1887
Volume 2014, Issue 4
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Innovations in drug-eluting stents (DES) have substantially reduced rates of in-segment restenosis and early stent thrombosis, improving clinical outcomes following percutaneous coronary interventions (PCI). However a fixed metallic implant in a vessel wall with restored patency and residual disease remains a precipitating factor for sustained local inflammation, in-stent neo-atherosclerosis and impaired vasomotor function increasing the risk for late complications attributed to late or very late stent thrombosis and late target lesion revascularization (TLR) (late catch-up).

The quest for optimal coronary stenting continues by further innovations in stent design and by using biocompatible materials other than cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding, local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics have been recently developed. These devices have been utilized in selected clinical applications so far providing preliminary evidence of safety showing comparable performance with current generation drug-eluting stents (DES).

Herein we provide a comprehensive overview of the current status of these technologies, we elaborate on the potential benefits of transient coronary scaffolds over permanent stents in the context of vascular reparation therapy, and we further focus on the evolving challenges these devices have to overcome to compete with current generation DES. The quest for optimizing percutaneous coronary interventions continues by iterative innovations in device materials beyond cobalt chromium, platinum chromium or stainless steel for engineering coronary implants. Bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals with properties of transient vessel scaffolding; local drug-elution and future restoration of vessel anatomy, physiology and local hemodynamics were recently developed. These devices have been utilized in selected clinical applications providing preliminary evidence of safety showing comparable intermediate term clinical outcomes with current generation drug-eluting stents.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.55
2015-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/4/gcsp.2014.55.html?itemId=/content/journals/10.5339/gcsp.2014.55&mimeType=html&fmt=ahah

References

  1. [1]. Gruntzig   A. . Transluminal dilatation of coronary-artery stenosis. . Lancet   Feb 4 1978; ;1: 8058 : 263 .
    [Google Scholar]
  2. [2]. Serruys   PW., , de Jaegere   P., , Kiemeneij   F., , Macaya   C., , Rutsch   W., , Heyndrickx   G., , Emanuelsson   H., , Marco   J., , Legrand   V., , Materne   P., , Belardi   J., , Sigwart   U., , Colombo   A., , Jacques Goy   J., , van den Heuvel   P., , Delcan   J., , Morel   M-A. . A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. . The New England Journal of Medicine.   Aug 25 1994; ;331: 8 : 489– 495 .
    [Google Scholar]
  3. [3]. Farooq   V., , Gogas   BD., , Serruys   PW. . Restenosis: delineating the numerous causes of drug-eluting stent restenosis. . Circ Cardiovasc Interv.   Apr 1 2011; ;4: 2 : 195– 205 .
    [Google Scholar]
  4. [4]. Joner   M., , Finn   AV., , Farb   A., , Mont   EK., , Kolodgie   FD., , Ladich   E., , Kutys   R., , Skorija   K., , Gold   HK., , Virmani   R. . Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. . J Am Coll Cardiol.   Jul 4 2006; ;48: 1 : 193– 202 .
    [Google Scholar]
  5. [5]. Camenzind   E., , Steg   PG., , Wijns   W. . Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. . Circulation   Mar 20 2007; ;115: 11 : 1440– 1445   discussion 1455 .
    [Google Scholar]
  6. [6]. Palmerini   T., , Biondi-Zoccai   G., , Della Riva   D., , Stettler   C., , Sangiorgi   D., , D'Ascenzo   F., , Kimura   T., , Briguor   C., , Sabatè   M., , Kim   HS., , De Waha   A., , Kedhi   E., , Smits   PC., , Kaiser   C., , Sardella   G., , Marullo   A., , Kirtane   AJ., , Leon   MB., , Stone   GW. . Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. . Lancet   Apr 14 2012; ;379: 9824 : 1393– 1402 .
    [Google Scholar]
  7. [7]. Finn   AV., , Nakazawa   G., , Joner   M., , Kolodgie   FD., , Mont   EK., , Gold   HK., , Virmani   R. . Vascular responses to drug eluting stents: importance of delayed healing. . Arteriosclerosis, Thrombosis, and Vascular Biology.   Jul 2007; ;27: 7 : 1500– 1510 .
    [Google Scholar]
  8. [8]. Raber   L., , Magro   M., , Stefanini   GG., , Kalesan   B., , van Domburg   RT., , Onuma   Y., , Wenaweser   P., , Daemen   J., , Meier   B., , Jüni   P., , Serruys   PW., , Windecker   S. . Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. . Circulation   Mar 6 2012; ;125: 9 : 1110– 1121 .
    [Google Scholar]
  9. [9]. Garg   S., , Serruys   PW. . Coronary stents: looking forward. . Journal of the American College of Cardiology.   Aug 31 2010; ;56: 10 Suppl : S43– 78 .
    [Google Scholar]
  10. [10]. Pendyala   LK., , Yin   X., , Li   J., , Chen   JP., , Chronos   N., , Hou   D. . The first-generation drug-eluting stents and coronary endothelial dysfunction. . JACC. Cardiovascular Interventions.   Dec 2009; ;2: 12 : 1169– 1177 .
    [Google Scholar]
  11. [11]. Obata   JE., , Kitta   Y., , Takano   H., , Kodama   Y., , Nakamura   T., , Mende   A., , Kawabata   K., , Saitoh   Y., , Fujioka   D., , Kobayashi   T., , Yano   T., , Kugiyama   K. . Sirolimus-eluting stent implantation aggravates endothelial vasomotor dysfunction in the infarct-related coronary artery in patients with acute myocardial infarction. . Journal of the American College of Cardiology.   Oct 2 2007; ;50: 14 : 1305– 1309 .
    [Google Scholar]
  12. [12]. Park   SJ., , Kang   SJ., , Virmani   R., , Nakano   M., , Ueda   Y. . In-stent neoatherosclerosis: a final common pathway of late stent failure. . Journal of the American College of Cardiology.   Jun 5 2012; ;59: 23 : 2051– 2057 .
    [Google Scholar]
  13. [13]. Serruys   PW., , Garg   S., , Abizaid   A., , Ormiston   J., , Windecker   S., , Verheye   S., , Dubois   C., , Stewart   J., , Hauptmann   KE., , Schofer   J., , Stangl   K., , Witzenbichler   B., , Wiemer   M., , Barbato   E., , de Vries   T., , den Drijver   AM., , Otake   H., , Meredith   L., , Toyloy   S., , Fitzgerald   P. . A randomised comparison of novolimus-eluting and zotarolimus-eluting coronary stents: 9-month follow-up results of the EXCELLA II study. . Eurolntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.   Jun 2010; ;6: 2 : 195– 205 .
    [Google Scholar]
  14. [14]. Windecker   S., , Serruys   PW., , Wandel   S., , Buszman   P., , Trznadel   S., , Linke   A., , Lenk   K., , Ischinger   T., , Klauss   V., , Eberli   F., , Corti   R., , Wijns   W., , Morice   MC., , di Mario   C., , Davies   S., , van Geuns   RJ., , Eerdmans   P., , van Es   GA., , Meier   B., , Jüni   P. . Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. . Lancet   Sep 27 2008; ;372: 9644 : 1163– 1173 .
    [Google Scholar]
  15. [15]. Serruys   PW., , Farooq   V., , Kalesan   B., , de Vries   T., , Buszman   P., , Linke   A., , Ischinger   T., , Klauss   V., , Eberli   F., , Wijns   W., , Morice   MC., , Di Mario   C., , Corti   R., , Antoni   D., , Sohn   HY., , Eerdmans   P., , Rademaker-Havinga   T., , van Es   GA., , Meier   B., , Jüni   P., , Windecker   S. . Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) randomized, noninferiority trial. . JACC. Cardiovascular Interventions.   Aug 2013; ;6: 8 : 777– 789 .
    [Google Scholar]
  16. [16]. Gogas   BD., , McDaniel   M., , Samady   H., , King   SB 3rd. . Novel drug-eluting stents for coronary revascularization. . Trends in Cardiovascular Medicine.   Oct 2014; ;24: 7 : 305– 313 .
    [Google Scholar]
  17. [17]. Wykrzykowska   JJ., , Onuma   Y., , Serruys   PW. . Vascular restoration therapy: the fourth revolution in interventional cardiology and the ultimate “rosy” prophecy. . EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.   Dec 15 2009; ;5: Suppl F : F7– 8 .
    [Google Scholar]
  18. [18]. van der Giessen   WJ., , Lincoff   AM., , Schwartz   RS., , van Beusekom   HM., , Serruys   PW., , Holmes   DR Jr., , Ellis   SG., , Topol   EJ. . Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. . Circulation   Oct 1 1996; ;94: 7 : 1690– 1697 .
    [Google Scholar]
  19. [19]. Koskinas   KC., , Chatzizisis   YS., , Antoniadis   AP., , Giannoglou   GD. . Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. . Journal of the American College of Cardiology.   Apr 10 2012; ;59: 15 : 1337– 1349 .
    [Google Scholar]
  20. [20]. Thury   A., , Wentzel   JJ., , Vinke   RV., , Gijsen   FJ., , Schuurbiers   JC., , Krams   R., , de Feyter   PJ., , Serruys   PW., , Slager   CJ. . Images in cardiovascular medicine. Focal in-stent restenosis near step-up: roles of low and oscillating shear stress?.   Circulation   Jun 11 2002; ;105: 23 : e185– 187 .
    [Google Scholar]
  21. [21]. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery . Quality of life in patients randomly assigned to treatment groups. . Circulation   Nov 1983; ;68: 5 : 951– 960 .
    [Google Scholar]
  22. [22]. Van der Heiden   K., , Gijsen   FJ., , Narracott   A., , Hsiao   S., , Halliday   I., , Gunn   J., , Wentzel   JJ., , Evans   PC. . The effects of stenting on shear stress: relevance to endothelial injury and repair. . Cardiovascular Research.   Jul 15 2013; ;99: 2 : 269– 275 .
    [Google Scholar]
  23. [23]. Brugaletta   S., , Heo   JH., , Garcia-Garcia   HM., , Farooq   V., , van Geuns   RJ., , de Bruyne   B., , Dudek   D., , Smits   PC., , Koolen   J., , McClean   D., , Dorange   C., , Veldhof   S., , Rapoza   R., , Onuma   Y., , Bruining   N., , Ormiston   JA., , Serruys   PW. . Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy?.   European Heart Journal.   Jun 2012; ;33: 11 : 1325– 1333 .
    [Google Scholar]
  24. [24]. Hahn   C., , Schwartz   MA. . Mechanotransduction in vascular physiology and atherogenesis. . Nature Reviews. Molecular Cell Biology.   Jan 2009; ;10: 1 : 53– 62 .
    [Google Scholar]
  25. [25]. Sarno   G., , Lagerqvist   B., , Frobert   O., , Nilsson   J., , Olivecrona   G., , Omerovic   E., , Saleh   N., , Venetzanos   D., , James   S. . Lower risk of stent thrombosis and restenosis with unrestricted use of ‘new-generation’ drug-eluting stents: a report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR). . Eur Heart J.   Mar 2012; ;33: 5 : 606– 613 .
    [Google Scholar]
  26. [26]. Brugaletta   S., , Radu   MD., , Garcia-Garcia   HM., , Heo   JH., , Farooq   V., , Girasis   C., , van Geuns   RJ., , Thuesen   L., , McClean   D., , Chevalier   B., , Windecker   S., , Koolen   J., , Rapoza   R., , Miquel-Hebert   K., , Ormiston   J., , Serruys   PW. . Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque?.   Atherosclerosis   Mar 2012; ;221: 1 : 106– 112 .
    [Google Scholar]
  27. [27]. Oberhauser   JP., , Hossainy   S., , Rapoza   RJ. . Design principles and performance of bioresorbable polymeric vascular scaffolds. . EuroIntervention   Dec 15 2009; ;5: Suppl F : F15– 22 .
    [Google Scholar]
  28. [28]. Gopferich   A. . Mechanisms of polymer degradation and erosion. . Biomaterials   Jan 1996; ;17: 2 : 103– 114 .
    [Google Scholar]
  29. [29]. Vorpahl   M., , Finn   AV., , Nakano   M., , Virmani   R. . The bioabsorption process: tissue and cellular mechanisms and outcomes. . EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.   Dec 15 2009; ;5: Suppl F : F28– 35 .
    [Google Scholar]
  30. [30]. Gogas   BD., , Farooq   V., , Onuma   Y., , Serruys   PW. . The ABSORB bioresorbable vascular scaffold: an evolution or revolution in interventional cardiology?.   Hellenic J Cardiol.   Jul-Aug 2012; ;53: 4 : 301– 309 .
    [Google Scholar]
  31. [31]. Onuma   Y., , Serruys   PW., , Perkins   LE., , Okamura   T., , Gonzalo   N., , García-García   HM., , Regar   E., , Kamberi   M., , Powers   JC., , Rapoza   R., , van Beusekom   H., , van der Giessen   W., , Virmani   R. . Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. . Circulation   Nov 30 2010; ;122: 22 : 2288– 2300 .
    [Google Scholar]
  32. [32]. Gogas   BD., , Radu   M., , Onuma   Y., , Perkins   L., , Powers   JC., , Gomez-Lara   J., , Farooq   V., , Garcia-Garcia   HM., , Diletti   R., , Rapoza   R., , Virmani   R., , Serruys   PW. . Evaluation with in vivo optical coherence tomography and histology of the vascular effects of the everolimus-eluting bioresorbable vascular scaffold at two years following implantation in a healthy porcine coronary artery model: implications of pilot results for future pre-clinical studies. . Int J Cardiovasc Imaging.   Mar 2012; ;28: 3 : 499– 511 .
    [Google Scholar]
  33. [33]. Tamai   H., , Igaki   K., , Kyo   E., , Kosuga   K., , Kawashima   A., , Matsui   S., , Komori   H., , Tsuji   T., , Motohara   S., , Uehata   H. . Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. . Circulation   Jul 25 2000; ;102: 4 : 399– 404 .
    [Google Scholar]
  34. [34]. Nishio   S., , Kosuga   K., , Igaki   K., , Okada   M., , Kyo   E., , Tsuji   T., , Takeuchi   E., , Inuzuka   Y., , Takeda   S., , Hata   T., , Takeuchi   Y., , Kawada   Y., , Harita   T., , Seki   J., , Akamatsu   S., , Hasegawa   S., , Bruining   N., , Brugaletta   S., , de Winter   S., , Muramatsu   T., , Onuma   Y., , Serruys   PW., , Ikeguchi   S. . Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. . Circulation   May 15 2012; ;125: 19 : 2343– 2353 .
    [Google Scholar]
  35. [35]. Heublein   B., , Rohde   R., , Kaese   V., , Niemeyer   M., , Hartung   W., , Haverich   A. . Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?.   Heart   Jun 2003; ;89: 6 : 651– 656 .
    [Google Scholar]
  36. [36]. Erbel   R., , Di Mario   C., , Bartunek   J., , Bonnier   J., , de Bruyne   B., , Eberli   FR., , Erne   P., , Haude   M., , Heublein   B., , Horrigan   M., , Ilsley   C., , Böse   D., , Koolen   J., , Lüscher   TF., , Weissman   N., , Waksman   R. . Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. . Lancet   Jun 2 2007; ;369: 9576 : 1869– 1875 .
    [Google Scholar]
  37. [37]. Haude   M., , Erbel   R., , Erne   P., , Verheye   S., , Degen   H., , Böse   D., , Vermeersch   P., , Wijnbergen   I., , Weissman   N., , Prati   F., , Waksman   R., , Koolen   J. . Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. . Lancet   Mar 9 2013; ;381: 9869 : 836– 844 .
    [Google Scholar]
  38. [38]. Grube   E., , Sonoda   S., , Ikeno   F., , Honda   Y., , Kar   S., , Chan   C., , Gerckens   U., , Lansky   AJ., , Fitzgerald   PJ. . Six- and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer. . Circulation   May 11 2004; ;109: 18 : 2168– 2171 .
    [Google Scholar]
  39. [39]. Ormiston   JA., , Serruys   PW., , Regar   E., , Dudek   D., , Thuesen   L., , Webster   MW., , Onuma   Y., , Garcia-Garcia   HM., , McGreevy   R., , Veldhof   S. . A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. . Lancet   Mar 15 2008; ;371: 9616 : 899– 907 .
    [Google Scholar]
  40. [40]. Serruys   PW., , Ormiston   JA., , Onuma   Y., , Regar   E., , Gonzalo   N., , Garcia-Garcia   HM., , Nieman   K., , Bruining   N., , Dorange   C., , Miquel-Hébert   K., , Veldhof   S., , Webster   M., , Thuesen   L., , Dudek   D. . A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. . Lancet.   Mar 14 2009; ;373: 9667 : 897– 910 .
    [Google Scholar]
  41. [41]. Ormiston   JA., , Serruys   PW., , Onuma   Y., , van Geuns   RJ., , de Bruyne   B., , Dudek   D., , Thuesen   L., , Smits   PC., , Chevalier   B., , McClean   D., , Koolen   J., , Windecker   S., , Whitbourn   R., , Meredith   I., , Dorange   C., , Veldhof   S., , Hebert   KM., , Rapoza   R., , Garcia-Garcia   HM. . First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. . Circ Cardiovasc Interv.   Oct 2012; ;5: 5 : 620– 632 .
    [Google Scholar]
  42. [42]. Serruys   PW., , Onuma   Y., , Garcia-Garcia   HM., , Muramatsu   T., , van Geuns   RJ., , de Bruyne   B., , Dudek   D., , Thuesen   L., , Smits   PC., , Chevalier   B., , McClean   D., , Koolen   J., , Windecker   S., , Whitbourn   R., , Meredith   I., , Dorange   C., , Veldhof   S., , Hebert   KM., , Rapoza   R., , Ormiston   JA. . Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. . EuroIntervention   Dec 3 2013; .
    [Google Scholar]
  43. [43]. Gomez-Lara   J., , Garcia-Garcia   HM., , Onuma   Y., , Garg   S., , Regar   E., , De Bruyne   B., , Windecker   S., , McClean   D., , Thuesen   L., , Dudek   D., , Koolen   J., , Whitbourn   R., , Smits   PC., , Chevalier   B., , Dorange   C., , Veldhof   S., , Morel   MA., , de Vries   T., , Ormiston   JA., , Serruys   PW. . A comparison of the conformability of everolimus-eluting bioresorbable vascular scaffolds to metal platform coronary stents. . JACC. Cardiovascular Interventions.   Nov 2010; ;3: 11 : 1190– 1198 .
    [Google Scholar]
  44. [44]. Gogas   BD., , Bourantas   CV., , Garcia-Garcia   HM., , Onuma   Y., , Muramatsu   T., , Farooq   V., , Diletti   R., , van Geuns   RJ., , De Bruyne   B., , Chevalier   B., , Thuesen   L., , Smits   PC., , Dudek   D., , Koolen   J., , Windecker   S., , Whitbourn   R., , McClean   D., , Dorange   C., , Miquel-Hebert   K., , Veldhof   S., , Rapoza   R., , Ormiston   JA., , Serruys   PW. . The edge vascular response following implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold and the XIENCE V metallic everolimus-eluting stent. First serial follow-up assessment at six months and two years: insights from the first-in-man ABSORB Cohort B and SPIRIT II trials. . Eurolntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.   Oct 22 2013; ;9: 6 : 709– 720 .
    [Google Scholar]
  45. [45]. Gogas   BD., , Garcia-Garcia   HM., , Onuma   Y., , Muramatsu   T., , Farooq   V., , Bourantas   CV., , Serruys   PW. . Edge vascular response after percutaneous coronary intervention: an intracoronary ultrasound and optical coherence tomography appraisal: from radioactive platforms to first- and second-generation drug-eluting stents and bioresorbable scaffolds. . JACC. Cardiovascular Interventions.   Mar 2013; ;6: 3 : 211– 221 .
    [Google Scholar]
  46. [46]. Verheye   S., , Ormiston   JA., , Stewart   J., , Webster   M., , Sanidas   E., , Costa   R., , Costa   JR Jr., , Chamie   D., , Abizaid   AS., , Pinto   I., , Morrison   L., , Toyloy   S., , Bhat   V., , Yan   J., , Abizaid   A. . A Next-Generation Bioresorbable Coronary Scaffold System-From Bench to First Clinical Evaluation: Six- and 12-Month Clinical and Multimodality Imaging Results. . JACC Cardiovasc Interv.   2014 Jan; ;7: 1 : 89– 99 .
    [Google Scholar]
  47. [47]. Jabara   R., , Chronos   N., , Robinson   K. . Novel bioabsorbable salicylate-based polymer as a drug-eluting stent coating. . Catheter Cardiovasc Interv.   Aug 1 2008; ;72: 2 : 186– 194 .
    [Google Scholar]
  48. [48]. Jabara   R., , Pendyala   L., , Geva   S., , Chen   J., , Chronos   N., , Robinson   K. . Novel fully bioabsorbable salicylate-based sirolimus-eluting stent. . EuroIntervention   Dec 15 2009; ;5: Suppl F : F58– 64 .
    [Google Scholar]
  49. [49]. Zeltinger   J. . Bio-Mechanical properties & ABC of Tyrosine polycarbonate. . PCR FOCUS GROUP 2012. Oral presentation .
  50. [50]. Lafont   A., , Durand   E. . A.R.T.: concept of a bioresorbable stent without drug elution. . EuroIntervention   Dec 15 2009; ;5: Suppl F : F83– 87 .
    [Google Scholar]
  51. [51]. Waksman   R., , Prati   F., , Bruining   N., , Haude   M., , Böse   D., , Kitabata   H., , Erne   P., , Verheye   S., , Degen   H., , Vermeersch   P., , Di Vito   L., , Koolen   J., , Erbel   R. . Serial observation of drug-eluting absorbable metal scaffold: multi-imaging modality assessment. . Circ Cardiovasc Interv.   Dec 1 2013; ;6: 6 : 644– 653 .
    [Google Scholar]
  52. [52]. Serruys   PW., , Onuma   Y., , Dudek   D., , Smits   PC., , Koolen   J., , Chevalier   B., , de Bruyne   B., , Thuesen   L., , McClean   D., , van Geuns   RJ., , Windecker   S., , Whitbourn   R., , Meredith   I., , Dorange   C., , Veldhof   S., , Hebert   KM., , Sudhir   K., , Garcia-Garcia   HM., , Ormiston   JA. . Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. . Journal of the American College of Cardiology.   Oct 4 2011; ;58: 15 : 1578– 1588 .
    [Google Scholar]
  53. [53]. Gogas   BD., , Yang   B., , Passerini   T., , Veneziani   A., , Piccinelli   M., , Esporito   G., , Rasoul-Arzrumly   E., , Awad   M., , Mekonnen   G., , Hung   OY., , Holloway   B., , McDaniel   M., , Giddens   DP., , King   SB III., , Samady   H. . Computational Fluid Dynamics Applied to Virtually Deployed Drug-Eluting Coronary Bioresorbable Scaffolds. Clinical Translations Derived from a Proof-of-Concept. . GCSP   Dec 31 2014; ;2014: 4 : 56 .
    [Google Scholar]
  54. [54]. Nieman   K., , Serruys   PW., , Onuma   Y., , van Geuns   R-J., , Garcia-Garcia   HM., , de Bruyne   B., , Thuesen   L., , Smits   PC., , Koolen   JJ., , McClean   D., , Chevalier   B., , Meredith   I., , Ormiston   J. . Multislice computed tomography angiography for noninvasive assessment of the 18-month performance of a novel radiolucent bioresorbable vascular scaffolding device: the ABSORB trial (a clinical evaluation of the bioabsorbable everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions). . J Am Coll Cardiol.   Nov 5 2013; ;62: 19 : 1813– 1814 .
    [Google Scholar]
  55. [55]. Kastrati   A., , Mehilli   J., , Dirschinger   J., , Dotzer   F., , Schühlen   H., , Neumann   FJ., , Fleckenstein   M., , Pfafferott   C., , Seyfarth   M., , Schömig   A. . Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. . Circulation   Jun 12 2001; ;103: 23 : 2816– 2821 .
    [Google Scholar]
  56. [56]. Pache   J., , Kastrati   A., , Mehilli   J., , Schühlen   H., , Dotzer   F., , Hausleiter   J., , Fleckenstein   M., , Neumann   FJ., , Sattelberger   U., , Schmitt   C., , Müller   M., , Dirschinger   J., , Schömig   A. . Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. . J Am Coll Cardiol.   Apr 16 2003; ;41: 8 : 1283– 1288 .
    [Google Scholar]
  57. [57]. Muramatsu   T., , Onuma   Y., , Garcia-Garcia   HM., , Farooq   V., , Bourantas   CV., , Morel   MA., , Li   X., , Veldhof   S., , Bartorelli   A., , Whitbourn   R., , Abizaid   A., , Serruys   PW. . Incidence and short-term clinical outcomes of small side branch occlusion after implantation of an everolimus-eluting bioresorbable vascular scaffold: an interim report of 435 patients in the ABSORB-EXTEND single-arm trial in comparison with an everolimus-eluting metallic stent in the SPIRIT first and II trials. . JACC Cardiovasc Interv.   Mar 2013; ;6: 3 : 247– 257 .
    [Google Scholar]
  58. [58]. Farooq   V., , Serruys   PW., , Heo   JH., , Gogas   BD., , Onuma   Y., , Perkins   LE., , Diletti   R., , Radu   MD., , Räber   L., , Bourantas   CV., , Zhang   Y., , van Remortel   E., , Pawar   R., , Rapoza   RJ., , Powers   JC., , van Beusekom   HM., , Garcìa-Garcìa   HM., , Virmani   R. . Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: the potential implications for clinical practice. . JACC. Cardiovascular Interventions.   May 2013; ;6: 5 : 523– 532 .
    [Google Scholar]
  59. [59]. Ormiston   JA., , De Vroey   F., , Serruys   PW., , Webster   MW. . Bioresorbable polymeric vascular scaffolds: a cautionary tale. . Circ Cardiovasc Interv.   Oct 1 2011; ;4: 5 : 535– 538 .
    [Google Scholar]
  60. [60]. Farooq   V., , Gomez-Lara   J., , Brugaletta   S., , Gogas   BD., , Garcìa-Garcìa   HM., , Onuma   Y., , van Geuns   RJ., , Bartorelli   A., , Whitbourn   R., , Abizaid   A., , Serruys   PW. . Proximal and distal maximal luminal diameters as a guide to appropriate deployment of the ABSORB everolimus-eluting bioresorbable vascular scaffold: a sub-study of the ABSORB Cohort B and the on-going ABSORB EXTEND Single Arm Study. . Catheter Cardiovasc Interv.   May 1 2012; ;79: 6 : 880– 888 .
    [Google Scholar]
  61. [61]. Ryan   J., , Cohen   DJ. . Are drug-eluting stents cost-effective? It depends on whom you ask. . Circulation   Oct 17 2006; ;114: 16 : 1736– 1743 , discussion 1744 .
    [Google Scholar]
  62. [62]. Schafer   PE., , Sacrinty   MT., , Cohen   DJ., , Kutcher   MA., , Gandhi   SK., , Santos   RM., , Little   WC., , Applegate   RJ. . Cost-effectiveness of drug-eluting stents versus bare metal stents in clinical practice. . Circ Cardiovasc Qual Outcomes.   Jul 2011; ;4: 4 : 408– 415 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.55
Loading
/content/journals/10.5339/gcsp.2014.55
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error