, Guerchicoff A, Pollevick GD, Antzelevitch C. A mutation in the beta 3 subunit of the cardiac sodium channel associated with brugada ecg phenotype. Circ Cardiovasc Genet. 2009; 2::270278.
    [Google Scholar]
  26. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, Guicheney P, Fressart V, Leenhardt A, Antzelevitch C, Bartkowiak S, Borggrefe M, Schimpf R, Schulze-Bahr E, Zumhagen S, Behr ER, Bastiaenen R, Tfelt-Hansen J, Olesen MS, Kaab S, Beckmann BM, Weeke P, Watanabe H, Endo N, Minamino T, Horie M, Ohno S, Hasegawa K, Makita N, Nogami A, Shimizu W, Aiba T, Froguel P, Balkau B, Lantieri O, Torchio M, Wiese C, Weber D, Wolswinkel R, Coronel R, Boukens BJ, Bezieau S, Charpentier E, Chatel S, Despres A, Gros F, Kyndt F, Lecointe S, Lindenbaum P, Portero V, Violleau J, Gessler M, Tan HL, Roden DM, Christoffels VM, Le Marec H, Wilde AA, Probst V, Schott JJ, Dina C, Redon R. Common variants at scn5a-scn10a and hey2 are associated with brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013; 45::10441049.
    [Google Scholar]
  27. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, Viswanathan PC, Pfahnl AE, Shang LL, Madhusudanan M, Baty CJ, Lagana S, Aleong R, Gutmann R, Ackerman MJ, McNamara DM, Weiss R, Dudley SC Jr. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (gpd1-l) decreases cardiac na+ current and causes inherited arrhythmias. Circulation. 2007; 116::22602268.
    [Google Scholar]
  28. Kattygnarath D, Maugenre S, Neyroud N, Balse E, Ichai C, Denjoy I, Dilanian G, Martins RP, Fressart V, Berthet M, Schott JJ, Leenhardt A, Probst V, Le Marec H, Hainque B, Coulombe A, Hatem SN, Guicheney P. Mog1: A new susceptibility gene for brugada syndrome. Circ Cardiovasc Genet. 2011; 4::261268.
    [Google Scholar]
  29. Ishikawa T, Sato A, Marcou CA, Tester DJ, Ackerman MJ, Crotti L, Schwartz PJ, On YK, Park JE, Nakamura K, Hiraoka M, Nakazawa K, Sakurada H, Arimura T, Makita N, Kimura A. A novel disease gene for brugada syndrome: Sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hnav1.5. Circ Arrhythm Electrophysiol. 2012; 5::10981107.
    [Google Scholar]
  30. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky HN, ovelli V, Kim C, Tirasawadichai T, Judge DP, Rothenberg E, Chen HS, Napolitano C, Priori SG, Delmar M. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a brugada syndrome phenotype. Circulation. 2014; 129::10921103.
    [Google Scholar]
  31. Ravens U, Cerbai E. Role of potassium currents in cardiac arrhythmias. Europace. 2008 Oct; 10:10:11331137.
    [Google Scholar]
  32. Behere SP, Shubkin CD, Weindling SN. Recent advances in the understanding and management of long qt syndrome. Curr Opin Pediatr. 2014; 26::727733.
    [Google Scholar]
  33. Aizawa Y, Ueda K, Scornik F, Cordeiro JM, Wu Y, Desai M, Guerchicoff A, Nagata Y, Iesaka Y, Kimura A, Hiraoka M, Antzelevitch C. A novel mutation in kcnq1 associated with a potent dominant negative effect as the basis for the lqt1 form of the long qt syndrome. J Cardiovasc Electrophysiol. 2007; 18::972977.
    [Google Scholar]
  34. Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C, Ronchetti E, Bryskin R, Schwartz PJ, Brown AM. Cellular dysfunction of lqt5-mink mutants: Abnormalities of iks, ikr and trafficking in long qt syndrome. Hum Mol Genet. 1999; 8::14991507.
    [Google Scholar]
  35. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of herg k+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A. 1996; 93::22082212.
    [Google Scholar]
  36. Tsuboi M, Antzelevitch C. Cellular basis for electrocardiographic and arrhythmic manifestations of andersen-tawil syndrome (lqt7). Heart Rhythm. 2006; 3::328335.
    [Google Scholar]
  37. Yang Y, Liang B, Liu J, Li J, Grunnet M, Olesen SP, Rasmussen HB, Ellinor PT, Gao L, Lin X, Li L, Wang L, Xiao J, Liu Y, Zhang S, Liang D, Peng L, Jespersen T, Chen YH. Identification of a kir3.4 mutation in congenital long qt syndrome. Am J Hum Genet. 2010; 86::872880.
    [Google Scholar]
  38. Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS. Mutation of an a-kinase-anchoring protein causes long-qt syndrome. Proc Natl Acad Sci U S A. 2007; 104::2099020995.
    [Google Scholar]
  39. Brugada J, Gussak I, Brugada P. Short qt syndrome: A predictable story. Cardiology. 2014; 128::231233.
    [Google Scholar]
  40. Mazzanti A, Kanthan A, Monteforte N, Memmi M, Bloise R, Novelli V, Miceli C, O'Rourke S, Borio G, Zienciuk-Krajka A, Curcio A, Surducan AE, Colombo M, Napolitano C, Priori SG. Novel insight into the natural history of short qt syndrome. J Am Coll Cardiol. 2014; 63::13001308.
    [Google Scholar]
  41. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. Sudden death associated with short-qt syndrome linked to mutations in herg. Circulation. 2004; 109::3035.
    [Google Scholar]
  42. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, Santos-de-Soto J, Grueso-Montero J, Diaz-Enfante E, Brugada P, Sachse F, Sanguinetti MC, Brugada R. De novo kcnq1 mutation responsible for atrial fibrillation and short qt syndrome in utero. Cardiovasc Res. 2005; 68::433440.
    [Google Scholar]
  43. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonwo J, di Barletta MRG, Gudapakkam S, Bosi G, Stramba-Badiale M. A novel form of short qt syndrome (sqt3) is caused by a mutation in the kcnj2 gene. Circ Res. 2005; 96::800807.
    [Google Scholar]
  44. Giudicessi JR, Ye D, Tester DJ, Crotti L, Mugione A, Nesterenko VV, Albertson RM, Antzelevitch C, Schwartz PJ, Ackerman MJ. Transient outward current (i(to)) gain-of-function mutations in the kcnd3-encoded kv4.3 potassium channel and brugada syndrome. Heart Rhythm. 2011; 8::10241032.
    [Google Scholar]
  45. Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD, Wu Y, Kanters JK, Larsen CT, Hofman-Bang J, Burashnikov E, Christiansen M, Antzelevitch C. Functional effects of kcne3 mutation and its role in the development of brugada syndrome. Circ Arrhythm Electrophysiol. 2008; 1::209218.
    [Google Scholar]
  46. Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, Shizuta S, Hattori T, Miyamoto A, Naiki N, Hancox JC, Matsuura H, Horie M. Kcne5 (kcne1l) variants are novel modulators of brugada syndrome and idiopathic ventricular fibrillation. Circ Arrhythm Electrophysiol. 2011; 4::352361.
    [Google Scholar]
  47. Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, Kroboth SL, Song C, Zhou Q, Kopp D, Schwartz PJ, Makielski JC, Ackerman MJ. Gain-of-function mutation s422l in the kcnj8-encoded cardiac k(atp) channel kir6.1 as a pathogenic substrate for j-wave syndromes. Heart Rhythm. 2010; 7::14661471.
    [Google Scholar]
  48. Ueda K, Hirano Y, Higashiuesato Y, Aizawa Y, Hayashi T, Inagaki N, Tana T, Ohya Y, Takishita S, Muratani H, Hiraoka M, Kimura A. Role of hcn4 channel in preventing ventricular arrhythmia. J Hum Genet. 2009; 54::115121.
    [Google Scholar]
  49. Hu D, Barajas-Martinez H, Terzic A, Park S, Pfeiffer R, Burashnikov E, Wu Y, Borggrefe M, Veltmann C, Schimpf R, Cai JJ, Nam GB, Deshmukh P, Scheinman M, Preminger M, Steinberg J, Lopez-Izquierdo A, Ponce-Balbuena D, Wolpert C, Haissaguerre M, Sanchez-Chapula JA, Antzelevitch C. Abcc9 is a novel brugada and early repolarization syndrome susceptibility gene. Int J Cardiol. 2014; 171::431442.
    [Google Scholar]
  50. Pflaumer A, Davis AM. Guidelines for the diagnosis and management of catecholaminergic polymorphic ventricular tachycardia. Heart Lung Circ. 2012; 21::96100.
    [Google Scholar]
  51. Kimura H, Zhou J, Kawamura M, Itoh H, Mizusawa Y, Ding WG, Wu J, Ohno S, Makiyama T, Miyamoto A, Naiki N, Wang Q, Xie Y, Suzuki T, Tateno S, Nakamura Y, Zang WJ, Ito M, Matsuura H, Horie M. Phenotype variability in patients carrying kcnj2 mutations. Circ Cardiovasc Genet. 2012; 5::344353.
    [Google Scholar]
  52. Eisner D, Bode E, Venetucci L, Trafford A. Calcium flux balance in the heart. J Mol Cell Cardiol. 2013; 58::110117.
    [Google Scholar]
  53. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP Jr, Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu LF, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by st-segment elevation, short qt intervals, and sudden cardiac death. Circulation. 2007; 115::442449.
    [Google Scholar]
  54. Burashnikov E, Pfeiffer R, Barajas-Martinez H, Delpon E, Hu D, Desai M, Borggrefe M, Haissaguerre M, Kanter R, Pollevick GD, Guerchicoff A, Laino R, Marieb M, Nademanee K, Nam GB, Robles R, Schimpf R, Stapleton DD, Viskin S, Winters S, Wolpert C, Zimmern S, Veltmann C, Antzelevitch C. Mutations in the cardiac l-type calcium channel associated with inherited j-wave syndromes and sudden cardiac death. Heart Rhythm. 2010; 7::18721882.
    [Google Scholar]
  55. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT. Ca(v)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004; 119::1931.
    [Google Scholar]
  56. Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann BM, Roh MS, Shigemizu D, Lichtner P, Ishikawa T, Aiba T, Homfray T, Behr ER, Klug D, Denjoy I, Mastantuono E, Theisen D, Tsunoda T, Satake W, Toda T, Nakagawa H, Tsuji Y, Tsuchiya T, Yamamoto H, Miyamoto Y, Endo N, Kimura A, Ozaki K, Motomura H, Suda K, Tanaka T, Schwartz PJ, Meitinger T, Kaab S, Guicheney P, Shimizu W, Bhuiyan ZA, Watanabe H, Chazin WJ, George AL Jr. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014; 7::466474.
    [Google Scholar]
  57. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V. Ankyrin-b mutation causes type 4 long-qt cardiac arrhythmia and sudden cardiac death. Nature. 2003; 421::634639.
    [Google Scholar]
  58. Mohler PJ. Ankyrins and human disease: What the electrophysiologist should know. J Cardiovasc Electrophysiol. 2006; 17::11531159.
    [Google Scholar]
  59. Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hebert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E, Guicheney P. Mutational spectrum in the ca(2+)–activated cation channel gene trpm4 in patients with cardiac conductance disturbances. Hum Mutat. 2012; 33::109117.
    [Google Scholar]
  60. Mohamed U, Napolitano C, Priori SG. Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2007; 18::791797.
    [Google Scholar]
  61. Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA, Kontula K. Mutations of the cardiac ryanodine receptor (ryr2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001; 103::485490.
    [Google Scholar]
  62. Lahat H, Eldar M, Levy-Nissenbaum E, Bahan T, Friedman E, Khoury A, Lorber A, Kastner DL, Goldman B, Pras E. Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: Clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation. 2001; 103::28222827.
    [Google Scholar]
  63. Marsman RF, Barc J, Beekman L, Alders M, Dooijes D, van den Wijngaard A, Ratbi I, Sefiani A, Bhuiyan ZA, Wilde AA, Bezzina CR. A mutation in calm1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014; 63::259266.
    [Google Scholar]
  64. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, Durand P, Guicheney P, Kyndt F, Leenhardt A, Le Marec H, Lucet V, Mabo P, Probst V, Monnier N, Ray PF, Santoni E, Tremeaux P, Lacampagne A, Faure J, Lunardi J, Marty I. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012; 21::27592767.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.39
Loading
/content/journals/10.5339/gcsp.2015.39
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): arrhythmias , channelopathies , genetics and Sudden cardiac death
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error