1887
Volume 2014, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Atrial fibrillation (AF) is a common disorder with a complex and incompletely understood pathophysiology. Genetic approaches to understanding the pathophysiology of AF have led to the identification of several biological pathways important in the pathogenesis of the arrhythmia. These include pathways important for cardiac development, generation and propagation of atrial electrical impulses, and atrial remodeling and fibrosis. While common and rare genetic variants in these pathways are associated with increased susceptibility to AF, they differ substantially among patients with lone versus typical AF. Furthermore, how these pathways converge to a final common clinical phenotype of AF is unclear and might also vary among different patient populations. Here, we review the contemporary knowledge of AF pathogenesis and discuss how derangement in cardiac development, ion channel dysfunction, and promotion of atrial fibrosis may contribute to this common and important clinical disorder.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.5
2014-06-01
2019-08-17
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/1/gcsp.2014.5.html?itemId=/content/journals/10.5339/gcsp.2014.5&mimeType=html&fmt=ahah

References

  1. [1]. Fuster   V., , Rydén   LE., , Cannom   DS., , Crijns   HJ., , Curtis   AB., , Ellenbogen   KA., , Halperin   JL., , Le Heuzey   JY., , Kay   GN., , Lowe   JE., , Olsson   SB., , Prystowsky   EN., , Tamargo   JL., , Wann   S., , Smith   SC Jr., , Jacobs   AK., , Adams   CD., , Anderson   JL., , Antman   EM., , Hunt   SA., , Nishimura   R., , Ornato   JP., , Page   RL., , Riegel   B., , Priori   SG., , Blanc   JJ., , Budaj   A., , Camm   AJ., , Dean   V., , Deckers   JW., , Despres   C., , Dickstein   K., , Lekakis   J., , McGregor   K., , Metra   M., , Morais   J., , Osterspey   A., , Zamorano   JL. . ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation – Executive summary. . J Am Coll Cardiol . 2006; ;48: : 854– 906 .
    [Google Scholar]
  2. [2]. Go   AS., , Hylek   EM., , Chang   Y., , Phillips   KA., , Henault   LE., , Capra   AM., , Jensvold   NG., , Selby   JV., , Singer   DE. . Anticoagulation therapy for stroke prevention in atrial fibrillation: how well do randomized trials translate into clinical practice?.   JAMA . 2003; ;290: : 2685– 2692 .
    [Google Scholar]
  3. [3]. Go   AS., , Hylek   EM., , Phillips   KA., , Chang   Y., , Henault   LE., , Selby   JV., , Singer   DE. . Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. . JAMA . 2001; ;285: : 2370– 2375 .
    [Google Scholar]
  4. [4]. Miyasaka   Y., , Barnes   ME., , Gersh   BJ., , Cha   SS., , Bailey   KR., , Abhayaratna   WP., , Seward   JB., , Tsang   TS. . Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. . Circulation . 2006; ;114: : 119– 125 .
    [Google Scholar]
  5. [5]. Lloyd-Jones   DM., , Wang   TJ., , Leip   EP., , Larson   MG., , Levy   D., , Vasan   RS., , D'Agostino   RB., , Massaro   JM., , Beiser   A., , Wolf   PA., , Benjamin   EJ. . Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. . Circulation . 2004; ;110: : 1042– 1046 .
    [Google Scholar]
  6. [6]. Lakshminarayan   K., , Solid   CA., , Collins   AJ., , Anderson   DC., , Herzog   CA. . Atrial fibrillation and stroke in the general medicare population: a 10-year perspective (1992 to 2002). . Stroke . 2006; ;37: : 1969– 1974 .
    [Google Scholar]
  7. [7]. Soliman   EZ., , Safford   MM., , Muntner   P., , Khodneva   Y., , Dawood   FZ., , Zakai   NA., , Thacker   EL., , Judd   S., , Howard   VJ., , Howard   G., , Herrington   DM., , Cushman   M. . Atrial Fibrillation and the Risk of Myocardial Infarction. . JAMA Intern Med . 2014 Jan; ;174: 1 : 107– 114 .
    [Google Scholar]
  8. [8]. Wang   TJ., , Parise   H., , Levy   D., , D'Agostino   RB Sr., , Wolf   PA., , Vasan   RS., , Benjamin   EJ. . Obesity and the risk of new-onset atrial fibrillation. . JAMA . 2004; ;292: : 2471– 2477 .
    [Google Scholar]
  9. [9]. Movahed   MR., , Hashemzadeh   M., , Jamal   MM. . Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to the other cardiovascular disease. . Int J Cardiol . 2005; ;105: : 315– 318 .
    [Google Scholar]
  10. [10]. Watanabe   H., , Tanabe   N., , Watanabe   T., , Darbar   D., , Roden   DM., , Sasaki   S., , Aizawa   Y. . Metabolic syndrome and risk of development of atrial fibrillation: the Niigata preventive medicine study. . Circulation . 2008; ;117: : 1255– 1260 .
    [Google Scholar]
  11. [11]. Gami   AS., , Pressman   G., , Caples   SM., , Kanagala   R., , Gard   JJ., , Davison   DE., , Malouf   JF., , Ammash   NM., , Friedman   PA., , Somers   VK. . Association of atrial fibrillation and obstructive sleep apnea. . Circulation . 2004; ;110: : 364– 367 .
    [Google Scholar]
  12. [12]. Darbar   D. . Genetics of atrial fibrillation: rare mutations, common polymorphisms, and clinical relevance. . Heart Rhythm . 2008; ;5: : 483– 486 .
    [Google Scholar]
  13. [13]. Darbar   D., , Herron   KJ., , Ballew   JD., , Jahangir   A., , Gersh   BJ., , Shen   WK., , Hammill   SC., , Packer   DL., , Olson   TM. . Familial atrial fibrillation is a genetically heterogeneous disorder. . J Am Coll Cardiol . 2003; ;41: : 2185– 2192 .
    [Google Scholar]
  14. [14]. Postma   AV., , Dekker   LR., , Soufan   AT., , Moorman   AF. . Developmental and genetic aspects of atrial fibrillation. . Trends Cardiovasc Med . 2009; ;19: : 123– 130 .
    [Google Scholar]
  15. [15]. Gudbjartsson   DF., , Arnar   DO., , Helgadottir   A., , Gretarsdottir   S., , Holm   H., , Sigurdsson   A., , Jonasdottir   A., , Baker   A., , Thorleifsson   G., , Kristjansson   K., , Palsson   A., , Blondal   T., , Sulem   P., , Backman   VM., , Hardarson   GA., , Palsdottir   E., , Helgason   A., , Sigurjonsdottir   R., , Sverrisson   JT., , Kostulas   K., , Ng   MC., , Baum   L., , So   WY., , Wong   KS., , Chan   JC., , Furie   KL., , Greenberg   SM., , Sale   M., , Kelly   P., , MacRae   CA., , Smith   EE., , Rosand   J., , Hillert   J., , Ma   RC., , Ellinor   PT., , Thorgeirsson   G., , Gulcher   JR., , Kong   A., , Thorsteinsdottir   U., , Stefansson   K. . Variants conferring risk of atrial fibrillation on chromosome 4q25. . Nature . 2007; ;448: : 353– 357 .
    [Google Scholar]
  16. [16]. Lin   CR., , Kioussi   C., , O'Connell   S., , Briata   P., , Szeto   D., , Liu   F., , Izpisúa-Belmonte   JC., , Rosenfeld   MG. . Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. . Nature . 1999; ;401: : 279– 282 .
    [Google Scholar]
  17. [17]. Wang   J., , Klysik   E., , Sood   S., , Johnson   RL., , Wehrens   XH., , Martin   JF. . Pitx2 prevents susceptibility to atrial arrhythmia by inhibiting left-sided pacemaker specification. . Proc Natl Acad Sci USA . 2010; ;107: : 9753– 9758 .
    [Google Scholar]
  18. [18]. Chinchilla   A., , Daimi   H., , Lozano-Velasco   E., , Dominguez   JN., , Caballero   R., , Delpón   E., , Tamargo   J., , Cinca   J., , Hove-Madsen   L., , Aranega   AE., , Franco   D. . Pitx2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. . Circ Cardiovasc Genet . 2011; ;4: : 269– 279 .
    [Google Scholar]
  19. [19]. Mommersteeg   MT., , Brown   NA., , Prall   OW., , de Gier-de Vries   C., , Harvey   RP., , Moorman   AF., , Christoffels   VM. . Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. . Cir Res . 2007; ;101: : 902– 909 .
    [Google Scholar]
  20. [20]. Tessari   A., , Pietrobon   M., , Notte   A., , Cifelli   G., , Gage   PJ., , Schneider   MD., , Lembo   G., , Campione   M. . Myocardial Pitx2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs. . Cir Res . 2008; ;102: : 813– 822 .
    [Google Scholar]
  21. [21]. Ellinor   PT., , Lunetta   KL., , Albert   CM., , Glazer   NL., , Ritchie   MD., , Smith   AV., , Arking   DE., , Müller-Nurasyid   M., , Krijthe   BP., , Lubitz   SA., , Bis   JC., , Chung   MK., , Dörr   M., , Ozaki   K., , Roberts   JD., , Smith   JG., , Pfeufer   A., , Sinner   MF., , Lohman   K., , Ding   J., , Smith   NL., , Smith   JD., , Rienstra   M., , Rice   KM., , Van Wagoner   DR., , Magnani   JW., , Wakili   R., , Clauss   S., , Rotter   JI., , Steinbeck   G., , Launer   LJ., , Davies   RW., , Borkovich   M., , Harris   TB., , Lin   H., , Völker   U., , Völzke   H., , Milan   DJ., , Hofman   A., , Boerwinkle   E., , Chen   LY., , Soliman   EZ., , Voight   BF., , Li   G., , Chakravarti   A., , Kubo   M., , Tedrow   UB., , Rose   LM., , Ridker   PM., , Conen   D., , Tsunoda   T., , Furukawa   T., , Sotoodehnia   N., , Xu   S., , Kamatani   N., , Levy   D., , Nakamura   Y., , Parvez   B., , Mahida   S., , Furie   KL., , Rosand   J., , Muhammad   R., , Psaty   BM., , Meitinger   T., , Perz   S., , Wichmann   HE., , Witteman   JC., , Kao   WH., , Kathiresan   S., , Roden   DM., , Uitterlinden   AG., , Rivadeneira   F., , McKnight   B., , Sjögren   M., , Newman   AB., , Liu   Y., , Gollob   MH., , Melander   O., , Tanaka   T., , Stricker   BH., , Felix   SB., , Alonso   A., , Darbar   D., , Barnard   J., , Chasman   DI., , Heckbert   SR., , Benjamin   EJ., , Gudnason   V., , Kääb   S. . Meta-analysis identifies six new susceptibility loci for atrial fibrillation. . Nat Genet . 2012; ;44: : 670– 675 .
    [Google Scholar]
  22. [22]. Bergwerff   M., , Gittenberger-de Groot   AC., , Wisse   LJ., , DeRuiter   MC., , Wessels   A., , Martin   JF., , Olson   EN., , Kern   MJ. . Loss of function of the Prx1 and Prx2 homeobox genes alters architecture of the great elastic arteries and ductus arteriosus. . Virchows Arch . 2000; ;436: : 12– 19 .
    [Google Scholar]
  23. [23]. Ihida-Stansbury   K., , McKean   DM., , Gebb   SA., , Martin   JF., , Stevens   T., , Nemenoff   R., , Akeson   A., , Vaughn   J., , Jones   PL. . Paired-related homeobox gene Prx1 is required for pulmonary vascular development. . Circ Res . 2004; ;94: : 1507– 1514 .
    [Google Scholar]
  24. [24]. Haïssaguerre   M., , Jaïs   P., , Shah   DC., , Takahashi   A., , Hocini   M., , Quiniou   G., , Garrigue   S., , Le Mouroux   A., , Le Métayer   P., , Clémenty   J. . Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. . N Engl J Med . 1998; ;339: : 659– 666 .
    [Google Scholar]
  25. [25]. Oberti   C., , Wang   L., , Li   L., , Dong   J., , Rao   S., , Du   W., , Wang   Q. . Genome-wide linkage scan identifies a novel genetic locus on chromosome 5p13 for neonatal atrial fibrillation associated with sudden death and variable cardiomyopathy. . Circulation . 2004; ;110: : 3753– 3759 .
    [Google Scholar]
  26. [26]. Zhang   X., , Chen   S., , Yoo   S., , Chakrabarti   S., , Zhang   T., , Ke   T., , Oberti   C., , Yong   SL., , Fang   F., , Li   L., , de la Fuente   R., , Wang   L., , Chen   Q., , Wang   QK. . Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. . Cell . 2008; ;135: : 1017– 1027 .
    [Google Scholar]
  27. [27]. Zhang   X., , Yang   H., , Yu   J., , Chen   C., , Zhang   G., , Bao   J., , Du   Y., , Kibukawa   M., , Li   Z., , Wang   J., , Hu   S., , Dong   W., , Wang   J., , Gregersen   N., , Niebuhr   E., , Bolund   L. . Genomic organization, transcript variants and comparative analysis of the human nucleoporin 155 (NUP155) gene. . Gene . 2002; ;288: : 9– 18 .
    [Google Scholar]
  28. [28]. Kehat   I., , Accornero   F., , Aronow   BJ., , Molkentin   JD. . Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. . J Cell Biol . 2011; ;193: : 21– 29 .
    [Google Scholar]
  29. [29]. Ehrlich   JR., , Biliczki   P., , Hohnloser   SH., , Nattel   S. . Atrial-selective approaches for the treatment of atrial fibrillation. . J Am Coll Cardiol . 2008; ;51: : 787– 792 .
    [Google Scholar]
  30. [30]. Hodgson-Zingman   DM., , Karst   ML., , Zingman   LV., , Heublein   DM., , Darbar   D., , Herron   KJ., , Ballew   JD., , de Andrade   M., , Burnett   JC Jr., , Olson   TM. . Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation. . N Engl J Med . 2008; ;359: : 158– 165 .
    [Google Scholar]
  31. [31]. Ren   X., , Xu   C., , Zhan   C., , Yang   Y., , Shi   L., , Wang   F., , Wang   C., , Xia   Y., , Yang   B., , Wu   G., , Wang   P., , Li   X., , Wang   D., , Xiong   X., , Liu   J., , Liu   Y., , Liu   M., , Liu   J., , Tu   X., , Wang   QK. . Identification of NPPA variants associated with atrial fibrillation in a Chinese GeneID population. . Clin Chim Acta . 2010; ;411: : 481– 485 .
    [Google Scholar]
  32. [32]. Roberts   JD., , Davies   RW., , Lubitz   SA., , Thibodeau   IL., , Nery   PB., , Birnie   DH., , Benjamin   EJ., , Lemery   R., , Ellinor   PT., , Gollob   MH. . Evaluation of non-synonymous NPPA single nucleotide polymorphisms in atrial fibrillation. . Europace . 2010; ;12: : 1078– 1083 .
    [Google Scholar]
  33. [33]. Levin   ER., , Gardner   DG., , Samson   WK. . Natriuretic peptides. . N Engl J Med . 1998; ;339: : 321– 328 .
    [Google Scholar]
  34. [34]. Sorbera   LA., , Morad   M. . Atrionatriuretic peptide transforms cardiac sodium channels into calcium-conducting channels. . Science . 1990; ;247: : 969– 973 .
    [Google Scholar]
  35. [35]. Le Grand   B., , Deroubaix   E., , Couétil   JP., , Coraboeuf   E. . Effects of atrionatriuretic factor on Ca2 current and Cai-independent transient outward K current in human atrial cells. . Pflugers Arch . 1992; ;421: : 486– 491 .
    [Google Scholar]
  36. [36]. Lonardo   G., , Cerbai   E., , Casini   S., , Giunti   G., , Bonacchi   M., , Battaglia   F., , Fiorani   B., , Stefano   PL., , Sani   G., , Mugelli   A. . Atrial natriuretic peptide modulates the hyperpolarization-activated current (If) in human atrial myocytes. . Cardiovasc Res . 2004; ;63: : 528– 536 .
    [Google Scholar]
  37. [37]. Crozier   I., , Richards   AM., , Foy   SG., , Ikram   H. . Electrophysiological effects of atrial natriuretic peptide on the cardiac conduction system in man. . Pacing Clin Electrophysiol . 1993; ;16: : 738– 742 .
    [Google Scholar]
  38. [38]. Stambler   BS., , Guo   GB. . Atrial natriuretic peptide has dose-dependent, autonomically mediated effects on atrial refractoriness and repolarization in anesthetized dogs. . J Cardiovasc Electrophysiol . 2005; ;16: : 1341– 1347 .
    [Google Scholar]
  39. [39]. Aiba   T., , Tomaselli   GF. . Electrical Remodeling in the Failing Heart. . Curr Opin Cardiol . 2010; ;25: : 29– 36 .
    [Google Scholar]
  40. [40]. Chen   YH., , Xu   SJ., , Bendahhou   S., , Wang   XL., , Wang   Y., , Xu   WY., , Jin   HW., , Sun   H., , Su   XY., , Zhuang   QN., , Yang   YQ., , Li   YB., , Liu   Y., , Xu   HJ., , Li   XF., , Ma   N., , Mou   CP., , Chen   Z., , Barhanin   J., , Huang   W. . KCNQ1 gain-of-function mutation in familial atrial fibrillation. . Science . 2003b; ;299: : 251– 254 .
    [Google Scholar]
  41. [41]. Barhanin   J., , Lesage   F., , Guillemare   E., , Fink   M., , Lazdunski   M., , Romey   G. . K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. . Nature . 1996; ;384: : 78– 80 .
    [Google Scholar]
  42. [42]. Sanguinetti   MC., , Curran   ME., , Zou   A., , Shen   J., , Spector   PS., , Atkinson   DL., , Keating   MT. . Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. . Nature . 1996; ;384: : 80– 83 .
    [Google Scholar]
  43. [43]. Yang   Y., , Xia   M., , Jin   Q., , Bendahhou   S., , Shi   J., , Chen   Y., , Liang   B., , Lin   J., , Liu   Y., , Liu   B., , Zhou   Q., , Zhang   D., , Wang   R., , Ma   N., , Su   X., , Niu   K., , Pei   Y., , Xu   W., , Chen   Z., , Wan   H., , Cui   J., , Barhanin   J., , Chen   Y. . Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. . Am J Hum Genet . 2004; ;75: : 899– 905 .
    [Google Scholar]
  44. [44]. Deo   M., , Ruan   Y., , Pandit   SV., , Shah   K., , Berenfeld   O., , Blaufox   A., , Cerrone   M., , Noujaim   SF., , Denegri   M., , Jalife   J., , Priori   SG. . KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. . Proc Natl Acad Sci USA . 2013; ;110: : 4291– 4296 .
    [Google Scholar]
  45. [45]. Lundquist   AL., , Turner   CL., , Ballester   LY., , George   AL Jr. . Expression and transcriptional control of human KCNE genes. . Genomics . 2006; ;87: : 119– 128 .
    [Google Scholar]
  46. [46]. Lundquist   AL., , Manderfield   LJ., , Vanoye   CG., , Rogers   CS., , Donahue   BS., , Chang   PA., , Drinkwater   DC., , Murray   KT., , George   AL Jr. . Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks). . J Mol Cell Cardiol . 2005; ;38: : 277– 287 .
    [Google Scholar]
  47. [47]. Angelo   K., , Jespersen   T., , Grunnet   M., , Nielsen   MS., , Klaerke   DA., , Olesen   SP. . KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. . Biophys J . 2002; ;83: : 1997– 2006 .
    [Google Scholar]
  48. [48]. Ravn   LS., , Aizawa   Y., , Pollevick   GD., , Hofman-Bang   J., , Cordeiro   JM., , Dixen   U., , Jensen   G., , Wu   Y., , Burashnikov   E., , Haunso   S., , Guerchicoff   A., , Hu   D., , Svendsen   JH., , Christiansen   M., , Antzelevitch   C. . Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. . Heart Rhythm . 2008; ;5: : 427– 435 .
    [Google Scholar]
  49. [49]. Olson   TM., , Alekseev   AE., , Liu   XK., , Park   S., , Zingman   LV., , Bienengraeber   M., , Sattiraju   S., , Ballew   JD., , Jahangir   A., , Terzic   A. . Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. . Hum Mol Genet . 2006; ;15: : 2185– 2191 .
    [Google Scholar]
  50. [50]. Yang   Y., , Li   J., , Lin   X., , Yang   Y., , Hong   K., , Wang   L., , Liu   J., , Li   L., , Yan   D., , Liang   D., , Xiao   J., , Jin   H., , Wu   J., , Zhang   Y., , Chen   YH. . Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. . J Hum Genet . 2009; ;54: : 277– 283 .
    [Google Scholar]
  51. [51]. Yang   T., , Yang   P., , Roden   DM., , Darbar   D. . A novel KCNA5 Mutation Implicates Tyrosine Kinase Signaling in Human Atrial Fibrillation. . Heart Rhythm . 2010; ;7: : 1246– 1252 .
    [Google Scholar]
  52. [52]. Sinner   MF., , Pfeufer   A., , Akyol   M., , Beckmann   BM., , Hinterseer   M., , Wacker   A., , Perz   S., , Sauter   W., , Illig   T., , Näbauer   M., , Schmitt   C., , Wichmann   HE., , Schömig   A., , Steinbeck   G., , Meitinger   T., , Kääb   S. . The non-synonymous coding IKr-channel variant KCNH2-K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG). . Eur Heart J . 2008; ;29: : 907– 914 .
    [Google Scholar]
  53. [53]. Watanabe   H., , Darbar   D., , Kaiser   DW., , Jiramongkolchai   K., , Chopra   S., , Donahue   BS., , Kannankeril   PJ., , Roden   DM. . Mutations in Sodium Channel Beta1 and Beta2 Subunits Associated with Atrial Fibrillation. . Circ Arrhythm Electrophysiol . 2009; ;2: : 268– 275 .
    [Google Scholar]
  54. [54]. Isom   LL. . Sodium channel beta subunits: anything but auxiliary. . Neuroscientist . 2001; ;7: : 42– 54 .
    [Google Scholar]
  55. [55]. Antzelevitch   C., , Pollevick   GD., , Cordeiro   JM., , Casis   O., , Sanguinetti   MC., , Aizawa   Y., , Guerchicoff   A., , Pfeiffer   R., , Oliva   A., , Wollnik   B., , Gelber   P., , Bonaros   EP Jr., , Burashnikov   E., , Wu   Y., , Sargent   JD., , Schickel   S., , Oberheiden   R., , Bhatia   A., , Hsu   LF., , Haïssaguerre   M., , Schimpf   R., , Borggrefe   M., , Wolpert   C. . Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. . Circulation . 2007; ;115: : 442– 449 .
    [Google Scholar]
  56. [56]. Abernethy   DR., , Schwartz   JB. . Calcium-antagonist drugs. . N Engl J Med . 1999; ;341: : 1447– 1457 .
    [Google Scholar]
  57. [57]. Soldatov   NM. . Genomic structure of human L-type Ca2 channel. . Genomics . 1994; ;22: : 77– 87 .
    [Google Scholar]
  58. [58]. Chelu   MG., , Sarma   S., , Sood   S., , Wang   S., , van Oort   RJ., , Skapura   DG., , Li   N., , Santonastasi   M., , Müller   FU., , Schmitz   W., , Schotten   U., , Anderson   ME., , Valderrábano   M., , Dobrev   D., , Wehrens   XH. . Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2 leak promotes atrial fibrillation in mice. . J Clin Invest . 2009; ;119: : 1940– 1951 .
    [Google Scholar]
  59. [59]. Mancarella   S., , Yue   Y., , Karnabi   E., , Qu   Y., , El-Sherif   N., , Boutjdir   M. . Impaired Ca2 homeostasis is associated with atrial fibrillation in the alpha1D L-type Ca2 channel KO mouse. . Am J Physiol Heart Circ Physiol . 2008; ;295: : 2017– 2024 .
    [Google Scholar]
  60. [60]. Hove-Madsen   L., , Llach   A., , Bayes-Genís   A., , Roura   S., , Rodriguez Font   E., , Arís   A., , Cinca   J. . Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. . Circulation . 2004; ;110: : 1358– 1363 .
    [Google Scholar]
  61. [61]. Vest   JA., , Wehrens   XH., , Reiken   SR., , Lehnart   SE., , Dobrev   D., , Chandra   P., , Danilo   P., , Ravens   U., , Rosen   MR., , Marks   AR. . Defective cardiac ryanodine receptor regulation during atrial fibrillation. . Circulation . 2005; ;111: : 2025– 2032 .
    [Google Scholar]
  62. [62]. Borggrefe   M. . Atrial tachyarrhythmias in Brugada syndrome. . In: Antzelevitch   C., Brugada   P., Brugada   J., Brugada   R. , eds. The Brugada Syndrome: From Bench to Bedside . Oxford, UK: : Blackwell Futura;   2004; ; : 178– 183 .
    [Google Scholar]
  63. [63]. Giustetto   C., , Di Monte   F., , Wolpert   C., , Borggrefe   M., , Schimpf   R., , Sbragia   P., , Leone   G., , Maury   P., , Anttonen   O., , Haissaguerre   M., , Gaita   F. . Short QT syndrome: clinical findings and diagnostic-therapeutic implications. . Eur Heart J . 2006; ;27: : 2440– 2447 .
    [Google Scholar]
  64. [64]. Pandit   SV., , Berenfeld   O., , Anumonwo   JM., , Zaritski   RM., , Kneller   J., , Nattel   S., , Jalife   J. . Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. . Biophys J . 2005; ;88: : 3806– 3821 .
    [Google Scholar]
  65. [65]. Voigt   N., , Trausch   A., , Knaut   M., , Matschke   K., , Varró   A., , Van Wagoner   DR., , Nattel   S., , Ravens   U., , Dobrev   D. . Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. . Circ Arrhythm Electrophysiol . 2010; ;3: : 472– 480 .
    [Google Scholar]
  66. [66]. Ellinor   PT., , Lunetta   KL., , Glazer   NL., , Pfeufer   A., , Alonso   A., , Chung   MK., , Sinner   MF., , de Bakker   PI., , Mueller   M., , Lubitz   SA., , Fox   E., , Darbar   D., , Smith   NL., , Smith   JD., , Schnabel   RB., , Soliman   EZ., , Rice   KM., , Van Wagoner   DR., , Beckmann   BM., , van Noord   C., , Wang   K., , Ehret   GB., , Rotter   JI., , Hazen   SL., , Steinbeck   G., , Smith   AV., , Launer   LJ., , Harris   TB., , Makino   S., , Nelis   M., , Milan   DJ., , Perz   S., , Esko   T., , Köttgen   A., , Moebus   S., , Newton-Cheh   C., , Li   M., , Möhlenkamp   S., , Wang   TJ., , Kao   WH., , Vasan   RS., , Nöthen   MM., , MacRae   CA., , Stricker   BH., , Hofman   A., , Uitterlinden   AG., , Levy   D., , Boerwinkle   E., , Metspalu   A., , Topol   EJ., , Chakravarti   A., , Gudnason   V., , Psaty   BM., , Roden   DM., , Meitinger   T., , Wichmann   HE., , Witteman   JC., , Barnard   J., , Arking   DE., , Benjamin   EJ., , Heckbert   SR., , Kääb   S. . Common variants in KCNN3 are associated with lone atrial fibrillation. . Nat Genet . 2010; ;42: : 240– 244 .
    [Google Scholar]
  67. [67]. Köhler   M., , Hirschberg   B., , Bond   CT., , Kinzie   JM., , Marrion   NV., , Maylie   J., , Adelman   JP. . Small-conductance, calcium-activated potassium channels from mammalian brain. . Science . 1996; ;273: : 1709– 1714 .
    [Google Scholar]
  68. [68]. Xu   Y., , Tuteja   D., , Zhang   Z., , Xu   D., , Zhang   Y., , Rodriguez   J., , Nie   L., , Tuxson   HR., , Young   JN., , Glatter   KA., , Vázquez   AE., , Yamoah   EN., , Chiamvimonvat   N. . Molecular identification and functional roles of a Ca(2)-activated K channel in human and mouse hearts. . J Biol Chem . 2003; ;278: : 49085– 49094 .
    [Google Scholar]
  69. [69]. Tuteja   D., , Xu   D., , Timofeyev   V., , Lu   L., , Sharma   D., , Zhang   Z., , Xu   Y., , Nie   L., , Vázquez   AE., , Young   JN., , Glatter   KA., , Chiamvimonvat   N. . Differential expression of small-conductance Ca2-activated K channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. . Am J Physiol Heart Circ Physiol . 2005; ;289: : H2714– H2723 .
    [Google Scholar]
  70. [70]. Li   N., , Timofeyev   V., , Tuteja   D., , Xu   D., , Lu   L., , Zhang   Q., , Zhang   Z., , Singapuri   A., , Albert   TR., , Rajagopal   AV., , Bond   CT., , Periasamy   M., , Adelman   J., , Chiamvimonvat   N. . Ablation of a Ca2-activated K channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. . J Physiol . 2009; ;587: : 1087– 1100 .
    [Google Scholar]
  71. [71]. Monaghan   AS., , Benton   DC., , Bahia   PK., , Hosseini   R., , Shah   YA., , Haylett   DG., , Moss   GW. . The SK3 subunit of small conductance Ca2-activated K channels interacts with both SK1 and SK2 subunits in a heterologous expression system. . J Biol Chem . 2004; ;279: : 1003– 1009 .
    [Google Scholar]
  72. [72]. Volonte   D., , McTiernan   CF., , Drab   M., , Kasper   M., , Galbiati   F. . Caveolin-1 and Caveolin-3 form heterooligomeric complexes in atrial cardiac myocytes that are required for doxorubicin-induced apoptosis. . Am J Physiol Heart Circ Physiol . 2008; ;294: : H392– H401 .
    [Google Scholar]
  73. [73]. Zhao   YY., , Liu   Y., , Stan   RV., , Fan   L., , Gu   Y., , Dalton   N., , Chu   PH., , Peterson   K., , Ross   J Jr., , Chien   KR. . Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. . Proc Natl Acad Sci USA . 2002; ;99: : 11375– 11380 .
    [Google Scholar]
  74. [74]. Stieber   J., , Herrmann   S., , Feil   S., , Löster   J., , Feil   R., , Biel   M., , Hofmann   F., , Ludwig   A. . The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. . Proc Natl Acad Sci USA . 2003; ;100: : 15235– 15240 .
    [Google Scholar]
  75. [75]. Nof   E., , Luria   D., , Brass   D., , Marek   D., , Lahat   H., , Reznik-Wolf   H., , Pras   E., , Dascal   N., , Eldar   M., , Glikson   M. . Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. . Circulation . 2007; ;116: : 463– 470 .
    [Google Scholar]
  76. [76]. McNair   WP., , Ku   L., , Taylor   MR., , Fain   PR., , Dao   D., , Wolfel   E., , Mestroni   L., , Familial Cardiomyopathy Registry Research Group. . SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. . Circulation . 2004; ;110: : 2163– 2167 .
    [Google Scholar]
  77. [77]. Olson   TM., , Michels   VV., , Ballew   JD., , Reyna   SP., , Karst   ML., , Herron   KJ., , Horton   SC., , Rodeheffer   RJ., , Anderson   JL. . Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. . JAMA . 2005; ;293: : 447– 454 .
    [Google Scholar]
  78. [78]. Darbar   D., , Kannankeril   PJ., , Donahue   BS., , Kucera   G., , Stubblefield   T., , Haines   JL., , George   AL Jr., , Roden   DM. . Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. . Circulation . 2008; ;117: : 1927– 1935 .
    [Google Scholar]
  79. [79]. O'Brien   BJ., , Caldwell   JH., , Ehring   GR., , Bumsted O'Brien   KM., , Luo   S., , Levinson   SR. . Tetrodotoxinresistant voltage-gated sodium channels nav1.8 and nav1.9 are expressed in the retina. . J Comp Neurol . 2008; ;508: : 940– 951 .
    [Google Scholar]
  80. [80]. Chambers   JC., , Zhao   J., , Terracciano   CM., , Bezzina   CR., , Zhang   W., , Kaba   R., , Navaratnarajah   M., , Lotlikar   A., , Sehmi   JS., , Kooner   MK., , Deng   G., , Siedlecka   U., , Parasramka   S., , El-Hamamsy   I., , Wass   MN., , Dekker   LR., , de Jong   JS., , Sternberg   MJ., , McKenna   W., , Severs   NJ., , de Silva   R., , Wilde   AA., , Anand   P., , Yacoub   M., , Scott   J., , Elliott   P., , Wood   JN., , Kooner   JS. . Genetic variation in scn10a influences cardiac conduction. . Nat Genet . 2010; ;42: : 149– 152 .
    [Google Scholar]
  81. [81]. Holm   H., , Gudbjartsson   DF., , Arnar   DO., , Thorleifsson   G., , Thorgeirsson   G., , Stefansdottir   H., , Gudjonsson   SA., , Jonasdottir   A., , Mathiesen   EB., , Njølstad   I., , Nyrnes   A., , Wilsgaard   T., , Hald   EM., , Hveem   K., , Stoltenberg   C., , Løchen   ML., , Kong   A., , Thorsteinsdottir   U., , Stefansson   K. . Several common variants modulate heart rate, pr interval and qrs duration. . Nat Genet . 2010; ;42: : 117– 122 .
    [Google Scholar]
  82. [82]. Rabert   DK., , Koch   BD., , Ilnicka   M., , Obernolte   RA., , Naylor   SL., , Herman   RC., , Eglen   RM., , Hunter   JC., , Sangameswaran   L. . A tetrodotoxin-resistant voltage-gated sodium channel from human dorsal root ganglia, hpn3/scn10a. . Pain . 1998; ;78: : 107– 114 .
    [Google Scholar]
  83. [83]. Souslova   VA., , Fox   M., , Wood   JN., , Akopian   AN. . Cloning and characterization of a mouse sensory neuron tetrodotoxin-resistant voltage-gated sodium channel gene, scn10a. . Genomics . 1997; ;41: : 201– 209 .
    [Google Scholar]
  84. [84]. Yang   T., , Atack   TC., , Stroud   DM., , Zhang   W., , Hall   L., , Roden   DM. . Blocking SCN10A channels in heart reduces late sodium current and is antiarrhythmic. . Circ Res . 2012; ;111: : 322– 332 .
    [Google Scholar]
  85. [85]. Frustaci   A., , Chimenti   C., , Bellocci   F., , Morgante   E., , Russo   MA., , Maseri   A. . Histological substrate of atrial biopsies in patients with lone atrial fibrillation. . Circulation . 1997; ;96: : 1180– 1184 .
    [Google Scholar]
  86. [86]. Savelieva   I., , Camm   J. . Statins and polyunsaturated fatty acids for treatment of atrial fibrillation. . Nat Clin Pract Cardiovasc Med . 2008; ;5: : 30– 41 .
    [Google Scholar]
  87. [87]. Jahangiri   M., , Camm   AJ. . Do corticosteroids prevent atrial fibrillation after cardiac surgery?.   Nat Clin Pract Cardiovasc Med . 2007; ;4: : 592– 593 .
    [Google Scholar]
  88. [88]. Aviles   RJ., , Martin   DO., , Apperson-Hansen   C., , Houghtaling   PL., , Rautaharju   P., , Kronmal   RA., , Tracy   RP., , Van Wagoner   DR., , Psaty   BM., , Lauer   MS., , Chung   MK. . Inflammation as arisk factor for atrial fibrillation. . Circulation . 2003; ;108: : 3006– 3010 .
    [Google Scholar]
  89. [89]. Chung   MK., , Martin   DO., , Sprecher   D., , Wazni   O., , Kanderian   A., , Carnes   CA., , Bauer   JA., , Tchou   PJ., , Niebauer   MJ., , Natale   A., , Van Wagoner   DR. . C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. . Circulation . 2001; ;104: : 2886– 2891 .
    [Google Scholar]
  90. [90]. Ellinor   PT., , Low   A., , Patton   KK., , Shea   MA., , MacRae   CA. . C-reactive protein in lone atrial fibrillation. . Am J Cardiol . 2006; ;97: : 1346– 1350 .
    [Google Scholar]
  91. [91]. Hack   CE., , Wolbink   GJ., , Schalkwijk   C., , Speijer   H., , Hermens   WT., , van den Bosch   H. . A role for secretory phospholipase A2 and C-reactive protein in the removal of injured cells. . Immunol Today . 1997; ;18: : 111– 115 .
    [Google Scholar]
  92. [92]. Spach   MS., , Boineau   JP. . Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. . Pacing Clin Electrophysiol . 1997; ;20: : 397– 413 .
    [Google Scholar]
  93. [93]. Spach   MS., , Josephson   ME. . Initiating reentry: the role of nonuniform anisotropy in small circuits. . J Cardiovasc Electrophysiol . 1994; ;5: : 182– 209 .
    [Google Scholar]
  94. [94]. Li   D., , Fareh   S., , Leung   TK., , Nattel   S. . Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. . Circulation . 1999; ;100: : 87– 95 .
    [Google Scholar]
  95. [95]. Verheule   S., , Sato   T., , Everett   T 4th., , Engle   SK., , Otten   D., , Rubart-von der Lohe   M., , Nakajima   HO., , Nakajima   H., , Field   LJ., , Olgin   JE. . Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. . Circ Res . 2004; ;94: : 1458– 1465 .
    [Google Scholar]
  96. [96]. Tang   M., , Zhang   S., , Sun   Q., , Huang   C. . Alterations in electrophysiology and tissue structure of the left atrial posterior wall in a canine model of atrial fibrillation caused by chronic atrial dilatation. . Circ J . 2007; ;71: : 1636– 1642 .
    [Google Scholar]
  97. [97]. Kostin   S., , Klein   G., , Szalay   Z., , Hein   S., , Bauer   EP., , Schaper   J. . Structural correlate of atrial fibrillation in human patients. . Cardiovasc Res . 2002; ;54: : 361– 379 .
    [Google Scholar]
  98. [98]. Nakai   T., , Chandy   J., , Nakai   K., , Bellows   WH., , Flachsbart   K., , Lee   RJ., , Leung   JM. . Histologic assessment of right atrial appendage myocardium in patients with atrial fibrillation after coronary artery bypass graft surgery. . Cardiology . 2007; ;108: : 90– 96 .
    [Google Scholar]
  99. [99]. Hayashi   H., , Wang   C., , Miyauchi   Y., , Omichi   C., , Pak   HN., , Zhou   S., , Ohara   T., , Mandel   WJ., , Lin   SF., , Fishbein   MC., , Chen   PS., , Karagueuzian   HS. . Aging-related increase to inducible atrial fibrillation in the rat model. . J Cardiovasc Electrophysiol . 2002; ;13: : 801– 808 .
    [Google Scholar]
  100. [100]. Mahnkopf   C., , Badger   TJ., , Burgon   NS., , Daccarett   M., , Haslam   TS., , Badger   CT., , McGann   CJ., , Akoum   N., , Kholmovski   E., , Macleod   RS., , Marrouche   NF. . Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. . Heart Rhythm . 2010; ;7: : 1475– 1481 .
    [Google Scholar]
  101. [101]. Seitz   J., , Horvilleur   J., , Lacotte   J., , O H-Ici   D., , Mouhoub   Y., , Maltret   A., , Salerno   F., , Mylotte   D., , Monchi   M., , Garot   J. . Correlation between AF substrate ablation difficulty and left atrial fibrosis quantified by delayed-enhancement cardiac magnetic resonance. . Pacing Clin Electrophysiol . 2011; ;34: : 1267– 1277 .
    [Google Scholar]
  102. [102]. Kirchhof   P., , Kahr   PC., , Kaese   S., , Piccini   I., , Vokshi   I., , Scheld   HH., , Rotering   H., , Fortmueller   L., , Laakmann   S., , Verheule   S., , Schotten   U., , Fabritz   L., , Brown   NA. . PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. . Circ Cardiovasc Genet . 2011; ;4: : 123– 133 .
    [Google Scholar]
  103. [103]. Austin   ED., , Ma   L., , LeDuc   C., , Berman Rosenzweig   E., , Borczuk   A., , Phillips   JA 3rd., , Palomero   T., , Sumazin   P., , Kim   HR., , Talati   MH., , West   J., , Loyd   JE., , Chung   WK. . Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. . Circ Cardiovasc Genet . 2012; ;5: : 336– 343 .
    [Google Scholar]
  104. [104]. Del Galdo   F., , Lisanti   MP., , Jimenez   SA. . Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis. . Curr Opin Rheumatol . 2008; ;20: : 713– 719 .
    [Google Scholar]
  105. [105]. Verheule   S., , Sato   T., , Everett   T 4th., , Engle   SK., , Otten   D., , Rubart-von der Lohe   M., , Nakajima   HO., , Nakajima   H., , Field   LJ., , Olgin   JE. . Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. . Circ Res . 2004; ;94: : 1458– 1465 .
    [Google Scholar]
  106. [106]. Mabuchi   M., , Kataoka   H., , Miura   Y., , Kim   TS., , Kawaguchi   M., , Ebi   M., , Tanaka   M., , Mori   Y., , Kubota   E., , Mizushima   T., , Shimura   T., , Mizoshita   T., , Tanida   S., , Kamiya   T., , Asai   K., , Joh   T. . Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-β signal transduction. . Biochem Biophys Res Commun . 2010; ;398: : 321– 325 .
    [Google Scholar]
  107. [107]. Beqqali   A., , Monshouwer-Kloots   J., , Monteiro   R., , Welling   M., , Bakkers   J., , Ehler   E., , Verkleij   A., , Mummery   C., , Passier   R. . CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. . J Cell Sci . 2010; ;123: : 1141– 1150 .
    [Google Scholar]
  108. [108]. Homer   RJ., , Herzog   EL. . Recent advances in pulmonary fibrosis: implications for scleroderma. . Curr Opin Rheumatol . 2010; ;22: : 683– 689 .
    [Google Scholar]
  109. [109]. He   W., , Dai   C., , Li   Y., , Zeng   G., , Monga   SP., , Liu   Y. . Wnt/beta-catenin signaling promotes renal interstitial fibrosis. . J Am Soc Nephrol . 2009; ;20: : 765– 776 .
    [Google Scholar]
  110. [110]. Cohen   RI., , Chandra   S., , Koenig   S., , Tsang   D., , Wilson   D., , McCloskey   T. . Ghrelin receptor expression in lymphocytes isolated from adult cystic fibrosis patients. . Respiration . 2010; ;79: : 141– 146 .
    [Google Scholar]
  111. [111]. Fritz   D., , Stefanovic   B. . RNA-binding protein RBMS3 is expressed in activated hepatic stellate cells and liver fibrosis and increases expression of transcription factor Prx1. . J Mol Biol . 2007; ;371: : 585– 595 .
    [Google Scholar]
  112. [112]. reSOLVE. Wound Healing and Fibrosis-related Genes. 2013 [online], http://www.resolve-whfg.appspot.com/array/Sargent2010/ .
  113. [113]. Disertori   M., , Quintarelli   S., , Grasso   M., , Pilotto   A., , Narula   N., , Favalli   V., , Canclini   C., , Diegoli   M., , Mazzola   S., , Marini   M., , Del Greco   M., , Bonmassari   R., , Masè   M., , Ravelli   F., , Specchia   C., , Arbustini   E. . Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of Natriuretic Peptide Precursor A. . Circ Cardiovasc Genet . 2013; ;6: : 27– 36 .
    [Google Scholar]
  114. [114]. Ritchie   MD., , Rowan   S., , Kucera   G., , Stubblefield   T., , Blair   M., , Carter   S., , Roden   DM., , Darbar   D. . Chromosome 4q25 variants are genetic modifiers of rare ion channel mutations associated with familial atrial fibrillation. . J Am Coll Cardiol . 2012; ;25: : 1173– 1181 .
    [Google Scholar]
  115. [115]. Armstrong   DW., , Tse   MY., , O'Tierney-Ginn   PF., , Wong   PG., , Ventura   NM., , Janzen-Pang   JJ., , Matangi   MF., , Johri   AM., , Croy   BA., , Adams   MA., , Pang   SC. . Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy. . Regul Pept . 2013; ;186: : 108– 115 .
    [Google Scholar]
  116. [116]. Franco   V., , Chen   YF., , Feng   JA., , Li   P., , Wang   D., , Hasan   E., , Oparil   S., , Perry   GJ. . Eplerenone prevents adverse cardiac remodelling induced by pressure overload in atrial natriuretic peptide-null mice. . Clin Exp Pharmacol Physiol . 2006; ;33: : 773– 779 .
    [Google Scholar]
  117. [117]. Lin   J., , Lin   S., , Choy   PC., , Shen   X., , Deng   C., , Kuang   S., , Wu   J., , Xu   W. . The regulation of the cardiac potassium channel (HERG) by caveolin-1. . Biochem Cell Biol . 2008; ;86: : 405– 415 .
    [Google Scholar]
  118. [118]. Liu   J., , Liu   ZQ., , Yu   BN., , Xu   FH., , Mo   W., , Zhou   G., , Liu   YZ., , Li   Q., , Zhou   HH. . beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. . Clin Pharmacol Ther . 2006; ;80: : 23– 32 .
    [Google Scholar]
  119. [119]. Johnson   JA., , Zineh   I., , Puckett   BJ., , McGorray   SP., , Yarandi   HN., , Pauly   DF. . Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. . Clin Pharmacol Ther . 2003; ;74: : 44– 52 .
    [Google Scholar]
  120. [120]. Lobmeyer   MT., , Gong   Y., , Terra   SG., , Beitelshees   AL., , Langaee   TY., , Pauly   DF., , Schofield   RS., , Hamilton   KK., , Herbert Patterson   J., , Adams   KF Jr., , Hill   JA., , Aranda   JM Jr., , Johnson   JA. . Synergistic polymorphisms of beta1 and alpha2C-adrenergic receptors and the influence on left ventricular ejection fraction response to beta-blocker therapy in heart failure. . Pharmacogenet Genomics . 2007; ;17: : 277– 282 .
    [Google Scholar]
  121. [121]. Johnson   JA., , Liggett   SB. . Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. . Clin Pharmacol Ther . 2011; ;89: : 366– 378 .
    [Google Scholar]
  122. [122]. Bristow   MR., , Murphy   GA., , Krause-Steinrauf   H., , Anderson   JL., , Carlquist   JF., , Thaneemit-Chen   S., , Krishnan   V., , Abraham   WT., , Lowes   BD., , Port   JD., , Davis   GW., , Lazzeroni   LC., , Robertson   AD., , Lavori   PW., , Liggett   SB. . An alpha2C-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. . Circ Heart Fail . 2010; ;3: : 21– 28 .
    [Google Scholar]
  123. [123]. Parvez   B., , Chopra   N., , Rowan   S., , Vaglio   JC., , Muhammad   R., , Roden   DM., , Darbar   D. . A common β1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. . J Am Coll Cardiol . 2012; ;59: : 49– 56 .
    [Google Scholar]
  124. [124]. Husser   D., , Adams   V., , Piorkowski   C., , Hindricks   G., , Bollmann   A. . Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. . J Am Coll Cardiol . 2010; ;55: : 747– 753 .
    [Google Scholar]
  125. [125]. Benjamin Shoemaker   M., , Muhammad   R., , Parvez   B., , White   BW., , Streur   M., , Song   Y., , Stubblefield   T., , Kucera   G., , Blair   M., , Rytlewski   J., , Parvathaneni   S., , Nagarakanti   R., , Saavedra   P., , Ellis   CR., , Patrick Whalen   S., , Roden   DM., , Darbar   RD. . Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. . Heart Rhythm . 2013; ;10: : 394– 400 .
    [Google Scholar]
  126. [126]. Parvez   B., , Shoemaker   MB., , Muhammad   R., , Richardson   R., , Jiang   L., , Blair   MA., , Roden   DM., , Darbar   D. . Common Genetic Polymorphism at 4q25 Locus Predicts Atrial Fibrillation Recurrence after Successful Cardioversion. . Heart Rhythm . 2013; ;10: : 849– 855 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.5
Loading
/content/journals/10.5339/gcsp.2014.5
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Atrial fibrillation , fibrosis , genetics , inflammation and pathophysiology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error