1887
Volume 2015, Issue 3
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Microparticles, in the context of this review, are defined as plasma membrane derived-particles shed by various types of vascular and blood cells in response to different stimuli. They were first described as products of platelet activation or “platelet dust”, however microparticles are now ascribed prominent roles in cardiovascular diseases and contribute to the regulation of pathophysiological processes including, endothelial function, inflammation, coagulation, angiogenesis, and cellular remodelling. Furthermore, microparticles serve as cell-cell messengers by transfer of biological information to target cells in pathophysiological settings and have proven to be prominent biomarkers for health and physiology assessments for both diagnostic and risk stratification purposes. This review describes the mechanisms of microparticles formation, release and clearance, and their detection by currently available and applicable methods. It also discusses the role of microparticles in the development of cardiovascular diseases, as well as their role as biomarkers and cell effectors in the cardiovascular system.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.38
2015-10-13
2020-02-22
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/3/gcsp.2015.38.html?itemId=/content/journals/10.5339/gcsp.2015.38&mimeType=html&fmt=ahah

References

  1. Alwan A. Global status report on non-communicable diseases 2010. World Health Organization. Geneva 2011.
    [Google Scholar]
  2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS medicine. 2006; 3::e442.
    [Google Scholar]
  3. Ahmad T, Fiuzat M, Felker GM, O'Connor C. Novel biomarkers in chronic heart failure. Nature reviews. Cardiology. 2012; 9::347359.
    [Google Scholar]
  4. Amodio G, Antonelli G, Di Serio F. Cardiac biomarkers in acute coronary syndromes: A review. Current vascular pharmacology. 2010; 8::388393.
    [Google Scholar]
  5. Wolf P. The nature and significance of platelet products in human plasma. British journal of haematology. 1967; 13::269288.
    [Google Scholar]
  6. Martinez MC, Tual-Chalot S, Leonetti D, Andriantsitohaina R. Microparticles: Targets and tools in cardiovascular disease. Trends in pharmacological sciences. 2011; 32::659665.
    [Google Scholar]
  7. Helal O, Defoort C, Robert S, Marin C, Lesavre N, Lopez-Miranda J, Riserus U, Basu S, Lovegrove J, McMonagle J, Roche HM, Dignat-George F, Lairon D. Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome: Relationship with oxidative stress. Nutrition, metabolism, and cardiovascular diseases: NMCD. 2011; 21::665671.
    [Google Scholar]
  8. Hong Y, Eleftheriou D, Hussain AA, Price-Kuehne FE, Savage CO, Jayne D, Little MA, Salama AD, Klein NJ, Brogan PA. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. Journal of the American Society of Nephrology: JASN. 2012; 23::4962.
    [Google Scholar]
  9. Oehmcke S, Morgelin M, Malmstrom J, Linder A, Chew M, Thorlacius H, Herwald H. Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cellular microbiology. 2012; 14::107119.
    [Google Scholar]
  10. Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. Journal of thrombosis and haemostasis: JTH. 2006; 4::16211623.
    [Google Scholar]
  11. Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JN, Ponomarev ED, Duckett L, Vorobjev IA. Circulating microparticles: Square the circle. BMC cell biology. 2013; 14::23.
    [Google Scholar]
  12. Creutz CE, Hira JK, Gee VE, Eaton JM. Protection of the membrane permeability barrier by annexins. Biochemistry. 2012; 51::99669983.
    [Google Scholar]
  13. Banfi C, Brioschi M, Wait R, Begum S, Gianazza E, Pirillo A, Mussoni L, Tremoli E. Proteome of endothelial cell-derived procoagulant microparticles. Proteomics. 2005; 5::44434455.
    [Google Scholar]
  14. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet microparticle proteome. Journal of proteome research. 2005; 4::15161521.
    [Google Scholar]
  15. Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA, Simon DI, Plow EF. Expression, activation, and function of integrin alphambeta2 (mac-1) on neutrophil-derived microparticles. Blood. 2008; 112::23272335.
    [Google Scholar]
  16. Liu ML, Reilly MP, Casasanto P, McKenzie SE, Williams KJ. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arteriosclerosis, thrombosis, and vascular biology. 2007; 27::430435.
    [Google Scholar]
  17. Dasgupta SK, Abdel-Monem H, Niravath P, Le A, Bellera RV, Langlois K, Nagata S, Rumbaut RE, Thiagarajan P. Lactadherin and clearance of platelet-derived microvesicles. Blood. 2009; 113::13321339.
    [Google Scholar]
  18. Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Leseche G, Boulanger C, Tedgui A, Mallat Z. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 2007; 115::21682177.
    [Google Scholar]
  19. Chandler WL. Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis. 2013; 24::125132.
    [Google Scholar]
  20. Ayers L, Kohler M, Harrison P, Sargent I, Dragovic R, Schaap M, Nieuwland R, Brooks SA, Ferry B. Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay. Thrombosis research. 2011; 127::370377.
    [Google Scholar]
  21. Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biro E, Nieuwland R, Sturk A, Dignat-George F, Sabatier F, Camoin-Jau L, Sampol J, Hugel B, Zobairi F, Freyssinet JM, Nomura S, Shet AS, Key NS, Hebbel RP. Measuring circulating cell-derived microparticles. Journal of thrombosis and haemostasis: JTH. 2004; 2::18421851.
    [Google Scholar]
  22. Enjeti AK, Lincz LF, Seldon M. Detection and measurement of microparticles: An evolving research tool for vascular biology. Seminars in thrombosis and hemostasis. 2007; 33::771779.
    [Google Scholar]
  23. Lal S, Brown A, Nguyen L, Braet F, Dyer W, Dos Remedios C. Using antibody arrays to detect microparticles from acute coronary syndrome patients based on cluster of differentiation (cd) antigen expression. Molecular & cellular proteomics: MCP. 2009; 8::799804.
    [Google Scholar]
  24. Nomura S, Shouzu A, Taomoto K, Togane Y, Goto S, Ozaki Y, Uchiyama S, Ikeda Y. Assessment of an elisa kit for platelet-derived microparticles by joint research at many institutes in japan. Journal of atherosclerosis and thrombosis. 2009; 16::878887.
    [Google Scholar]
  25. Biasucci LM, Porto I, Di Vito L, De Maria GL, Leone AM, Tinelli G, Tritarelli A, Di Rocco G, Snider F, Capogrossi MC, Crea F. Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circulation journal: official journal of the Japanese Circulation Society. 2012; 76::21742182.
    [Google Scholar]
  26. Porto I, Biasucci LM, De Maria GL, Leone AM, Niccoli G, Burzotta F, Trani C, Tritarelli A, Vergallo R, Liuzzo G, Crea F. Intracoronary microparticles and microvascular obstruction in patients with st elevation myocardial infarction undergoing primary percutaneous intervention. European heart journal. 2012; 33::29282938.
    [Google Scholar]
  27. Jung C, Sorensson P, Saleh N, Arheden H, Ryden L, Pernow J. Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with st-elevation myocardial infarction. Atherosclerosis. 2012; 221::226231.
    [Google Scholar]
  28. Montoro-Garcia S, Shantsila E, Tapp LD, Lopez-Cuenca A, Romero AI, Hernandez-Romero D, Orenes-Pinero E, Manzano-Fernandez S, Valdes M, Marin F, Lip GY. Small-size circulating microparticles in acute coronary syndromes: Relevance to fibrinolytic status, reparative markers and outcomes. Atherosclerosis. 2013; 227::313322.
    [Google Scholar]
  29. Skeppholm M, Mobarrez F, Malmqvist K, Wallen H. Platelet-derived microparticles during and after acute coronary syndrome. Thrombosis and haemostasis. 2012; 107::11221129.
    [Google Scholar]
  30. Dey-Hazra E, Hertel B, Kirsch T, Woywodt A, Lovric S, Haller H, Haubitz M, Erdbruegger U. Detection of circulating microparticles by flow cytometry: Influence of centrifugation, filtration of buffer, and freezing. Vascular health and risk management. 2010; 6::11251133.
    [Google Scholar]
  31. Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, Sampol J, Dignat-George F. Standardization of platelet-derived microparticle counting using calibrated beads and a cytomics fc500 routine flow cytometer: A first step towards multicenter studies? Journal of thrombosis and haemostasis: JTH. 2009; 7::190197.
    [Google Scholar]
  32. Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. Journal of the American Society of Nephrology: JASN. 2005; 16::33813388.
    [Google Scholar]
  33. Boulanger CM, Amabile N, Guerin AP, Pannier B, Leroyer AS, Mallat CN, Tedgui A, London GM. In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease. Hypertension. 2007; 49::902908.
    [Google Scholar]
  34. Chirinos JA, Heresi GA, Velasquez H, Jy W, Jimenez JJ, Ahn E, Horstman LL, Soriano AO, Zambrano JP, Ahn YS. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. Journal of the American College of Cardiology. 2005; 45::14671471.
    [Google Scholar]
  35. Arteaga RB, Chirinos JA, Soriano AO, Jy W, Horstman L, Jimenez JJ, Mendez A, Ferreira A, de Marchena E, Ahn YS. Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. The American journal of cardiology. 2006; 98::7074.
    [Google Scholar]
  36. Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM, Mao WW, Horstman LL, Ahn YS. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001; 56::13191324.
    [Google Scholar]
  37. Garcia S, Chirinos J, Jimenez J, Del Carpio Munoz FC, Canoniero M, Jy W, Jimenez J, Horstman L, Ahn Y. Phenotypic assessment of endothelial microparticles in patients with heart failure and after heart transplantation: Switch from cell activation to apoptosis. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation. 2005; 24::21842189.
    [Google Scholar]
  38. Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, de Marchena E, Ahn YS. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. American heart journal. 2003; 145::962970.
    [Google Scholar]
  39. Wang JM, Huang YJ, Wang Y, Xu MG, Wang LC, Wang SM, Tao J. Increased circulating cd31+/cd42 −  microparticles are associated with impaired systemic artery elasticity in healthy subjects. American journal of hypertension. 2007; 20::957964.
    [Google Scholar]
  40. Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM, Haubitz M, Hebbel RP, Lip GY, Mancuso P, Sampol J, Solovey A, Dignat-George F. Circulating endothelial cells. Biomarker of vascular disease. Thrombosis and haemostasis. 2005; 93::228235.
    [Google Scholar]
  41. Tan KT, Tayebjee MH, Lynd C, Blann AD, Lip GY. Platelet microparticles and soluble p selectin in peripheral artery disease: Relationship to extent of disease and platelet activation markers. Annals of medicine. 2005; 37::6166.
    [Google Scholar]
  42. Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T, Sakamoto T, Yoshimura M, Jinnouchi H, Ogawa H. Elevated levels of ve-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. Journal of the American College of Cardiology. 2005; 45::16221630.
    [Google Scholar]
  43. Morel O, Pereira B, Averous G, Faure A, Jesel L, Germain P, Grunebaum L, Ohlmann P, Freyssinet JM, Bareiss P, Toti F. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with st-segment elevation myocardial infarction: Role of endothelial damage and leukocyte activation. Atherosclerosis. 2009; 204::636641.
    [Google Scholar]
  44. Dalli J, Norling LV, Renshaw D, Cooper D, Leung KY, Perretti M. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood. 2008; 112::25122519.
    [Google Scholar]
  45. Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferli JA. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Experimental cell research. 2003; 285::243257.
    [Google Scholar]
  46. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension. 2003; 41::211217.
    [Google Scholar]
  47. Nomura S, Inami N, Shouzu A, Omoto S, Kimura Y, Takahashi N, Tanaka A, Urase F, Maeda Y, Ohtani H, Iwasaka T. The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients. Platelets. 2009; 20::1622.
    [Google Scholar]
  48. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, Arnoux D, Charpiot P, Freyssinet JM, Oliver C, Sampol J, Dignat-George F. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002; 51::28402845.
    [Google Scholar]
  49. Casey RG, Joyce M, Roche-Nagle G, Cox D, Bouchier-Hayes DJ. Young male smokers have altered platelets and endothelium that precedes atherosclerosis. The Journal of surgical research. 2004; 116::227233.
    [Google Scholar]
  50. van der Zee PM, Biro E, Ko Y, de Winter RJ, Hack CE, Sturk A, Nieuwland R. P-selectin- and cd63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clinical chemistry. 2006; 52::657664.
    [Google Scholar]
  51. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: Potentially pathogenic agents and diagnostic markers. Transfusion medicine reviews. 2006; 20::126.
    [Google Scholar]
  52. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clinica chimica acta; international journal of clinical chemistry. 2006; 368::3347.
    [Google Scholar]
  53. Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: A potential prognostic marker for atherosclerotic vascular disease. Hypertension. 2006; 48::180186.
    [Google Scholar]
  54. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A. Endothelial microparticles in diseases. Cell and tissue research. 2009; 335::143151.
    [Google Scholar]
  55. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. American journal of physiology. Heart and circulatory physiology. 2004; 286::H1910H1915.
    [Google Scholar]
  56. Densmore JC, Signorino PR, Ou J, Hatoum OA, Rowe JJ, Shi Y, Kaul S, Jones DW, Sabina RE, Pritchard KA Jr, Guice KS, Oldham KT. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock. 2006; 26::464471.
    [Google Scholar]
  57. Leroyer AS, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z, Binder BR, Tedgui A, Boulanger CM. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. Journal of the American College of Cardiology. 2007; 49::772777.
    [Google Scholar]
  58. Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circulation research. 2012; 110::875888.
    [Google Scholar]
  59. Swirski FK, Robbins CS. Neutrophils usher monocytes into sites of inflammation. Circulation research. 2013; 112::744745.
    [Google Scholar]
  60. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013; 339::161166.
    [Google Scholar]
  61. Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. The Journal of clinical investigation. 1998; 102::136144.
    [Google Scholar]
  62. Tushuizen ME, Nieuwland R, Rustemeijer C, Hensgens BE, Sturk A, Heine RJ, Diamant M. Elevated endothelial microparticles following consecutive meals are associated with vascular endothelial dysfunction in type 2 diabetes. Diabetes care. 2007; 30::728730.
    [Google Scholar]
  63. Bernal-Mizrachi L, Jy W, Fierro C, Macdonough R, Velazques HA, Purow J, Jimenez JJ, Horstman LL, Ferreira A, de Marchena E, Ahn YS. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. International journal of cardiology. 2004; 97::439446.
    [Google Scholar]
  64. Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, Sumida H, Matsui K, Jinnouchi H, Ogawa H. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. Journal of the American College of Cardiology. 2009; 54::601608.
    [Google Scholar]
  65. Amabile N, Cheng S, Renard JM, Larson MG, Ghorbani A, McCabe E, Griffin G, Guerin C, Ho JE, Shaw SY, Cohen KS, Vasan RS, Tedgui A, Boulanger CM, Wang TJ. Association of circulating endothelial microparticles with cardiometabolic risk factors in the framingham heart study. European heart journal. 2014; 35::29722979.
    [Google Scholar]
  66. Philippova M, Suter Y, Toggweiler S, Schoenenberger AW, Joshi MB, Kyriakakis E, Erne P, Resink TJ. T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. European heart journal. 2011; 32::760771.
    [Google Scholar]
  67. Min PK, Kim JY, Chung KH, Lee BK, Cho M, Lee DL, Hong SY, Choi EY, Yoon YW, Hong BK, Rim SJ, Kwon HM. Local increase in microparticles from the aspirate of culprit coronary arteries in patients with st-segment elevation myocardial infarction. Atherosclerosis. 2013; 227::323328.
    [Google Scholar]
  68. Zielinska M, Koniarek W, Goch JH, Cebula B, Tybura M, Robak T, Smolewski P. Circulating endothelial microparticles in patients with acute myocardial infarction. Kardiologia polska. 2005; 62:531-542:543544.
    [Google Scholar]
  69. Chironi GN, Simon A, Boulanger CM, Dignat-George F, Hugel B, Megnien JL, Lefort M, Freyssinet JM, Tedgui A. Circulating microparticles may influence early carotid artery remodeling. Journal of hypertension. 2010; 28::789796.
    [Google Scholar]
  70. Mezentsev A, Merks RM, O'Riordan E, Chen J, Mendelev N, Goligorsky MS, Brodsky SV. Endothelial microparticles affect angiogenesis in vitro: Role of oxidative stress. American journal of physiology. Heart and circulatory physiology. 2005; 289::H1106H1114.
    [Google Scholar]
  71. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. British journal of haematology. 2004; 124::376384.
    [Google Scholar]
  72. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovascular research. 2005; 67::3038.
    [Google Scholar]
  73. Soleti R, Benameur T, Porro C, Panaro MA, Andriantsitohaina R, Martinez MC. Microparticles harboring sonic hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis. 2009; 30::580588.
    [Google Scholar]
  74. Mesri M, Altieri DC. Endothelial cell activation by leukocyte microparticles. Journal of immunology. 1998; 161::43824387.
    [Google Scholar]
  75. Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a jnk1 signaling pathway. The Journal of biological chemistry. 1999; 274::2311123118.
    [Google Scholar]
  76. Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000; 101::841843.
    [Google Scholar]
  77. Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H. Prognostic value of endothelial microparticles in patients with heart failure. European journal of heart failure. 2010; 12::12231228.
    [Google Scholar]
  78. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arteriosclerosis, thrombosis, and vascular biology. 2002; 22::101107.
    [Google Scholar]
  79. Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: New players in the field of vascular disease? European journal of clinical investigation. 2004; 34::392401.
    [Google Scholar]
  80. Berezin AE, Kremzer AA, Samura TA, Martovitskaya YV. Circulating endothelial-derived apoptotic microparticles in the patients with ischemic symptomatic chronic heart failure: Relevance of pro-inflammatory activation and outcomes. International cardiovascular research journal. 2014; 8::116123.
    [Google Scholar]
  81. Trzepizur W, Martinez MC, Priou P, Andriantsitohaina R, Gagnadoux F. Microparticles and vascular dysfunction in obstructive sleep apnoea. The European respiratory journal. 2014; 44::207216.
    [Google Scholar]
  82. Priou P, Gagnadoux F, Tesse A, Mastronardi ML, Agouni A, Meslier N, Racineux JL, Martinez MC, Trzepizur W, Andriantsitohaina R. Endothelial dysfunction and circulating microparticles from patients with obstructive sleep apnea. The American journal of pathology. 2010; 177::974983.
    [Google Scholar]
  83. Yun CH, Jung KH, Chu K, Kim SH, Ji KH, Park HK, Kim HC, Lee ST, Lee SK, Roh JK. Increased circulating endothelial microparticles and carotid atherosclerosis in obstructive sleep apnea. Journal of clinical neurology. 2010; 6::8998.
    [Google Scholar]
  84. Kim J, Bhattacharjee R, Kheirandish-Gozal L, Spruyt K, Gozal D. Circulating microparticles in children with sleep disordered breathing. Chest. 2011; 140::408417.
    [Google Scholar]
  85. Maruyama K, Morishita E, Sekiya A, Omote M, Kadono T, Asakura H, Hashimoto M, Kobayashi M, Nakatsumi Y, Takada S, Ohtake S. Plasma levels of platelet-derived microparticles in patients with obstructive sleep apnea syndrome. Journal of atherosclerosis and thrombosis. 2012; 19::98104.
    [Google Scholar]
  86. Tual-Chalot S, Fatoumata K, Priou P, Trzepizur W, Gaceb A, Contreras C, Prieto D, Martinez MC, Gagnadoux F, Andriantsitohaina R. Circulating microparticles from patients with obstructive sleep apnea enhance vascular contraction: Mandatory role of the endothelium. The American journal of pathology. 2012; 181::14731482.
    [Google Scholar]
  87. Amabile N, Guerin AP, Tedgui A, Boulanger CM, London GM. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: A pilot study. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2012; 27::18731880.
    [Google Scholar]
  88. Takahashi T, Kubo H. The role of microparticles in chronic obstructive pulmonary disease. International journal of chronic obstructive pulmonary disease. 2014; 9::303314.
    [Google Scholar]
  89. Takeshita J, Mohler ER, Krishnamoorthy P, Moore J, Rogers WT, Zhang L, Gelfand JM, Mehta NN. Endothelial cell-, platelet-, and monocyte/macrophage-derived microparticles are elevated in psoriasis beyond cardiometabolic risk factors. Journal of the American Heart Association. 2014; 3::e000507.
    [Google Scholar]
  90. Martinez-Sales V, Vila V, Ricart JM, Vaya A, Todoli J, Nunez C, Contreras T, Ballester C, Reganon E. Increased circulating endothelial cells and microparticles in patients with psoriasis. Clinical hemorheology and microcirculation. 2013.
    [Google Scholar]
  91. Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, ten Have K, Eijsman L, Hack CE, Sturk A. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation. 1997; 96::35343541.
    [Google Scholar]
  92. Biro E, Sturk-Maquelin KN, Vogel GM, Meuleman DG, Smit MJ, Hack CE, Sturk A, Nieuwland R. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. Journal of thrombosis and haemostasis: JTH. 2003; 1::25612568.
    [Google Scholar]
  93. Schecter AD, Spirn B, Rossikhina M, Giesen PL, Bogdanov V, Fallon JT, Fisher EA, Schnapp LM, Nemerson Y, Taubman MB. Release of active tissue factor by human arterial smooth muscle cells. Circulation research. 2000; 87::126132.
    [Google Scholar]
  94. Biro E, Nieuwland R, Tak PP, Pronk LM, Schaap MC, Sturk A, Hack CE. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Annals of the rheumatic diseases. 2007; 66::10851092.
    [Google Scholar]
  95. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovascular research. 2003; 59::277287.
    [Google Scholar]
  96. Cerri C, Chimenti D, Conti I, Neri T, Paggiaro P, Celi A. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells. Journal of immunology. 2006; 177::19751980.
    [Google Scholar]
  97. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. The Canadian journal of cardiology. 2010; 26::140145.
    [Google Scholar]
  98. Distler JH, Jungel A, Huber LC, Seemayer CA, Reich CF 3rd, Gay RE, Michel BA, Fontana A, Gay S, Pisetsky DS, Distler O. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102::28922897.
    [Google Scholar]
  99. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in thp-1 and endothelial cells. Atherosclerosis. 2001; 158::277287.
    [Google Scholar]
  100. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: A transcellular delivery system for rantes promoting monocyte recruitment on endothelium. Arteriosclerosis, thrombosis, and vascular biology. 2005; 25::15121518.
    [Google Scholar]
  101. Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood. 2004; 104::25432548.
    [Google Scholar]
  102. Mostefai HA, Agouni A, Carusio N, Mastronardi ML, Heymes C, Henrion D, Andriantsitohaina R, Martinez MC. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. Journal of immunology. 2008; 180::50285035.
    [Google Scholar]
  103. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V. Shedding of the matrix metalloproteinases mmp-2, mmp-9, and mt1-mmp as membrane vesicle-associated components by endothelial cells. The American journal of pathology. 2002; 160::673680.
    [Google Scholar]
  104. Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, Jimenez JJ, Horstman LL, Kett DH, Schein RM, Ahn YS. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Critical care medicine. 2005; 33::25402546.
    [Google Scholar]
  105. Perez-Casal M, Downey C, Cutillas-Moreno B, Zuzel M, Fukudome K, Toh CH. Microparticle-associated endothelial protein c receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica. 2009; 94::387394.
    [Google Scholar]
  106. Benameur T, Tual-Chalot S, Andriantsitohaina R, Martinez MC. Pparalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PloS one. 2010; 5::e12392.
    [Google Scholar]
  107. Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, Soehnlein O, Weber C. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation. 2010; 122::495506.
    [Google Scholar]
  108. Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, Henrion D, Martinez MC, Andriantsitohaina R. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2007; 21::27352741.
    [Google Scholar]
  109. Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martinez MC. Microparticles carrying sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PloS one. 2010; 5::e12688.
    [Google Scholar]
  110. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-micrornas. Nucleic acids research. 2010; 38::215224.
    [Google Scholar]
  111. Cai J, Han Y, Ren H, Chen C, He D, Zhou L, Eisner GM, Asico LD, Jose PA, Zeng C. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of molecular cell biology. 2013; 5::227238.
    [Google Scholar]
  112. Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circulation research. 2014; 114::345353.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.38
Loading
/content/journals/10.5339/gcsp.2015.38
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error