1887
Volume 2014, Issue 4
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Prostacyclin is a powerful cardioprotective hormone released by the endothelium of all blood vessels. Prostacyclin exists in equilibrium with other vasoactive hormones and a disturbance in the balance of these factors leads to cardiovascular disease including pulmonary arterial hypertension. Since it's discovery in the 1970s concerted efforts have been made to make the best therapeutic utility of prostacyclin, particularly in the treatment of pulmonary arterial hypertension. This has centred on working out the detailed pharmacology of prostacyclin and then synthesising new molecules based on its structure that are more stable or more easily tolerated. In addition, newer molecules have been developed that are not analogues of prostacyclin but that target the receptors that prostacyclin activates. Prostacyclin and related drugs have without doubt revolutionised the treatment and management of pulmonary arterial hypertension but are seriously limited by side effects within the systemic circulation. With the dawn of nanomedicine and targeted drug or stem cell delivery systems it will, in the very near future, be possible to make new formulations of prostacyclin that can evade the systemic circulation allowing for safe delivery to the pulmonary vessels. In this way, the full therapeutic potential of prostacyclin can be realised opening the possibility that pulmonary arterial hypertension will become, if not curable, a chronic manageable disease that is no longer fatal. This review discusses these and other issues relating to prostacyclin and its use in pulmonary arterial hypertension.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.53
2015-03-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/4/gcsp.2014.53.html?itemId=/content/journals/10.5339/gcsp.2014.53&mimeType=html&fmt=ahah

References

  1. [1]. Moncada   S., , Gryglewski   R., , Bunting   S., , Vane   JR. . An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. . Nature.   1976; ;263: : 663– 665 .
    [Google Scholar]
  2. [2]. Bunting   S., , Gryglewski   R., , Moncada   S., , Vane   JR. . Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin x) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. . Prostaglandins.   1976; ;12: : 897– 913 .
    [Google Scholar]
  3. [3]. Whittaker   N., , Bunting   S., , Salmon   J., , Moncada   S., , Vane   JR., , Johnson   RA., , Morton   DR., , Kinner   JH., , Gorman   RR., , McGuire   JC., , Sun   FF. . The chemical structure of prostaglandin x (prostacyclin). . Prostaglandins.   1976; ;12: : 915– 928 .
    [Google Scholar]
  4. [4]. Moncada   S., , Herman   AG., , Higgs   EA., , Vane   JR. . Differential formation of prostacyclin (pgx or pgi2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. . Thromb Res.   1977; ;11: : 323– 344 .
    [Google Scholar]
  5. [5]. Smith   WL. . The eicosanoids and their biochemical mechanisms of action. . Biochem J.   1989; ;259: : 315– 324 .
    [Google Scholar]
  6. [6]. Christman   BW., , McPherson   CD., , Newman   JH., , King   GA., , Bernard   GR., , Groves   BM., , Loyd   JE. . An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. . N Engl J Med.   1992; ;327: : 70– 75 .
    [Google Scholar]
  7. [7]. Tuder   RM., , Cool   CD., , Geraci   MW., , Wang   J., , Abman   SH., , Wright   L., , Badesch   D., , Voelkel   NF. . Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. . Am J Respir Crit Care Med.   1999; ;159: : 1925– 1932 .
    [Google Scholar]
  8. [8]. Gubrij   IB., , Martin   SR., , Pangle   AK., , Kurten   R., , Johnson   LG. . Attenuation of monocrotaline-induced pulmonary hypertension by luminal adeno-associated virus serotype 9 gene transfer of prostacyclin synthase. . Hum Gene Ther.   2014; ;25: : 498– 505 .
    [Google Scholar]
  9. [9]. Nagaya   N., , Yokoyama   C., , Kyotani   S., , Shimonishi   M., , Morishita   R., , Uematsu   M., , Nishikimi   T., , Nakanishi   N., , Ogihara   T., , Yamagishi   M., , Miyatake   K., , Kaneda   Y., , Tanabe   T. . Gene transfer of human prostacyclin synthase ameliorates monocrotaline-induced pulmonary hypertension in rats. . Circulation.   2000; ;102: : 2005– 2010 .
    [Google Scholar]
  10. [10]. Geraci   MW., , Gao   B., , Shepherd   DC., , Moore   MD., , Westcott   JY., , Fagan   KA., , Alger   LA., , Tuder   RM., , Voelkel   NF. . Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. . J Clin Invest.   1999; ;103: : 1509– 1515 .
    [Google Scholar]
  11. [11]. Zhou   L., , Chen   Z., , Vanderslice   P., , So   SP., , Ruan   KH., , Willerson   JT., , Dixon   RA. . Endothelial-like progenitor cells engineered to produce prostacyclin rescue monocrotaline-induced pulmonary arterial hypertension and provide right ventricle benefits. . Circulation.   2013; ;128: : 982– 994 .
    [Google Scholar]
  12. [12]. Takemiya   K., , Kai   H., , Yasukawa   H., , Tahara   N., , Kato   S., , Imaizumi   T. . Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. . Basic Res Cardiol.   2010; ;105: : 409– 417 .
    [Google Scholar]
  13. [13]. Giacomini   KM., , Huang   SM., , Tweedie   DJ., , Benet   LZ., , Brouwer   KL., , Chu   X., , Dahlin   A., , Evers   R., , Fischer   V., , Hillgren   KM., , Hoffmaster   KA., , Ishikawa   T., , Keppler   D., , Kim   RB., , Lee   CA., , Niemi   M., , Polli   JW., , Sugiyama   Y., , Swaan   PW., , Ware   JA., , Wright   SH., , Yee   SW., , Zamek-Gliszczynski   MJ., , Zhang   L. . Membrane transporters in drug development. . Nat Rev Drug Discov.   2010; ;9: : 215– 236 .
    [Google Scholar]
  14. [14]. Warner   TD., , Mitchell   JA. . Nonsteroidal antiinflammatory drugs inhibiting prostanoid efflux: As easy as abc?.   Proc Natl Acad Sci U S A.   2003; ;100: : 9108– 9110 .
    [Google Scholar]
  15. [15]. Hara   Y., , Sassi   Y., , Guibert   C., , Gambaryan   N., , Dorfmuller   P., , Eddahibi   S., , Lompre   AM., , Humbert   M., , Hulot   JS. . Inhibition of mrp4 prevents and reverses pulmonary hypertension in mice. . J Clin Invest.   2011; ;121: : 2888– 2897 .
    [Google Scholar]
  16. [16]. Hewer   RC., , Sala-Newby   GB., , Wu   YJ., , Newby   AC., , Bond   M. . Pka and epac synergistically inhibit smooth muscle cell proliferation. . Journal of Molecular and Cellular Cardiology.   2011; ;50: : 87– 98 .
    [Google Scholar]
  17. [17]. Murray RS   F., , Kwon   O., , Li   X., , Remillard   CV., , Thistlethwaite   PA., , Yuan   JX., , Insel   PA. . http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2009.179.1MeetingAbstracts.A1804 RM. Decreased expression and activity of epac (exchange protein directly activated by camp) in pulmonary arterial hypertension. http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2009.179.1MeetingAbstracts.A1804 .
  18. [18]. Wilson   SM., , Sheddan   NA., , Newton   R., , Giembycz   MA. . Evidence for a second receptor for prostacyclin on human airway epithelial cells that mediates inhibition of cxcl9 and cxcl10 release. . Molecular Pharmacology.   2011; ;79: : 586– 595 .
    [Google Scholar]
  19. [19]. Giguere   V., , Gallant   MA., , de Brum-Fernandes   AJ., , Parent   JL. . Role of extracellular cysteine residues in dimerization/oligomerization of the human prostacyclin receptor. . European Journal of Pharmacology.   2004; ;494: : 11– 22 .
    [Google Scholar]
  20. [20]. Wilson   SJ., , Roche   AM., , Kostetskaia   E., , Smyth   EM. . Dimerization of the human receptors for prostacyclin and thromboxane facilitates thromboxane receptor-mediated camp generation. . The Journal of Biological Chemistry.   2004; ;279: : 53036– 53047 .
    [Google Scholar]
  21. [21]. Smyth   EM., , Li   WH., , FitzGerald   GA. . Phosphorylation of the prostacyclin receptor during homologous desensitization. A critical role for protein kinase c. . The Journal of Biological Chemistry . 1998; ;273: : 23258– 23266 .
    [Google Scholar]
  22. [22]. Smyth   EM., , Austin   SC., , Reilly   MP., , FitzGerald   GA. . Internalization and sequestration of the human prostacyclin receptor. . The Journal of Biological Chemistry.   2000; ;275: : 32037– 32045 .
    [Google Scholar]
  23. [23]. Barst   RJ., , Rubin   LJ., , Long   WA., , McGoon   MD., , Rich   S., , Badesch   DB., , Groves   BM., , Tapson   VF., , Bourge   RC., , Brundage   BH., , Koerner   SK., , Langleben   D., , Keller   CA., , Murali   S., , Uretsky   BF., , Clayton   LM., , Jobsis   MM., , Blackburn   SD., , Shortino   D., , Crow   JW. . Primary pulmonary hypertension study G. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. . N Engl J Med.   1996; ;334: : 296– 301 .
    [Google Scholar]
  24. [24]. McLaughlin   VV., , Genthner   DE., , Panella   MM., , Rich   S. . Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. . N Engl J Med.   1998; ;338: : 273– 277 .
    [Google Scholar]
  25. [25]. Archer   SL., , Mike   D., , Crow   J., , Long   W., , Weir   EK. . A placebo-controlled trial of prostacyclin in acute respiratory failure in copd. . Chest.   1996; ;109: : 750– 755 .
    [Google Scholar]
  26. [26]. Belvisi   MG., , Mitchell   JA. . Targeting ppar receptors in the airway for the treatment of inflammatory lung disease. . Br J Pharmacol.   2009; ;158: : 994– 1003 .
    [Google Scholar]
  27. [27]. Ali   FY., , Davidson   SJ., , Moraes   LA., , Traves   SL., , Paul-Clark   M., , Bishop-Bailey   D., , Warner   TD., , Mitchell   JA. . Role of nuclear receptor signaling in platelets: Antithrombotic effects of pparbeta. . Faseb J.   2006; ;20: : 326– 328 .
    [Google Scholar]
  28. [28]. Ali   FY., , Egan   K., , FitzGerald   GA., , Desvergne   B., , Wahli   W., , Bishop-Bailey   D., , Warner   TD., , Mitchell   JA. . Role of prostacyclin versus peroxisome proliferator-activated receptor beta receptors in prostacyclin sensing by lung fibroblasts. . Am J Respir Cell Mol Biol.   2006; ;34: : 242– 246 .
    [Google Scholar]
  29. [29]. Harrington   LS., , Moreno   L., , Reed   A., , Wort   SJ., , Desvergne   B., , Garland   C., , Zhao   L., , Mitchell   JA. . The pparbeta/delta agonist gw0742 relaxes pulmonary vessels and limits right heart hypertrophy in rats with hypoxia-induced pulmonary hypertension. . PLoS One.   2010; ;5: : e9526 .
    [Google Scholar]
  30. [30]. Li   Y., , Connolly   M., , Nagaraj   C., , Tang   B., , Balint   Z., , Popper   H., , Smolle-Juettner   FM., , Lindenmann   J., , Kwapiszewska   G., , Aaronson   PI., , Wohlkoenig   C., , Leithner   K., , Olschewski   H., , Olschewski   A. . Peroxisome proliferator-activated receptor-beta/delta, the acute signaling factor in prostacyclin-induced pulmonary vasodilation. . Am J Respir Cell Mol Biol.   2012; ;46: : 372– 379 .
    [Google Scholar]
  31. [31]. Kojonazarov   B., , Luitel   H., , Sydykov   A., , Dahal   BK., , Paul-Clark   MJ., , Bonvini   S., , Reed   A., , Schermuly   RT., , Mitchell   JA. . The peroxisome proliferator-activated receptor beta/delta agonist gw0742 has direct protective effects on right heart hypertrophy. . Pulm Circ.   2013; ;3: : 926– 935 .
    [Google Scholar]
  32. [32]. Liu   J., , Wang   P., , Luo   J., , Huang   Y., , He   L., , Yang   H., , Li   Q., , Wu   S., , Zhelyabovska   O., , Yang   Q. . Peroxisome proliferator-activated receptor beta/delta activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. . Hypertension.   2011; ;57: : 223– 230 .
    [Google Scholar]
  33. [33]. Simonson   TS., , Yang   Y., , Huff   CD., , Yun   H., , Qin   G., , Witherspoon   DJ., , Bai   Z., , Lorenzo   FR., , Xing   J., , Jorde   LB., , Prchal   JT., , Ge   R. . Genetic evidence for high-altitude adaptation in tibet. . Science.   2010; ;329: : 72– 75 .
    [Google Scholar]
  34. [34]. Galaup   A., , Gomez   E., , Souktani   R., , Durand   M., , Cazes   A., , Monnot   C., , Teillon   J., , Le Jan   S., , Bouleti   C., , Briois   G., , Philippe   J., , Pons   S., , Martin   V., , Assaly   R., , Bonnin   P., , Ratajczak   P., , Janin   A., , Thurston   G., , Valenzuela   DM., , Murphy   AJ., , Yancopoulos   GD., , Tissier   R., , Berdeaux   A., , Ghaleh   B., , Germain   S. . Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4. . Circulation.   2012; ;125: : 140– 149 .
    [Google Scholar]
  35. [35]. Sprecher   DL., , Massien   C., , Pearce   G., , Billin   AN., , Perlstein   I., , Willson   TM., , Hassall   DG., , Ancellin   N., , Patterson   SD., , Lobe   DC., , Johnson   TG. . Triglyceride: High-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. . Arterioscler Thromb Vasc Biol.   2007; ;27: : 359– 365 .
    [Google Scholar]
  36. [36]. Geiger   LE., , Dunsford   WS., , Lewis   DJ., , Brennan   C., , Liu   KC., , Newsholme   SJ. . Rat carcinogenicity study with gw501516, a ppar delta agonist. . The Toxicologist , 2009; ;108: (1) : 895 (abstract)
    [Google Scholar]
  37. [37]. Newsholme   SJ., , Dunsford   WS., , Brodie   T., , Brennan   C., , Brown   M., , Geiger   LE. . Mouse carcinogenicity study with gw501516, a ppar delta agonist. . The Toxicologist , 2009; ;108: 1 : 896 abstract
    [Google Scholar]
  38. [38]. Mitchell   JA., , Warner   TD. . Cox isoforms in the cardiovascular system: Understanding the activities of non-steroidal anti-inflammatory drugs. . Nat Rev Drug Discov.   2006; ;5: : 75– 86 .
    [Google Scholar]
  39. [39]. Kirkby   NS., , Lundberg   MH., , Harrington   LS., , Leadbeater   PD., , Milne   GL., , Potter   CM., , Al-Yamani   M., , Adeyemi   O., , Warner   TD., , Mitchell   JA. . Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system. . Proc Natl Acad Sci U S A.   2012; ;109: : 17597– 17602 .
    [Google Scholar]
  40. [40]. Kirkby   NS., , Zaiss   AK., , Urquhart   P., , Jiao   J., , Austin   PJ., , Al-Yamani   M., , Lundberg   MH., , MacKenzie   LS., , Warner   TD., , Nicolaou   A., , Herschman   HR., , Mitchell   JA. . Lc-ms/ms confirms that cox-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of cox-2 expression. . PLoS One.   2013; ;8: : e69524 .
    [Google Scholar]
  41. [41]. Liu   B., , Luo   W., , Zhang   Y., , Li   H., , Zhu   N., , Huang   D., , Zhou   Y. . Involvement of cyclo-oxygenase-1-mediated prostacyclin synthesis in the vasoconstrictor activity evoked by ach in mouse arteries. . Exp Physiol.   2012; ;97: : 277– 289 .
    [Google Scholar]
  42. [42]. Kirkby   NS., , Lundberg   MH., , Wright   WR., , Warner   TD., , Paul-Clark   MJ., , Mitchell   JA. . Cox-2 protects against atherosclerosis independently of local vascular prostacyclin: Identification of cox-2 associated pathways implicate rgl1 and lymphocyte networks. . PLoS One.   2014; ;9: : e98165 .
    [Google Scholar]
  43. [43]. Kirkby   NS., , Chan   MV., , Lundberg   MH., , Massey   KA., , Edmands   WM., , MacKenzie   LS., , Holmes   E., , Nicolaou   A., , Warner   TD., , Mitchell   JA. . Aspirin-triggered 15-epi-lipoxin a4 predicts cyclooxygenase-2 in the lungs of lps-treated mice but not in the circulation: Implications for a clinical test. . Faseb J.   2013; ;27: : 3938– 3946 .
    [Google Scholar]
  44. [44]. Pugliese   SC., , Poth   JM., , Fini   MA., , Olschewski   A., , Kasmi   KCE., , Stenmark   KR. . The role of inflammation in hypoxic pulmonary hypertension: From cellular mechanisms to clinical phenotypes. . Am J Physiol Lung Cell Mol Physiol . 2015; ;308: 3 : L229– L252 . doi:10.1152/ajplung.00238.2014 .
    [Google Scholar]
  45. [45]. Rabinovitch   M., , Guignabert   C., , Humbert   M., , Nicolls   MR. . Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. . Circ Res.   2014; ;115: : 165– 175 .
    [Google Scholar]
  46. [46]. Cracowski   JL., , Chabot   F., , Labarere   J., , Faure   P., , Degano   B., , Schwebel   C., , Chaouat   A., , Reynaud-Gaubert   M., , Cracowski   C., , Sitbon   O., , Yaici   A., , Simonneau   G., , Humbert   M. . Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension. . Eur Respir J.   2014; ;43: : 915– 917 .
    [Google Scholar]
  47. [47]. Soon   E., , Holmes   AM., , Treacy   CM., , Doughty   NJ., , Southgate   L., , Machado   RD., , Trembath   RC., , Jennings   S., , Barker   L., , Nicklin   P., , Walker   C., , Budd   DC., , Pepke-Zaba   J., , Morrell   NW. . Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. . Circulation.   2010; ;122: : 920– 927 .
    [Google Scholar]
  48. [48]. George   PM., , Oliver   E., , Dorfmuller   P., , Dubois   OD., , Reed   DM., , Kirkby   NS., , Mohamed   NA., , Perros   F., , Antigny   F., , Fadel   E., , Schreiber   BE., , Holmes   AM., , Southwood   M., , Hagan   G., , Wort   SJ., , Bartlett   N., , Morrell   NW., , Coghlan   JG., , Humbert   M., , Zhao   L., , Mitchell   JA. . Evidence for the involvement of type i interferon in pulmonary arterial hypertension. . Circ Res.   2014; ;114: : 677– 688 .
    [Google Scholar]
  49. [49]. George   PM., , Badiger   R., , Alazawi   W., , Foster   GR., , Mitchell   JA. . Pharmacology and therapeutic potential of interferons. . Pharmacol Ther.   2012; ;135: : 44– 53 .
    [Google Scholar]
  50. [50]. Jourdan   KB., , Evans   TW., , Lamb   NJ., , Goldstraw   P., , Mitchell   JA. . Autocrine function of inducible nitric oxide synthase and cyclooxygenase-2 in proliferation of human and rat pulmonary artery smooth-muscle cells: Species variation. . Am J Respir Cell Mol Biol.   1999; ;21: : 105– 110 .
    [Google Scholar]
  51. [51]. Bradbury   DA., , Newton   R., , Zhu   YM., , Stocks   J., , Corbett   L., , Holland   ED., , Pang   LH., , Knox   AJ. . Effect of bradykinin, tgf-beta1, il-1beta, and hypoxia on cox-2 expression in pulmonary artery smooth muscle cells. . Am J Physiol Lung Cell Mol Physiol.   2002; ;283: : L717– L725 .
    [Google Scholar]
  52. [52]. Yang   X., , Sheares   KK., , Davie   N., , Upton   PD., , Taylor   GW., , Horsley   J., , Wharton   J., , Morrell   NW. . Hypoxic induction of cox-2 regulates proliferation of human pulmonary artery smooth muscle cells. . Am J Respir Cell Mol Biol.   2002; ;27: : 688– 696 .
    [Google Scholar]
  53. [53]. Sheares   KK., , Jeffery   TK., , Long   L., , Yang   X., , Morrell   NW. . Differential effects of tgf-beta1 and bmp-4 on the hypoxic induction of cyclooxygenase-2 in human pulmonary artery smooth muscle cells. . Am J Physiol Lung Cell Mol Physiol.   2004; ;287: : L919– L927 .
    [Google Scholar]
  54. [54]. Cathcart   MC., , Tamosiuniene   R., , Chen   G., , Neilan   TG., , Bradford   A., , O'Byrne   KJ., , Fitzgerald   DJ., , Pidgeon   GP. . Cyclooxygenase-2-linked attenuation of hypoxia-induced pulmonary hypertension and intravascular thrombosis. . J Pharmacol Exp Ther.   2008; ;326: : 51– 58 .
    [Google Scholar]
  55. [55]. Fredenburgh   LE., , Liang   OD., , Macias   AA., , Polte   TR., , Liu   X., , Riascos   DF., , Chung   SW., , Schissel   SL., , Ingber   DE., , Mitsialis   SA., , Kourembanas   S., , Perrella   MA. . Absence of cyclooxygenase-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells. . Circulation.   2008; ;117: : 2114– 2122 .
    [Google Scholar]
  56. [56]. Rakotoniaina   Z., , Guerard   P., , Lirussi   F., , Rochette   L., , Dumas   M., , Goirand   F., , Bardou   M. . Celecoxib but not the combination of celecoxibatorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. . Naunyn Schmiedebergs Arch Pharmacol.   2008; ;378: : 241– 251 .
    [Google Scholar]
  57. [57]. Hossmann   V., , Auel   H., , Rucker   W., , Schror   K. . Prolonged infusion of prostacyclin in patients with advanced stages of peripheral vascular disease: A placebo-controlled cross-over study. . Klinische Wochenschrift.   1984; ;62: : 1108– 1114 .
    [Google Scholar]
  58. [58]. Taichman   DB., , Ornelas   J., , Chung   L., , Klinger   JR., , Lewis   S., , Mandel   J., , Palevsky   HI., , Rich   S., , Sood   N., , Rosenzweig   EB., , Trow   TK., , Yung   R., , Elliott   CG., , Badesch   DB. . Pharmacologic therapy for pulmonary arterial hypertension in adults: Chest guideline and expert panel report. . Chest.   2014; ;146: : 449– 475 .
    [Google Scholar]
  59. [59]. Butrous   G. . The role of phosphodiesterase inhibitors in the management of pulmonary vascular diseases. . Global Cardiology Science and Practice.   2014; ;42: . http://dx.doi.org/10.5339/gcsp.2014.42 .
    [Google Scholar]
  60. [60]. Nguyen   H., , Amanullah   AM. . Therapeutic potentials of phosphodiesterase-5 inhibitors in cardiovascular disease. . Reviews in Cardiovascular Medicine.   2014; ;15: : 158– 167 .
    [Google Scholar]
  61. [61]. Chester   AH., , Yacoub   MH. . The role of endothelin-1 in pulmonary arterial hypertension. . Global Cardiology Science & Practice.   2014; ;2014: : 62– 78 .
    [Google Scholar]
  62. [62]. Kirkby   NS., , Lundberg   MH., , Chan   MV., , Vojnovic   I., , Solomon   AB., , Emerson   M., , Mitchell   JA., , Warner   TD. . Blockade of the purinergic p2y12 receptor greatly increases the platelet inhibitory actions of nitric oxide. . Proc Natl Acad Sci U S A.   2013; ;110: : 15782– 15787 .
    [Google Scholar]
  63. [63]. George   PM., , Oliver   E., , Dorfmuller   P., , Dubois   OD., , Reed   DM., , Kirkby   NS., , Mohamed   NA., , Perros   F., , Antigny   F., , Fadel   E., , Schreiber   BE., , Holmes   AM., , Southwood   M., , Hagan   G., , Wort   SJ., , Bartlett   N., , Morrell   NW., , Coghlan   JG., , Humbert   M., , Zhao   L., , Mitchell   JA. . Evidence for the involvement of type i interferon in pulmonary arterial hypertension. . Circ Res.   2014; ;114: : 677– 688 .
    [Google Scholar]
  64. [64]. Lavoie   JR., , Ormiston   ML., , Perez-Iratxeta   C., , Courtman   DW., , Jiang   B., , Ferrer   E., , Caruso   P., , Southwood   M., , Foster   WS., , Morrell   NW., , Stewart   DJ. . Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. . Circulation.   2014; ;129: : 2125– 2135 .
    [Google Scholar]
  65. [65]. Simonneau   G., , Torbicki   A., , Hoeper   MM., , Delcroix   M., , Karlocai   K., , Galie   N., , Degano   B., , Bonderman   D., , Kurzyna   M., , Efficace   M., , Giorgino   R., , Lang   IM. . Selexipag: An oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. . Eur Respir J.   2012; ;40: : 874– 880 .
    [Google Scholar]
  66. [66]. Actelion. Selexipag (ACT-293987) in Pulmonary Arterial Hypertension, GRIPHON Trial. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2015 Feb 24]. Available from https://clinicaltrials.gov/ct2/show/nct01106014. NLM Identifier: NCT01106014 .
  67. [68]. Feldman   J., , Im   Y., , Gill   K. . Oral treprostinil diethanolamine for pulmonary arterial hypertension. . Expert Review of Clinical Pharmacology.   2015; ;8: : 55– 60 .
    [Google Scholar]
  68. [69]. Tapson   VF., , Jing   ZC., , Xu   KF., , Pan   L., , Feldman   J., , Kiely   DG., , Kotlyar   E., , McSwain   CS., , Laliberte   K., , Arneson   C., , Rubin   LJ., , Team   F-CS. . Oral treprostinil for the treatment of pulmonary arterial hypertension in patients receiving background endothelin receptor antagonist and phosphodiesterase type 5 inhibitor therapy (the freedom-c2 study): A randomized controlled trial. . Chest.   2013; ;144: : 952– 958 .
    [Google Scholar]
  69. [70]. Tapson   VF., , Torres   F., , Kermeen   F., , Keogh   AM., , Allen   RP., , Frantz   RP., , Badesch   DB., , Frost   AE., , Shapiro   SM., , Laliberte   K., , Sigman   J., , Arneson   C., , Galie   N. . Oral treprostinil for the treatment of pulmonary arterial hypertension in patients on background endothelin receptor antagonist and/or phosphodiesterase type 5 inhibitor therapy (the freedom-c study): A randomized controlled trial. . Chest.   2012; ;142: : 1383– 1390 .
    [Google Scholar]
  70. [71]. Ryan   SM., , Brayden   DJ. . Progress in the delivery of nanoparticle constructs: Towards clinical translation. . Current Opinion in Pharmacology.   2014; ;18C: : 120– 128 .
    [Google Scholar]
  71. [72]. Mosgoeller   W., , Prassl   R., , Zimmer   A. . Nanoparticle-mediated treatment of pulmonary arterial hypertension. . Methods in Enzymology.   2012; ;508: : 325– 354 .
    [Google Scholar]
  72. [73]. Ruan   CH., , Dixon   RA., , Willerson   JT., , Ruan   KH. . Prostacyclin therapy for pulmonary arterial hypertension. . Texas Heart Institute Journal / from the Texas Heart Institute of St. Luke's Episcopal Hospital, Texas Children's Hospital . 2010; ;37: : 391– 399 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.53
Loading
/content/journals/10.5339/gcsp.2014.53
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error