1887
Volume 2014, Issue 2
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

MicroRNAs (miRNAs) have emerged as potent modulators of mammalian gene expression, thereby broadening the spectrum of molecular mechanisms orchestrating human physiological and pathological cellular functions. Growing evidence suggests that these small non-coding RNA molecules are pivotal regulators of cardiovascular development and disease. Importantly, multiple miRNAs have been specifically implicated in the onset and progression of heart failure, thus providing a new platform for battling this multi-faceted disease. This review introduces the basic concepts of miRNA biology, describes representative examples of miRNAs associated with multiple aspects of HF pathogenesis, and explores the prognostic, diagnostic and therapeutic potential of miRNAs in the cardiology clinic.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.30
2014-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/2/gcsp.2014.30.html?itemId=/content/journals/10.5339/gcsp.2014.30&mimeType=html&fmt=ahah

References

  1. [1]. McMurray   JJ., , Pfeffer   MA. . Heart failure. . Lancet . May 28-Jun 3 2005; ;365: 9474 : 1877– 1889 .
    [Google Scholar]
  2. [2]. Go   AS., , Mozaffarian   D., , Roger   VL., , Benjamin   EJ., , Berry   JD., , Borden   WB., , Bravata   DM., , Dai   S., , Ford   ES., , Fox   CS., , Franco   S., , Fullerton   HJ., , Gillespie   C., , Hailpern   SM., , Heit   JA., , Howard   VJ., , Huffman   MD., , Kissela   BM., , Kittner   SJ., , Lackland   DT., , Lichtman   JH., , Lisabeth   LD., , Magid   D., , Marcus   GM., , Marelli   A., , Matchar   DB., , McGuire   DK., , Mohler   ER., , Moy   CS., , Mussolino   ME., , Nichol   G., , Paynter   NP., , Schreiner   PJ., , Sorlie   PD., , Stein   J., , Turan   TN., , Virani   SS., , Wong   ND., , Woo   D., , Turner   MB., , American Heart Association Statistics Committee and Stroke Statistics Subcommittee. . Heart disease and stroke statistics–2013 update: a report from the American Heart Association. . Circulation . Jan 1 2013; ;127: 1 : e6– e245 .
    [Google Scholar]
  3. [3]. Roger   VL., , Weston   SA., , Redfield   MM., , Hellermann-Homan   JP., , Killian   J., , Yawn   BP., , Jacobsen   SJ. . Trends in heart failure incidence and survival in a community-based population. . JAMA . Jul 21 2004; ;292: 3 : 344– 350 .
    [Google Scholar]
  4. [4]. Levy   D., , Kenchaiah   S., , Larson   MG., , Benjamin   EJ., , Kupka   MJ., , Ho   KK., , Murabito   JM., , Vasan   RS. . Long-term trends in the incidence of and survival with heart failure. . N Engl J Med . Oct 31 2002; ;347: 18 : 1397– 1402 .
    [Google Scholar]
  5. [5]. Matsushita   K., , Blecker   S., , Pazin-Filho   A., , Bertoni   A., , Chang   PP., , Coresh   J., , Selvin   E. . The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. . Diabetes . Aug 2010; ;59: 8 : 2020– 2026 .
    [Google Scholar]
  6. [6]. Meyer   T., , Pankuweit   S., , Richter   A., , Maisch   B., , Ruppert   V. . Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy. . Gene . Jun 29 2013; ;527: 1 : 416– 420 .
    [Google Scholar]
  7. [7]. Liu   Y., , Bai   R., , Wang   L., , Zhang   C., , Zhao   R., , Wan   D., , Chen   X., , Caceres   G., , Barr   D., , Barajas-Martinez   H., , Antzelevitch   C., , Hu   D. . Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. . PLoS One.   2013; ;8: 5 : e64603 .
    [Google Scholar]
  8. [8]. Arvanitis   DA., , Sanoudou   D., , Kolokathis   F., , Vafiadaki   E., , Papalouka   V., , Kontrogianni-Konstantopoulos   A., , Theodorakis   GN., , Paraskevaidis   IA., , Adamopoulos   S., , Dorn   GW 2nd., , Kremastinos   DT., , Kranias   EG. . The Ser96Ala variant in histidine-rich calcium-binding protein is associated with life-threatening ventricular arrhythmias in idiopathic dilated cardiomyopathy. . Eur Heart J.   Oct 2008; ;29: 20 : 2514– 2525 .
    [Google Scholar]
  9. [9]. Dorn   GW 2nd. . The genomic architecture of sporadic heart failure. . Circ Res.   May 13 2011; ;108: 10 : 1270– 1283 .
    [Google Scholar]
  10. [10]. Kalozoumi   G., , Tzimas   C., , Sanoudou   D. . The expanding role of epigenetics. . Global Cardiology Science and Practice.   2012; ;2012: 1 .
    [Google Scholar]
  11. [11]. Smalheiser   NR. . EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. . Genome Biol.   2003; ;4: 7 : 403 .
    [Google Scholar]
  12. [12]. Cai   X., , Hagedorn   CH., , Cullen   BR. . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. . RNA.   Dec 2004; ;10: 12 : 1957– 1966 .
    [Google Scholar]
  13. [13]. Lee   Y., , Ahn   C., , Han   J., , Choi   H., , Kim   J., , Yim   J., , Lee   J., , Provost   P., , Rådmark   O., , Kim   S., , Kim   VN. . The nuclear RNase III Drosha initiates microRNA processing. . Nature.   Sep 25 2003; ;425: 6956 : 415– 419 .
    [Google Scholar]
  14. [14]. Lund   E., , Guttinger   S., , Calado   A., , Dahlberg   JE., , Kutay   U. . Nuclear export of microRNA precursors. . Science.   Jan 2 2004; ;303: 5654 : 95– 98 .
    [Google Scholar]
  15. [15]. Yi   R., , Qin   Y., , Macara   IG., , Cullen   BR. . Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. . Genes Dev.   Dec 15 2003; ;17: 24 : 3011– 3016 .
    [Google Scholar]
  16. [16]. Sontheimer   EJ. . Assembly and function of RNA silencing complexes. . Nat Rev Mol Cell Biol.   Feb 2005; ;6: 2 : 127– 138 .
    [Google Scholar]
  17. [17]. Schwarz   DS., , Hutvagner   G., , Du   T., , Xu   Z., , Aronin   N., , Zamore   PD. . Asymmetry in the assembly of the RNAi enzyme complex. . Cell.   Oct 17 2003; ;115: 2 : 199– 208 .
    [Google Scholar]
  18. [18]. Khvorova   A., , Reynolds   A., , Jayasena   SD. . Functional siRNAs and miRNAs exhibit strand bias. . Cell.   Oct 17 2003; ;115: 2 : 209– 216 .
    [Google Scholar]
  19. [19]. Gregory   RI., , Chendrimada   TP., , Cooch   N., , Shiekhattar   R. . Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. . Cell.   Nov 18 2005; ;123: 4 : 631– 640 .
    [Google Scholar]
  20. [20]. Ambros   V. . The functions of animal microRNAs. . Nature.   Sep 16 2004; ;431: 7006 : 350– 355 .
    [Google Scholar]
  21. [21]. Hutvagner   G., , Zamore   PD. . A microRNA in a multiple-turnover RNAi enzyme complex. . Science.   Sep 20 2; ;297: 5589 : 2056– 2060 .
    [Google Scholar]
  22. [22]. Bartel   DP. . MicroRNAs: genomics, biogenesis, mechanism, and function. . Cell.   Jan 23 2004; ;116: 2 : 281– 297 .
    [Google Scholar]
  23. [23]. Lewis   BP., , Burge   CB., , Bartel   DP. . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. . Cell.   Jan 14 2005; ;120: 1 : 15– 20 .
    [Google Scholar]
  24. [24]. Miranda   KC., , Huynh   T., , Tay   Y., , Ang   YS., , Tam   WL., , Thomson   AM., , Lim   B., , Rigoutsos   I. . A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. . Cell.   Sep 22 2006; ;126: 6 : 1203– 1217 .
    [Google Scholar]
  25. [25]. Berezikov   E., , Guryev   V., , van de Belt   J., , Wienholds   E., , Plasterk   RH., , Cuppen   E. . Phylogenetic shadowing and computational identification of human microRNA genes. . Cell.   Jan 14 2005; ;120: 1 : 21– 24 .
    [Google Scholar]
  26. [26]. Bentwich   I., , Avniel   A., , Karov   Y., , Aharonov   R., , Gilad   S., , Barad   O., , Barzilai   A., , Einat   P., , Einav   U., , Meiri   E., , Sharon   E., , Spector   Y., , Bentwich   Z. . Identification of hundreds of conserved and nonconserved human microRNAs. . Nat Genet.   Jul 2005; ;37: 7 : 766– 770 .
    [Google Scholar]
  27. [27]. Kloosterman   WP., , Plasterk   RH. . The diverse functions of microRNAs in animal development and disease. . Dev Cell.   Oct 2006; ;11: 4 : 441– 450 .
    [Google Scholar]
  28. [28]. Townley-Tilson   WH., , Callis   TE., , Wang   D. . MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. . Int J Biochem Cell Biol.   Aug 2010; ;42: 8 : 1252– 1255 .
    [Google Scholar]
  29. [29]. Dorn   GW 2nd. . MicroRNAs in cardiac disease. . Transl Res.   Apr 2011; ;157: 4 : 226– 235 .
    [Google Scholar]
  30. [30]. Ono   K., , Kuwabara   Y., , Han   J. . MicroRNAs and cardiovascular diseases. . FEBS J.   May 2011; ;278: 10 : 1619– 1633 .
    [Google Scholar]
  31. [31]. Boettger   T., , Braun   T. . A new level of complexity: the role of microRNAs in cardiovascular development. . Circ Res.   Mar 30 2012; ;110: 7 : 1000– 1013 .
    [Google Scholar]
  32. [32]. Dangwal   S., , Bang   C., , Thum   T. . Novel techniques and targets in cardiovascular microRNA research. . Cardiovasc Res.   Mar 15 2012; ;93: 4 : 545– 554 .
    [Google Scholar]
  33. [33]. Leptidis   S., , El Azzouzi   H., , Lok   SI., , de Weger   R., , Olieslagers   S., , Kisters   N., , Silva   GJ., , Heymans   S., , Cuppen   E., , Berezikov   E., , De Windt   LJ., , da Costa Martins   P. . A deep sequencing approach to uncover the miRNOME in the human heart. . PLoS One.   2013; ;8: 2 : e57800 .
    [Google Scholar]
  34. [34]. Bernstein   E., , Kim   SY., , Carmell   MA., , Murchison   EP., , Alcorn   H., , Li   MZ., , Mills   AA., , Elledge   SJ., , Anderson   KV., , Hannon   GJ. . Dicer is essential for mouse development. . Nat Genet.   Nov 2003; ;35: 3 : 215– 217 .
    [Google Scholar]
  35. [35]. Wienholds   E., , Koudijs   MJ., , van Eeden   FJ., , Cuppen   E., , Plasterk   RH. . The microRNA-producing enzyme Dicer1 is essential for zebrafish development. . Nat Genet.   Nov 2003; ;35: 3 : 217– 218 .
    [Google Scholar]
  36. [36]. Yang   WJ., , Yang   DD., , Na   S., , Sandusky   GE., , Zhang   Q., , Zhao   G. . Dicer is required for embryonic angiogenesis during mouse development. . J Biol Chem.   Mar 11 2005; ;280: 10 : 9330– 9335 .
    [Google Scholar]
  37. [37]. Otsuka   M., , Zheng   M., , Hayashi   M., , Lee   JD., , Yoshino   O., , Lin   S., , Han   J. . Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. . J Clin Invest.   May 2008; ;118: 5 : 1944– 1954 .
    [Google Scholar]
  38. [38]. Huang   ZP., , Chen   JF., , Regan   JN., , Maguire   CT., , Tang   RH., , Dong   XR., , Majesky   MW., , Wang   DZ. . Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects. . Arterioscler Thromb Vasc Biol.   Dec 2010; ;30: 12 : 2575– 2586 .
    [Google Scholar]
  39. [39]. Giraldez   AJ., , Cinalli   RM., , Glasner   ME., , Enright   AJ., , Thomson   JM., , Baskerville   S., , Hammond   SM., , Bartel   DP., , Schier   AF. . MicroRNAs regulate brain morphogenesis in zebrafish. . Science.   May 6 2005; ;308: 5723 : 833– 838 .
    [Google Scholar]
  40. [40]. Lagendijk   AK., , Goumans   MJ., , Burkhard   SB., , Bakkers   J. . MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. . Circ Res.   Sep 2 2011; ;109: 6 : 649– 657 .
    [Google Scholar]
  41. [41]. Saxena   A., , Tabin   CJ. . miRNA-processing enzyme Dicer is necessary for cardiac outflow tract alignment and chamber septation. . Proc Natl Acad Sci U S A.   Jan 5 2010; ;107: 1 : 87– 91 .
    [Google Scholar]
  42. [42]. Singh   MK., , Lu   MM., , Massera   D., , Epstein   JA. . MicroRNA-processing enzyme Dicer is required in epicardium for coronary vasculature development. . J Biol Chem.   Nov 25 2011; ;286: 47 : 41036– 41045 .
    [Google Scholar]
  43. [43]. da Costa Martins   PA., , Bourajjaj   M., , Gladka   M., , Kortland   M., , van Oort   RJ., , Pinto   YM., , Molkentin   JD., , De Windt   LJ. . Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. . Circulation.   Oct 7 2008; ;118: 15 : 1567– 1576 .
    [Google Scholar]
  44. [44]. Kalsotra   A., , Wang   K., , Li   PF., , Cooper   TA. . MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. . Genes Dev.   Apr 1 2010; ;24: 7 : 653– 658 .
    [Google Scholar]
  45. [45]. Malizia   AP., , Wang   DZ. . MicroRNAs in cardiomyocyte development. . Wiley Interdiscip Rev Syst Biol Med.   Mar-Apr 2011; ;3: 2 : 183– 190 .
    [Google Scholar]
  46. [46]. Zhao   Y., , Samal   E., , Srivastava   D. . Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. . Nature.   Jul 14 2005; ;436: 7048 : 214– 220 .
    [Google Scholar]
  47. [47]. Chen   JF., , Mandel   EM., , Thomson   JM., , Wu   Q., , Callis   TE., , Hammond   SM., , Conlon   FL., , Wang   DZ. . The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. . Nat Genet.   Feb 2006; ;38: 2 : 228– 233 .
    [Google Scholar]
  48. [48]. McFadden   DG., , Barbosa   AC., , Richardson   JA., , Schneider   MD., , Srivastava   D., , Olson   EN. . The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. . Development.   Jan 2005; ;132: 1 : 189– 201 .
    [Google Scholar]
  49. [49]. Srivastava   D., , Cserjesi   P., , Olson   EN. . A subclass of bHLH proteins required for cardiac morphogenesis. . Science.   Dec 22 1995; ;270: 5244 : 1995– 1999 .
    [Google Scholar]
  50. [50]. Srivastava   D., , Thomas   T., , Lin   Q., , Kirby   ML., , Brown   D., , Olson   EN. . Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. . Nat Genet.   Jun 1997; ;16: 2 : 154– 160 .
    [Google Scholar]
  51. [51]. Yamagishi   H., , Yamagishi   C., , Nakagawa   O., , Harvey   RP., , Olson   EN., , Srivastava   D. . The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. . Dev Biol.   Nov 15 2001; ;239: 2 : 190– 203 .
    [Google Scholar]
  52. [52]. Yelon   D., , Ticho   B., , Halpern   ME., , Ruvinsky   I., , Ho   RK., , Silver   LM., , Stainier   DY. . The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. . Development.   Jun 2000; ;127: 12 : 2573– 2582 .
    [Google Scholar]
  53. [53]. Zhao   Y., , Ransom   JF., , Li   A., , Vedantham   V., , von Drehle   M., , Muth   AN., , Tsuchihashi   T., , McManus   MT., , Schwartz   RJ., , Srivastava   D. . Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. . Cell.   Apr 20 2007; ;129: 2 : 303– 317 .
    [Google Scholar]
  54. [54]. Niu   Z., , Li   A., , Zhang   SX., , Schwartz   RJ. . Serum response factor micromanaging cardiogenesis. . Curr Opin Cell Biol.   Dec 2007; ;19: 6 : 618– 627 .
    [Google Scholar]
  55. [55]. Liu   N., , Bezprozvannaya   S., , Williams   AH., , Qi   X., , Richardson   JA., , Bassel-Duby   R., , Olson   EN. . microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. . Genes Dev.   Dec 1 2008; ;22: 23 : 3242– 3254 .
    [Google Scholar]
  56. [56]. Cao   X., , Wang   J., , Wang   Z., , Du   J., , Yuan   X., , Huang   W., , Meng   J., , Gu   H., , Nie   Y., , Ji   B., , Hu   S., , Zheng   Z. . MicroRNA profiling during rat ventricular maturation: A role for miR-29a in regulating cardiomyocyte cell cycle re-entry. . FEBS Lett.   May 21 2013; ;587: 10 : 1548– 1555 .
    [Google Scholar]
  57. [57]. Chinchilla   A., , Lozano   E., , Daimi   H., , Esteban   FJ., , Crist   C., , Aranega   AE., , Franco   D. . MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. . Cardiovasc Res.   Jan 1 2011; ;89: 1 : 98– 108 .
    [Google Scholar]
  58. [58]. Banjo   T., , Grajcarek   J., , Yoshino   D., , Osada   H., , Miyasaka   KY., , Kida   YS., , Ueki   Y., , Nagayama   K., , Kawakami   K., , Matsumoto   T., , Sato   M., , Ogura   T. . Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. . Nat Commun.   Jun 10 2013; ;4: : 1978 .
    [Google Scholar]
  59. [59]. Morton   SU., , Scherz   PJ., , Cordes   KR., , Ivey   KN., , Stainier   DY., , Srivastava   D. . microRNA-138 modulates cardiac patterning during embryonic development. . Proc Natl Acad Sci U S A.   Nov 18 2008; ;105: 46 : 17830– 17835 .
    [Google Scholar]
  60. [60]. Chiavacci   E., , Dolfi   L., , Verduci   L., , Meghini   F., , Gestri   G., , Evangelista   AM., , Wilson   SW., , Cremisi   F., , Pitto   L. . MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. . PLoS One.   2012; ;7: 11 : e50536 .
    [Google Scholar]
  61. [61]. Fish   JE., , Wythe   JD., , Xiao   T., , Bruneau   BG., , Stainier   DY., , Srivastava   D., , Woo   S. . A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. . Development.   Apr 2011; ;138: 7 : 1409– 1419 .
    [Google Scholar]
  62. [62]. Kochegarov   A., , Moses   A., , Lian   W., , Meyer   J., , Hanna   MC., , Lemanski   LF. . A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. . J Biomed Sci.   2013; ;20: : 20 .
    [Google Scholar]
  63. [63]. Callis   TE., , Pandya   K., , Seok   HY., , Tang   RH., , Tatsuguchi   M., , Huang   ZP., , Chen   JF., , Deng   Z., , Gunn   B., , Shumate   J., , Willis   MS., , Selzman   CH., , Wang   DZ. . MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. . J Clin Invest.   Sep 2009; ;119: 9 : 2772– 2786 .
    [Google Scholar]
  64. [64]. Wilson   KD., , Hu   S., , Venkatasubrahmanyam   S., , Fu   JD., , Sun   N., , Abilez   OJ., , Baugh   JJ., , Jia   F., , Ghosh   Z., , Li   RA., , Butte   AJ., , Wu   JC. . Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. . Circ Cardiovasc Genet.   Oct 2010; ;3: 5 : 426– 435 .
    [Google Scholar]
  65. [65]. Olson   EN. . Gene regulatory networks in the evolution and development of the heart. . Science.   Sep 29 2006; ;313: 5795 : 1922– 1927 .
    [Google Scholar]
  66. [66]. Molkentin   JD., , Lin   Q., , Duncan   SA., , Olson   EN. . Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. . Genes Dev.   Apr 15 1997; ;11: 8 : 1061– 1072 .
    [Google Scholar]
  67. [67]. Fu   JD., , Rushing   SN., , Lieu   DK., , Chan   CW., , Kong   CW., , Geng   L., , Wilson   KD., , Chiamvimonvat   N., , Boheler   KR., , Wu   JC., , Keller   G., , Hajjar   RJ., , Li   RA. . Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. . PLoS One.   2011; ;6: 11 : e27417 .
    [Google Scholar]
  68. [68]. Sucharov   C., , Bristow   MR., , Port   JD. . miRNA expression in the failing human heart: functional correlates. . J Mol Cell Cardiol.   Aug 2008; ;45: 2 : 185– 192 .
    [Google Scholar]
  69. [69]. Ikeda   S., , Kong   SW., , Lu   J., , Bisping   E., , Zhang   H., , Allen   PD., , Golub   TR., , Pieske   B., , Pu   WT. . Altered microRNA expression in human heart disease. . Physiol Genomics.   Nov 14 2007; ;31: 3 : 367– 373 .
    [Google Scholar]
  70. [70]. van Rooij   E., , Sutherland   LB., , Liu   N., , Williams   AH., , McAnally   J., , Gerard   RD., , Richardson   JA., , Olson   EN. . A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. . Proc Natl Acad Sci U S A.   Nov 28 2006; ;103: 48 : 18255– 18260 .
    [Google Scholar]
  71. [71]. Elia   L., , Contu   R., , Quintavalle   M., , Varrone   F., , Chimenti   C., , Russo   MA., , Cimino   V., , De Marinis   L., , Frustaci   A., , Catalucci   D., , Condorelli   G. . Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. . Circulation.   Dec 8 2009; ;120: 23 : 2377– 2385 .
    [Google Scholar]
  72. [72]. Ikeda   S., , He   A., , Kong   SW., , Lu   J., , Bejar   R., , Bodyak   N., , Lee   KH., , Ma   Q., , Kang   PM., , Golub   TR., , Pu   WT. . MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. . Mol Cell Biol.   Apr 2009; ;29: 8 : 2193– 2204 .
    [Google Scholar]
  73. [73]. Care   A., , Catalucci   D., , Felicetti   F., , Bonci   D., , Addario   A., , Gallo   P., , Bang   ML., , Segnalini   P., , Gu   Y., , Dalton   ND., , Elia   L., , Latronico   MV., , Høydal   M., , Autore   C., , Russo   MA., , Dorn   GW 2nd., , Ellingsen   O., , Ruiz-Lozano   P., , Peterson   KL., , Croce   CM., , Peschle   C., , Condorelli   G. . MicroRNA-133 controls cardiac hypertrophy. . Nat Med.   May 2007; ;13: 5 : 613– 618 .
    [Google Scholar]
  74. [74]. Sayed   D., , Hong   C., , Chen   IY., , Lypowy   J., , Abdellatif   M. . MicroRNAs play an essential role in the development of cardiac hypertrophy. . Circ Res.   Feb 16 2007; ;100: 3 : 416– 424 .
    [Google Scholar]
  75. [75]. Bagnall   RD., , Tsoutsman   T., , Shephard   RE., , Ritchie   W., , Semsarian   C. . Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. . PLoS One.   2012; ;7: 9 : e44744 .
    [Google Scholar]
  76. [76]. Ali   R., , Huang   Y., , Maher   SE., , Kim   RW., , Giordano   FJ., , Tellides   G., , Geirsson   A. . miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. . J Mol Cell Cardiol.   May 2012; ;52: 5 : 1027– 1037 .
    [Google Scholar]
  77. [77]. van Almen   GC., , Verhesen   W., , van Leeuwen   RE., , van de Vrie   M., , Eurlings   C., , Schellings   MW., , Swinnen   M., , Cleutjens   JP., , van Zandvoort   MA., , Heymans   S., , Schroen   B. . MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. . Aging Cell.   Oct 2011; ;10: 5 : 769– 779 .
    [Google Scholar]
  78. [78]. Matkovich   SJ., , Van Booven   DJ., , Youker   KA., , Torre-Amione   G., , Diwan   A., , Eschenbacher   WH., , Dorn   LE., , Watson   MA., , Margulies   KB., , Dorn   GW 2nd. . Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. . Circulation.   Mar 10 2009; ;119: 9 : 1263– 1271 .
    [Google Scholar]
  79. [79]. Thum   T., , Galuppo   P., , Wolf   C., , Fiedler   J., , Kneitz   S., , van Laake   LW., , Doevendans   PA., , Mummery   CL., , Borlak   J., , Haverich   A., , Gross   C., , Engelhardt   S., , Ertl   G., , Bauersachs   J. . MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. . Circulation.   Jul 17 2007; ;116: 3 : 258– 267 .
    [Google Scholar]
  80. [80]. Lin   Z., , Murtaza   I., , Wang   K., , Jiao   J., , Gao   J., , Li   PF. . miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. . Proc Natl Acad Sci U S A.   Jul 21 2009; ;106: 29 : 12103– 12108 .
    [Google Scholar]
  81. [81]. Wang   K., , Lin   ZQ., , Long   B., , Li   JH., , Zhou   J., , Li   PF. . Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. . J Biol Chem.   Jan 2 2012; ;287: 1 : 589– 599 .
    [Google Scholar]
  82. [82]. Wang   J., , Huang   W., , Xu   R., , Nie   Y., , Cao   X., , Meng   J., , Xu   X., , Hu   S., , Zheng   Z. . MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. . J Cell Mol Med.   Sep 2012; ;16: 9 : 2150– 2160 .
    [Google Scholar]
  83. [83]. Matkovich   SJ., , Wang   W., , Tu   Y., , Eschenbacher   WH., , Dorn   LE., , Condorelli   G., , Diwan   A., , Nerbonne   JM., , Dorn   GW 2nd. . MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. . Circ Res.   Jan 8 2010; ;106: 1 : 166– 175 .
    [Google Scholar]
  84. [84]. Thum   T., , Gross   C., , Fiedler   J., , Fischer   T., , Kissler   S., , Bussen   M., , Galuppo   P., , Just   S., , Rottbauer   W., , Frantz   S., , Castoldi   M., , Soutschek   J., , Koteliansky   V., , Rosenwald   A., , Basson   MA., , Licht   JD., , Pena   JT., , Rouhanifard   SH., , Muckenthaler   MU., , Tuschl   T., , Martin   GR., , Bauersachs   J., , Engelhardt   S. . MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. . Nature.   Dec 18 2008; ;456: 7224 : 980– 984 .
    [Google Scholar]
  85. [85]. Choy   MK., , Movassagh   M., , Siggens   L., , Vujic   A., , Goddard   M., , Sánchez   A., , Perkins   N., , Figg   N., , Bennett   M., , Carroll   J., , Foo   R. . High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-kappaB-complex-dependent gene expression in human heart failure. . Genome Med.   2010; ;2: 6 : 37 .
    [Google Scholar]
  86. [86]. Wei   C., , Kim   IK., , Kumar   S., , Jayasinghe   S., , Hong   N., , Castoldi   G., , Catalucci   D., , Jones   WK., , Gupta   S. . NF-kappaB mediated miR-26a regulation in cardiac fibrosis. . J Cell Physiol.   Jul 2013; ;228: 7 : 1433– 1442 .
    [Google Scholar]
  87. [87]. van Rooij   E., , Sutherland   LB., , Thatcher   JE., , DiMaio   JM., , Naseem   RH., , Marshall   WS., , Hill   JA., , Olson   EN. . Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. . Proc Natl Acad Sci U S A.   Sep 2 2008; ;105: 35 : 13027– 13032 .
    [Google Scholar]
  88. [88]. Duisters   RF., , Tijsen   AJ., , Schroen   B., , Leenders   JJ., , Lentink   V., , van der Made   I., , Herias   V., , van Leeuwen   RE., , Schellings   MW., , Barenbrug   P., , Maessen   JG., , Heymans   S., , Pinto   YM., , Creemers   EE. . miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. . Circ Res.   Jan 30 2009; ;104: 2 : 170– 178 , 176p following 178 .
    [Google Scholar]
  89. [89]. Creemers   EE., , Pinto   YM. . Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. . Cardiovasc Res.   Feb 1 2011; ;89: 2 : 265– 272 .
    [Google Scholar]
  90. [90]. Wang   C., , Wang   S., , Zhao   P., , Wang   X., , Wang   J., , Wang   Y., , Song   L., , Zou   Y., , Hui   R. . MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. . J Cell Biochem.   Jun 2012; ;113: 6 : 2040– 2046 .
    [Google Scholar]
  91. [91]. Zhang   HB., , Li   RC., , Xu   M., , Lai   YS., , Wu   HD., , Xie   XJ., , Gao   W., , Ye   H., , Zhang   YY., , Meng   X., , Wang   SQ. . Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. . Cardiovasc Res.   May 1 2013; ;98: 2 : 269– 276 .
    [Google Scholar]
  92. [92]. van Rooij   E., , Sutherland   LB., , Qi   X., , Richardson   JA., , Hill   J., , Olson   EN. . Control of stress-dependent cardiac growth and gene expression by a microRNA. . Science.   Apr 27 2007; ;316: 5824 : 575– 579 .
    [Google Scholar]
  93. [93]. Busk   PK., , Cirera   S. . MicroRNA profiling in early hypertrophic growth of the left ventricle in rats. . Biochem Biophys Res Commun.   Jun 11 2010; ;396: 4 : 989– 993 .
    [Google Scholar]
  94. [94]. Belevych   AE., , Sansom   SE., , Terentyeva   R., , Ho   HT., , Nishijima   Y., , Martin   MM., , Jindal   HK., , Rochira   JA., , Kunitomo   Y., , Abdellatif   M., , Carnes   CA., , Elton   TS., , Györke   S., , Terentyev   D. . MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. . PLoS One.   2011; ;6: 12 : e28324 .
    [Google Scholar]
  95. [95]. Janse   MJ. . Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. . Cardiovasc Res.   Feb 1 2004; ;61: 2 : 208– 217 .
    [Google Scholar]
  96. [96]. Pogwizd   SM., , Bers   DM. . Cellular basis of triggered arrhythmias in heart failure. . Trends Cardiovasc Med.   Feb 2004; ;14: 2 : 61– 66 .
    [Google Scholar]
  97. [97]. Tsoutsman   T., , Kelly   M., , Ng   DC., , Tan   JE., , Tu   E., , Lam   L., , Bogoyevitch   MA., , Seidman   CE., , Seidman   JG., , Semsarian   C. . Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy. . Circulation.   Apr 8 2008; ;117: 14 : 1820– 1831 .
    [Google Scholar]
  98. [98]. Cheng   Y., , Ji   R., , Yue   J., , Yang   J., , Liu   X., , Chen   H., , Dean   DB., , Zhang   C. . MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?.   Am J Pathol.   Jun 2007; ;170: 6 : 1831– 1840 .
    [Google Scholar]
  99. [99]. Tatsuguchi   M., , Seok   HY., , Callis   TE., , Thomson   JM., , Chen   JF., , Newman   M., , Rojas   M., , Hammond   SM., , Wang   DZ. . Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. . J Mol Cell Cardiol.   Jun 2007; ;42: 6 : 1137– 1141 .
    [Google Scholar]
  100. [100]. Reddy   S., , Zhao   M., , Hu   DQ., , Fajardo   G., , Hu   S., , Ghosh   Z., , Rajagopalan   V., , Wu   JC., , Bernstein   D. . Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. . Physiol Genomics.   May 1 2012; ;44: 10 : 562– 575 .
    [Google Scholar]
  101. [101]. Zhao   M., , Chow   A., , Powers   J., , Fajardo   G., , Bernstein   D. . Microarray analysis of gene expression after transverse aortic constriction in mice. . Physiol Genomics.   Sep 16 2004; ;19: 1 : 93– 105 .
    [Google Scholar]
  102. [102]. Kaufman   BD., , Desai   M., , Reddy   S., , Osorio   JC., , Chen   JM., , Mosca   RS., , Ferrante   AW., , Mital   S. . Genomic profiling of left and right ventricular hypertrophy in congenital heart disease. . J Card Fail.   Nov 2008; ;14: 9 : 760– 767 .
    [Google Scholar]
  103. [103]. Ucar   A., , Gupta   SK., , Fiedler   J., , Erikci   E., , Kardasinski   M., , Batkai   S., , Dangwal   S., , Kumarswamy   R., , Bang   C., , Holzmann   A., , Remke   J., , Caprio   M., , Jentzsch   C., , Engelhardt   S., , Geisendorf   S., , Glas   C., , Hofmann   TG., , Nessling   M., , Richter   K., , Schiffer   M., , Carrier   L., , Napp   LC., , Bauersachs   J., , Chowdhury   K., , Thum   T. . The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. . Nat Commun.   2012; ;3: : 1078 .
    [Google Scholar]
  104. [104]. Willis   MS., , Ike   C., , Li   L., , Wang   DZ., , Glass   DJ., , Patterson   C. . Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. . Circ Res.   Mar 2 2007; ;100: 4 : 456– 459 .
    [Google Scholar]
  105. [105]. Wang   J., , Song   Y., , Zhang   Y., , Xiao   H., , Sun   Q., , Hou   N., , Guo   S., , Wang   Y., , Fan   K., , Zhan   D., , Zha   L., , Cao   Y., , Li   Z., , Cheng   X., , Zhang   Y., , Yang   X. . Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. . Cell Res.   Mar 2012; ;22: 3 : 516– 527 .
    [Google Scholar]
  106. [106]. Nagalingam   RS., , Sundaresan   NR., , Gupta   MP., , Geenen   DL., , Solaro   RJ., , Gupta   M. . A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. . J Biol Chem.   Apr 19 2013; ;288: 16 : 11216– 11232 .
    [Google Scholar]
  107. [107]. Knezevic   I., , Patel   A., , Sundaresan   NR., , Gupta   MP., , Solaro   RJ., , Nagalingam   RS., , Gupta   M. . A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. . J Biol Chem.   Apr 13 2012; ;287: 16 : 12913– 12926 .
    [Google Scholar]
  108. [108]. Ganesan   J., , Ramanujam   D., , Sassi   Y., , Ahles   A., , Jentzsch   C., , Werfel   S., , Leierseder   S., , Loyer   X., , Giacca   M., , Zentilin   L., , Thum   T., , Laggerbauer   B., , Engelhardt   S. . MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors. . Circulation.   May 28 2013; ;127: 21 : 2097– 2106 .
    [Google Scholar]
  109. [109]. Wang   K., , Long   B., , Zhou   J., , Li   PF. . miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. . J Biol Chem.   Apr 16 2010; ;285: 16 : 11903– 11912 .
    [Google Scholar]
  110. [110]. Souders   CA., , Bowers   SL., , Baudino   TA. . Cardiac fibroblast: the renaissance cell. . Circ Res.   Dec 4 2009; ;105: 12 : 1164– 1176 .
    [Google Scholar]
  111. [111]. Jugdutt   BI. . Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough?.   Circulation.   Sep 16 2003; ;108: 11 : 1395– 1403 .
    [Google Scholar]
  112. [112]. Roy   S., , Khanna   S., , Hussain   SR., , Biswas   S., , Azad   A., , Rink   C., , Gnyawali   S., , Shilo   S., , Nuovo   GJ., , Sen   CK. . MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. . Cardiovasc Res.   Apr 1 2009; ;82: 1 : 21– 29 .
    [Google Scholar]
  113. [113]. Liang   H., , Zhang   C., , Ban   T., , Liu   Y., , Mei   L., , Piao   X., , Zhao   D., , Lu   Y., , Chu   W., , Yang   B. . A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis. . Int J Biochem Cell Biol.   Dec 2012; ;44: 12 : 2152– 2160 .
    [Google Scholar]
  114. [114]. Wada   AM., , Smith   TK., , Osler   ME., , Reese   DE., , Bader   DM. . Epicardial/Mesothelial cell line retains vasculogenic potential of embryonic epicardium. . Circ Res.   Mar 21 2003; ;92: 5 : 525– 531 .
    [Google Scholar]
  115. [115]. Di Meglio   F., , Castaldo   C., , Nurzynska   D., , Romano   V., , Miraglia   R., , Bancone   C., , Langella   G., , Vosa   C., , Montagnani   S. . Epithelial-mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. . J Mol Cell Cardiol.   Nov 2010; ;49: 5 : 719– 727 .
    [Google Scholar]
  116. [116]. Smart   N., , Risebro   CA., , Melville   AA., , Moses   K., , Schwartz   RJ., , Chien   KR., , Riley   PR. . Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. . Nature.   Jan 11 2007; ;445: 7124 : 177– 182 .
    [Google Scholar]
  117. [117]. Russell   JL., , Goetsch   SC., , Gaiano   NR., , Hill   JA., , Olson   EN., , Schneider   JW. . A dynamic notch injury response activates epicardium and contributes to fibrosis repair. . Circ Res.   Jan 7 2011; ;108: 1 : 51– 59 .
    [Google Scholar]
  118. [118]. van Tuyn   J., , Atsma   DE., , Winter   EM., , van der Velde-van Dijke   I., , Pijnappels   DA., , Bax   NA., , Knaän-Shanzer   S., , Gittenberger-de Groot   AC., , Poelmann   RE., , van der Laarse   A., , van der Wall   EE., , Schalij   MJ., , de Vries   AA. . Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. . Stem Cells.   Feb 2007; ;25: 2 : 271– 278 .
    [Google Scholar]
  119. [119]. Bronnum   H., , Andersen   DC., , Schneider   M., , Sandberg   MB., , Eskildsen   T., , Nielsen   SB., , Kalluri   R., , Sheikh   SP. . miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1. . PLoS One.   2013; ;8: 2 : e56280 .
    [Google Scholar]
  120. [120]. Bronnum   H., , Andersen   DC., , Schneider   M., , Nossent   AY., , Nielsen   SB., , Sheikh   SP. . Islet-1 is a dual regulator of fibrogenic epithelial-to-mesenchymal transition in epicardial mesothelial cells. . Exp Cell Res.   Feb 15 2013; ;319: 4 : 424– 435 .
    [Google Scholar]
  121. [121]. Krenning   G., , Zeisberg   EM., , Kalluri   R. . The origin of fibroblasts and mechanism of cardiac fibrosis. . J Cell Physiol.   Nov 2010; ;225: 3 : 631– 637 .
    [Google Scholar]
  122. [122]. Zeisberg   EM., , Tarnavski   O., , Zeisberg   M., , Dorfman   AL., , McMullen   JR., , Gustafsson   E., , Chandraker   A., , Yuan   X., , Pu   WT., , Roberts   AB., , Neilson   EG., , Sayegh   MH., , Izumo   S., , Kalluri   R. . Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. . Nat Med.   Aug 2007; ;13: 8 : 952– 961 .
    [Google Scholar]
  123. [123]. Ghosh   AK., , Nagpal   V., , Covington   JW., , Michaels   MA., , Vaughan   DE. . Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. . Cell Signal.   May 2012; ;24: 5 : 1031– 1036 .
    [Google Scholar]
  124. [124]. Ghosh   AK., , Vaughan   DE. . Fibrosis: is it a coactivator disease?.   Front Biosci (Elite Ed) . 2012; ;4: : 1556– 1570 .
    [Google Scholar]
  125. [125]. Terentyev   D., , Belevych   AE., , Terentyeva   R., , Martin   MM., , Malana   GE., , Kuhn   DE., , Abdellatif   M., , Feldman   DS., , Elton   TS., , Györke   S. . miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. . Circ Res.   Feb 27 2009; ;104: 4 : 514– 521 .
    [Google Scholar]
  126. [126]. Tritsch   E., , Mallat   Y., , Lefebvre   F., , Diguet   N., , Escoubet   B., , Blanc   J., , De Windt   LJ., , Catalucci   D., , Vandecasteele   G., , Li   Z., , Mericskay   M. . An SRF/miR-1 axis regulates NCX1 and Annexin A5 protein levels in the normal and failing heart. . Cardiovasc Res.   Jun 1 2013; ;98: 3 : 372– 380 .
    [Google Scholar]
  127. [127]. Kumarswamy   R., , Lyon   AR., , Volkmann   I., , Mills   AM., , Bretthauer   J., , Pahuja   A., , Geers-Knörr   C., , Kraft   T., , Hajjar   RJ., , Macleod   KT., , Harding   SE., , Thum   T. . SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. . Eur Heart J.   May 2012; ;33: 9 : 1067– 1075 .
    [Google Scholar]
  128. [128]. Braunwald   E. . Biomarkers in heart failure. . N Engl J Med.   May 15 2008; ;358: 20 : 2148– 2159 .
    [Google Scholar]
  129. [129]. Goren   Y., , Kushnir   M., , Zafrir   B., , Tabak   S., , Lewis   BS., , Amir   O. . Serum levels of microRNAs in patients with heart failure. . Eur J Heart Fail.   Feb 2012; ;14: 2 : 147– 154 .
    [Google Scholar]
  130. [130]. Fan   KL., , Zhang   HF., , Shen   J., , Zhang   Q., , Li   XL. . Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. . Indian Heart J.   Jan-Feb 2013; ;65: 1 : 12– 16 .
    [Google Scholar]
  131. [131]. Matsumoto   S., , Sakata   Y., , Suna   S., , Nakatani   D., , Usami   M., , Hara   M., , Kitamura   T., , Hamasaki   T., , Nanto   S., , Kawahara   Y., , Komuro   I. . Circulating p53-Responsive MicroRNAs Are Predictive Indicators of Heart Failure After Acute Myocardial Infarction. . Circ Res.   Jul 19 2013; ;113: 3 : 322– 326 .
    [Google Scholar]
  132. [132]. Qiang   L., , Hong   L., , Ningfu   W., , Huaihong   C., , Jing   W. . Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. . Int J Cardiol.   Oct 3 2013; ;168: 3 : 2082– 2088 .
    [Google Scholar]
  133. [133]. Dickinson   BA., , Semus   HM., , Montgomery   RL., , Stack   C., , Latimer   PA., , Lewton   SM., , Lynch   JM., , Hullinger   TG., , Seto   AG., , van Rooij   E. . Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. . Eur J Heart Fail.   Jun 2013; ;15: 6 : 650– 659 .
    [Google Scholar]
  134. [134]. Voellenkle   C., , van Rooij   J., , Cappuzzello   C., , Greco   S., , Arcelli   D., , Di Vito   L., , Melillo   G., , Rigolini   R., , Costa   E., , Crea   F., , Capogrossi   MC., , Napolitano   M., , Martelli   F. . MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. . Physiol Genomics.   Aug 2010; ;42: 3 : 420– 426 .
    [Google Scholar]
  135. [135]. Fukushima   Y., , Nakanishi   M., , Nonogi   H., , Goto   Y., , Iwai   N. . Assessment of plasma miRNAs in congestive heart failure. . Circ J.   2011; ;75: 2 : 336– 340 .
    [Google Scholar]
  136. [136]. Fichtlscherer   S., , De Rosa   S., , Fox   H., , Schwietz   T., , Fischer   A., , Liebetrau   C., , Weber   M., , Hamm   CW., , Röxe   T., , Müller-Ardogan   M., , Bonauer   A., , Zeiher   AM., , Dimmeler   S. . Circulating microRNAs in patients with coronary artery disease. . Circ Res.   Sep 3 2010; ;107: 5 : 677– 684 .
    [Google Scholar]
  137. [137]. Cogoni   C., , Macino   G. . Post-transcriptional gene silencing across kingdoms. . Curr Opin Genet Dev.   Dec 2000; ;10: 6 : 638– 643 .
    [Google Scholar]
  138. [138]. Coelho   T., , Adams   D., , Silva   A., , Lozeron   P., , Hawkins   PN., , Mant   T., , Perez   J., , Chiesa   J., , Warrington   S., , Tranter   E., , Munisamy   M., , Falzone   R., , Harrop   J., , Cehelsky   J., , Bettencourt   BR., , Geissler   M., , Butler   JS., , Sehgal   A., , Meyers   RE., , Chen   Q., , Borland   T., , Hutabarat   RM., , Clausen   VA., , Alvarez   R., , Fitzgerald   K., , Gamba-Vitalo   C., , Nochur   SV., , Vaishnaw   AK., , Sah   DW., , Gollob   JA., , Suhr   OB. . Safety and efficacy of RNAi therapy for transthyretin amyloidosis. . N Engl J Med.   Aug 29 2013; ;369: 9 : 819– 829 .
    [Google Scholar]
  139. [139]. Crunkhorn   S. . Trial watch: pioneering RNAi therapy shows antitumour activity in humans. . Nat Rev Drug Discov.   Mar 2013; ;12: 3 : 178 .
    [Google Scholar]
  140. [140]. Fitzgerald   K., , Frank-Kamenetsky   M., , Shulga-Morskaya   S., , Liebow   A., , Bettencourt   BR., , Sutherland   JE., , Hutabarat   RM., , Clausen   VA., , Karsten   V., , Cehelsky   J., , Nochur   SV., , Kotelianski   V., , Horton   J., , Mant   T., , Chiesa   J., , Ritter   J., , Munisamy   M., , Vaishnaw   AK., , Gollob   JA., , Simon   A. . Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. . Lancet.   Jan 4 2014; ;383: 9911 : 60– 68 .
    [Google Scholar]
  141. [141]. Elbashir   SM., , Martinez   J., , Patkaniowska   A., , Lendeckel   W., , Tuschl   T. . Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. . EMBO J.   Dec 3 2001; ;20: 23 : 6877– 6888 .
    [Google Scholar]
  142. [142]. Bartlett   DW., , Davis   ME. . Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. . Biotechnol Bioeng.   Jul 1 2007; ;97: 4 : 909– 921 .
    [Google Scholar]
  143. [143]. Aagaard   L., , Rossi   JJ. . RNAi therapeutics: principles, prospects and challenges. . Adv Drug Deliv Rev.   Mar 30 2007; ;59: 2–3 : 75– 86 .
    [Google Scholar]
  144. [144]. Xia   H., , Mao   Q., , Paulson   HL., , Davidson   BL. . siRNA-mediated gene silencing in vitro and in vivo. . Nat Biotechnol.   Oct 2002; ;20: 10 : 1006– 1010 .
    [Google Scholar]
  145. [145]. Ye   K., , Malinina   L., , Patel   DJ. . Recognition of small interfering RNA by a viral suppressor of RNA silencing. . Nature.   Dec 18 2003; ;426: 6968 : 874– 878 .
    [Google Scholar]
  146. [146]. Suckau   L., , Fechner   H., , Chemaly   E., , Krohn   S., , Hadri   L., , Kockskämper   J., , Westermann   D., , Bisping   E., , Ly   H., , Wang   X., , Kawase   Y., , Chen   J., , Liang   L., , Sipo   I., , Vetter   R., , Weger   S., , Kurreck   J., , Erdmann   V., , Tschope   C., , Pieske   B., , Lebeche   D., , Schultheiss   HP., , Hajjar   RJ., , Poller   WC. . Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. . Circulation.   Mar 10 2009; ;119: 9 : 1241– 1252 .
    [Google Scholar]
  147. [147]. Kranias   EG., , Hajjar   RJ. . Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. . Circ Res.   Jun 8 2012; ;110: 12 : 1646– 1660 .
    [Google Scholar]
  148. [148]. Schmitt   JP., , Kamisago   M., , Asahi   M., , Li   GH., , Ahmad   F., , Mende   U., , Kranias   EG., , MacLennan   DH., , Seidman   JG., , Seidman   CE. . Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. . Science.   Feb 28 2003; ;299: 5611 : 1410– 1413 .
    [Google Scholar]
  149. [149]. Zhang   HS., , Liu   D., , Huang   Y., , Schmidt   S., , Hickey   R., , Guschin   D., , Su   H., , Jovin   IS., , Kunis   M., , Hinkley   S., , Liang   Y., , Hinh   L., , Spratt   SK., , Case   CC., , Rebar   EJ., , Ehrlich   BE., , Gregory   PD., , Giordano   FJ. . A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. . Mol Ther.   Aug 2012; ;20: 8 : 1508– 1515 .
    [Google Scholar]
  150. [150]. Iwanaga   Y., , Hoshijima   M., , Gu   Y., , Iwatate   M., , Dieterle   T., , Ikeda   Y., , Date   MO., , Chrast   J., , Matsuzaki   M., , Peterson   KL., , Chien   KR., , Ross   J Jr. . Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. . J Clin Invest.   Mar 2004; ;113: 5 : 727– 736 .
    [Google Scholar]
  151. [151]. Fechner   H., , Suckau   L., , Kurreck   J., , Sipo   I., , Wang   X., , Pinkert   S., , Loschen   S., , Rekittke   J., , Weger   S., , Dekkers   D., , Vetter   R., , Erdmann   VA., , Schultheiss   HP., , Paul   M., , Lamers   J., , Poller   W. . Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. . Gene Ther.   Feb 2007; ;14: 3 : 211– 218 .
    [Google Scholar]
  152. [152]. Eizema   K., , Fechner   H., , Bezstarosti   K., , Schneider-Rasp   S., , van der Laarse   A., , Wang   H., , Schultheiss   HP., , Poller   WC., , Lamers   JM. . Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. . Circulation.   May 9 2000; ;101: 18 : 2193– 2199 .
    [Google Scholar]
  153. [153]. Andino   LM., , Takeda   M., , Kasahara   H., , Jakymiw   A., , Byrne   BJ., , Lewin   AS. . AAV-mediated knockdown of phospholamban leads to improved contractility and calcium handling in cardiomyocytes. . J Gene Med.   Feb 2008; ;10: 2 : 132– 142 .
    [Google Scholar]
  154. [154]. Miyazaki   Y., , Ikeda   Y., , Shiraishi   K., , Fujimoto   SN., , Aoyama   H., , Yoshimura   K., , Inui   M., , Hoshijima   M., , Kasahara   H., , Aoki   H., , Matsuzaki   M. . Heart failure-inducible gene therapy targeting protein phosphatase 1 prevents progressive left ventricular remodeling. . PLoS One.   2012; ;7: 4 : e35875 .
    [Google Scholar]
  155. [155]. Carr   AN., , Schmidt   AG., , Suzuki   Y., , del Monte   F., , Sato   Y., , Lanner   C., , Breeden   K., , Jing   SL., , Allen   PB., , Greengard   P., , Yatani   A., , Hoit   BD., , Grupp   IL., , Hajjar   RJ., , DePaoli-Roach   AA., , Kranias   EG. . Type 1 phosphatase, a negative regulator of cardiac function. . Mol Cell Biol.   Jun 2002; ;22: 12 : 4124– 4135 .
    [Google Scholar]
  156. [156]. El-Armouche   A., , Pamminger   T., , Ditz   D., , Zolk   O., , Eschenhagen   T. . Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. . Cardiovasc Res.   Jan 1 2004; ;61: 1 : 87– 93 .
    [Google Scholar]
  157. [157]. Dowler   T., , Bergeron   D., , Tedeschi   AL., , Paquet   L., , Ferrari   N., , Damha   MJ. . Improvements in siRNA properties mediated by 2(-deoxy-2(-fluoro-beta-D-arabinonucleic acid (FANA). . Nucleic Acids Res.   2006; ;34: 6 : 1669– 1675 .
    [Google Scholar]
  158. [158]. Czauderna   F., , Fechtner   M., , Dames   S., , Aygün   H., , Klippel   A., , Pronk   GJ., , Giese   K., , Kaufmann   J. . Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. . Nucleic Acids Res.   Jun 1 2003; ;31: 11 : 2705– 2716 .
    [Google Scholar]
  159. [159]. Elbashir   SM., , Harborth   J., , Lendeckel   W., , Yalcin   A., , Weber   K., , Tuschl   T. . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. . Nature.   May 24 2001; ;411: 6836 : 494– 498 .
    [Google Scholar]
  160. [160]. Sledz   CA., , Holko   M., , de Veer   MJ., , Silverman   RH., , Williams   BR. . Activation of the interferon system by short-interfering RNAs. . Nat Cell Biol.   Sep 2003; ;5: 9 : 834– 839 .
    [Google Scholar]
  161. [161]. Tabernero   J., , Shapiro   GI., , LoRusso   PM., , Cervantes   A., , Schwartz   GK., , Weiss   GJ., , Paz-Ares   L., , Cho   DC., , Infante   JR., , Alsina   M., , Gounder   MM., , Falzone   R., , Harrop   J., , White   AC., , Toudjarska   I., , Bumcrot   D., , Meyers   RE., , Hinkle   G., , Svrzikapa   N., , Hutabarat   RM., , Clausen   VA., , Cehelsky   J., , Nochur   SV., , Gamba-Vitalo   C., , Vaishnaw   AK., , Sah   DW., , Gollob   JA., , Burris   HA 3rd. . First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. . Cancer Discov.   Apr 2013; ;3: 4 : 406– 417 .
    [Google Scholar]
  162. [162]. Davis   ME., , Zuckerman   JE., , Choi   CH., , Seligson   D., , Tolcher   A., , Alabi   CA., , Yen   Y., , Heidel   JD., , Ribas   A. . Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. . Nature.   Apr 15 2010; ;464: 7291 : 1067– 1070 .
    [Google Scholar]
  163. [163]. Weiler   J., , Hunziker   J., , Hall   J. . Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease?.   Gene Ther.   Mar 2006; ;13: 6 : 496– 502 .
    [Google Scholar]
  164. [164]. Hammond   SM. . MicroRNA therapeutics: a new niche for antisense nucleic acids. . Trends Mol Med.   Mar 2006; ;12: 3 : 99– 101 .
    [Google Scholar]
  165. [165]. Latronico   MV., , Condorelli   G. . Therapeutic use of microRNAs in myocardial diseases. . Curr Heart Fail Rep.   Sep 2011; ;8: 3 : 193– 197 .
    [Google Scholar]
  166. [166]. Kota   J., , Chivukula   RR., , O'Donnell   KA., , Wentzel   EA., , Montgomery   CL., , Hwang   HW., , Chang   TC., , Vivekanandan   P., , Torbenson   M., , Clark   KR., , Mendell   JR., , Mendell   JT. . Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. . Cell.   Jun 12 2009; ;137: 6 : 1005– 1017 .
    [Google Scholar]
  167. [167]. Montgomery   RL., , Hullinger   TG., , Semus   HM., , Dickinson   BA., , Seto   AG., , Lynch   JM., , Stack   C., , Latimer   PA., , Olson   EN., , van Rooij   E. . Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. . Circulation.   Oct 4 2011; ;124: 14 : 1537– 1547 .
    [Google Scholar]
  168. [168]. Patrick   DM., , Montgomery   RL., , Qi   X., , Obad   S., , Kauppinen   S., , Hill   JA., , van Rooij   E., , Olson   EN. . Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. . J Clin Invest.   Nov 2010; ;120: 11 : 3912– 3916 .
    [Google Scholar]
  169. [169]. Thum   T., , Chau   N., , Bhat   B., , Gupta   SK., , Linsley   PS., , Bauersachs   J., , Engelhardt   S. . Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. . J Clin Invest.   Feb 2011; ;121: 2 : 461– 462 , author reply 462-463 .
    [Google Scholar]
  170. [170]. Tijsen   AJ., , Pinto   YM., , Creemers   EE. . Non-cardiomyocyte microRNAs in heart failure. . Cardiovasc Res.   Mar 15 2012; ;93: 4 : 573– 582 .
    [Google Scholar]
  171. [171]. Ahuja   P., , Sdek   P., , MacLellan   WR. . Cardiac myocyte cell cycle control in development, disease, and regeneration. . Physiol Rev.   Apr 2007; ;87: 2 : 521– 544 .
    [Google Scholar]
  172. [172]. Bergmann   O., , Bhardwaj   RD., , Bernard   S., , Zdunek   S., , Barnabé-Heider   F., , Walsh   S., , Zupicich   J., , Alkass   K., , Buchholz   BA., , Druid   H., , Jovinge   S., , Frisén   J. . Evidence for cardiomyocyte renewal in humans. . Science.   Apr 3 2009; ;324: 5923 : 98– 102 .
    [Google Scholar]
  173. [173]. Bicknell   KA., , Coxon   CH., , Brooks   G. . Can the cardiomyocyte cell cycle be reprogrammed?.   J Mol Cell Cardiol.   Apr 2007; ;42: 4 : 706– 721 .
    [Google Scholar]
  174. [174]. Kajstura   J., , Urbanek   K., , Perl   S., , Hosoda   T., , Zheng   H., , Ogórek   B., , Ferreira-Martins   J., , Goichberg   P., , Rondon-Clavo   C., , Sanada   F., , D'Amario   D., , Rota   M., , Del Monte   F., , Orlic   D., , Tisdale   J., , Leri   A., , Anversa   P. . Cardiomyogenesis in the adult human heart. . Circ Res.   Jul 23 2010; ;107: 2 : 305– 315 .
    [Google Scholar]
  175. [175]. van Amerongen   MJ., , Engel   FB. . Features of cardiomyocyte proliferation and its potential for cardiac regeneration. . J Cell Mol Med.   Dec 2008; ;12: 6A : 2233– 2244 .
    [Google Scholar]
  176. [176]. Senyo   SE., , Steinhauser   ML., , Pizzimenti   CL., , Yang   VK., , Cai   L., , Wang   M., , Wu   TD., , Guerquin-Kern   JL., , Lechene   CP., , Lee   RT. . Mammalian heart renewal by pre-existing cardiomyocytes. . Nature.   Jan 17 2013; ;493: 7432 : 433– 436 .
    [Google Scholar]
  177. [177]. Porrello   ER., , Johnson   BA., , Aurora   AB., , Simpson   E., , Nam   YJ., , Matkovich   SJ., , Dorn   GW 2nd., , van Rooij   E., , Olson   EN. . MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. . Circ Res.   Sep 2 2011; ;109: 6 : 670– 679 .
    [Google Scholar]
  178. [178]. Eulalio   A., , Mano   M., , Dal Ferro   M., , Zentilin   L., , Sinagra   G., , Zacchigna   S., , Giacca   M. . Functional screening identifies miRNAs inducing cardiac regeneration. . Nature.   Dec 20 2012; ;492: 7429 : 376– 381 .
    [Google Scholar]
  179. [179]. Chen   J., , Huang   ZP., , Seok   HY., , Ding   J., , Kataoka   M., , Zhang   Z., , Hu   X., , Wang   G., , Lin   Z., , Wang   S., , Pu   WT., , Liao   R., , Wang   DZ. . mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. . Circ Res.   Jun 7 2013; ;112: 12 : 1557– 1566 .
    [Google Scholar]
  180. [180]. Wahlquist   C., , Jeong   D., , Rojas-Munoz   A., , Kho   C., , Lee   A., , Mitsuyama   S., , van Mil   A., , Park   WJ., , Sluijter   JP., , Doevendans   PA., , Hajjar   RJ., , Mercola   M. . Inhibition of miR-25 improves cardiac contractility in the failing heart. . Nature.   Apr 24 2014; ;508: 7497 : 531– 535 .
    [Google Scholar]
  181. [181]. Das   S., , Bedja   D., , Campbell   N., , Dunkerly   B., , Chenna   V., , Maitra   A., , Steenbergen   C. . miR-181c Regulates the Mitochondrial Genome, Bioenergetics, and Propensity for Heart Failure In Vivo. . PLoS One.   2014; ;9: 5 : e96820 .
    [Google Scholar]
  182. [182]. Wijnen   WJ., , van der Made   I., , van den Oever   S., , Hiller   M., , de Boer   BA., , Picavet   DI., , Chatzispyrou   IA., , Houtkooper   RH., , Tijsen   AJ., , Hagoort   J., , van Veen   H., , Everts   V., , Ruijter   JM., , Pinto   YM., , Creemers   EE. . Cardiomyocyte-Specific miRNA-30c Over-Expression Causes Dilated Cardiomyopathy. . PLoS One.   2014; ;9: 5 : e96290 .
    [Google Scholar]
  183. [183]. He   F., , Lv   P., , Zhao   X., , Wang   X., , Ma   X., , Meng   W., , Meng   X., , Dong   S. . Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. . Mol Cell Biochem.   Sep 2014; ;394: 1–2 : 137– 144 .
    [Google Scholar]
  184. [184]. Goren   Y., , Meiri   E., , Hogan   C., , Mitchell   H., , Lebanony   D., , Salman   N., , Schliamser   JE., , Amir   O. . Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. . Am J Cardiol.   Mar 15 2014; ;113: 6 : 976– 981 .
    [Google Scholar]
  185. [185]. Condorelli   G., , Latronico   MV., , Cavarretta   E. . microRNAs in cardiovascular diseases current knowledge and the road ahead. . J Am Coll Cardiol.   Jun 3 2014; ;63: 21 : 2177– 2187 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.30
Loading
/content/journals/10.5339/gcsp.2014.30
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): biomarkers , heart failure , microRNA and therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error