1887
Volume 2012, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Abstract

The role of a tailored surgical approach for hypertrophic cardiomyopathy (HCM) on regional ventricular remodelling remains unknown. The aims of this study were to evaluate the pattern, extent and functional impact of regional ventricular remodelling after a tailored surgical approach. From 2005 to 2008, 44 patients with obstructive HCM underwent tailored surgical intervention. Of those, 14 were ineligible for cardiac magnetic resonance (CMR) studies. From the remainder, 14 unselected patients (42 ± 12 years) underwent pre- and post-operative CMR studies at a median 12 months post-operatively (range 4–37 months). Regional changes in left ventricular (LV) thickness as well as global LV function following surgery were assessed using CMR Tools (London, UK). Pre-operative mean echocardiographic septal thickness was 21 ± 4 mm and mean LV outflow gradient was 69 ± 32 mmHg. Following surgery, there was a significant degree of regional regression of LV thickness in all segments of the LV, ranging from 16% in the antero-lateral midventricular segment to 41% in the anterior basal segment. Wall thickening was significantly increased in basal segments but showed no significant change in the midventricular or apical segments. Globally, mean indexed LV mass decreased significantly after surgery(120 ± 29 g/m2 versus 154 ± 36 g/m2 < 0.001). There was a trend for increased indexed LV end-diastolic volume (70 ± 13 mL versus 65 ± 11 mL; = 0.16 with a normalization of LV ejection fraction (68 ± 7% versus 75 ± 9%; < 0.01). Following a tailored surgical relief of outflow obstruction for HCM, there is a marked regional reverse LV remodelling. These changes could have a significant impact on overall ventricular dynamics and function.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2012.9
2012-07-03
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2012/1/gcsp.2012.9.html?itemId=/content/journals/10.5339/gcsp.2012.9&mimeType=html&fmt=ahah

References

  1. [1]. Maron   BJ. Hypertrophic cardiomyopathy: a systematic review. . JAMA . 2002; ;287: : 1308– 1320 .
    [Google Scholar]
  2. [2]. Olivotto   I, , Girolami   F, and Nistri   S   et al.   The many faces of hypertrophic cardiomyopathy: from developmental biology toclinical practice. . Journal of Cardiovascular Translational Research . 2009; ;2: : 392– 397 .
    [Google Scholar]
  3. [3]. Moon   JC, , Fisher   NG, and McKenna   WJ   et al.   Detection of apical hypertrophic cardiomyopathy by cardiovascular magneticresonance in patients with non-diagnostic echocardiography. . Heart . 2004; ;90: : 645– 649 .
    [Google Scholar]
  4. [4]. Olivotto   I, , Maron   MS, and Autore   C   et al.   Assessment and significance of left ventricular mass by cardiovascular magneticresonance in hypertrophic cardiomyopathy. . J Am Coll Cardiol . 2008; ;52: : 559– 566 .
    [Google Scholar]
  5. [5]. Yacoub   MH, , El-Hamamsy   I, and Said   K   et al.   The left ventricular outflow in hypertrophic cardiomyopathy: from structure tofunction. . Journal of Cardiovascular Translational Research . 2009; ;2: : 510– 517 .
    [Google Scholar]
  6. [6]. Maron   MS, , Olivotto   I, and Zenovich   AG   et al.   Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflowtract obstruction. . Circulation . 2006; ;114: : 2232– 2239 .
    [Google Scholar]
  7. [7]. Maron   MS, , Olivotto   I, and Betocchi   S   et al.   Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophiccardiomyopathy. . N Engl J Med . 2003; ;348: : 295– 303 .
    [Google Scholar]
  8. [8]. Binder   J, , Ommen   SR, and Gersh   BJ   et al.   Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septalmorphological features predict the presence of myofilament mutations. . Mayo ClinProc . 2006; ;81: : 459– 467 .
    [Google Scholar]
  9. [9]. Rickers   C, , Wilke   NM, and Jerosch-Herold   M   et al.   Utility of Cardiac Magnetic Resonance Imaging in the Diagnosis of HypertrophicCardiomyopathy. . Circulation . 2005; ;112: : 855– 861 .
    [Google Scholar]
  10. [10]. Spirito   P, , Bellone   P, and Harris   KM   et al.   Magnitude of Left Ventricular Hypertrophy and Risk of Sudden Death inHypertrophic Cardiomyopathy. . N Engl J Med . 2000; ;342: : 1778– 1785 .
    [Google Scholar]
  11. [11]. van Dockum   WG, , Beek   AM, and ten Cate   FJ   et al.   Early onset and progression of left ventricular remodeling after alcohol septalablation in hypertrophic obstructive cardiomyopathy. . Circulation . 2005; ;111: : 2503– 2508 .
    [Google Scholar]
  12. [12]. Kofflard   MJ, , van Herwerden   LA, and Waldstein   DJ   et al.   Initial results of combined anterior mitral leaflet extension and myectomy in patientswith obstructive hypertrophic cardiomyopathy. . J Am Coll Cardiol . 1996; ;28: : 197– 202 .
    [Google Scholar]
  13. [13]. McIntosh   CL, , Maron   BJ, and Cannon 3rd   RO   et al.   Initial results of combined anterior mitral leaflet plication and ventricular septalmyotomy-myectomy for relief of left ventricular outflow tract obstruction inpatients with hypertrophic cardiomyopathy. . Circulation . 1992; ;86: : II60-7 .
    [Google Scholar]
  14. [14]. Cooley   DA., , Wukasch   DC., and Leachman   RD. Mitral valve replacement for idiopathic hypertrophic subaortic stenosis. Results in 27patients. . J Cardiovasc Surg (Torino) . 1976; ;17: : 380– 387 .
    [Google Scholar]
  15. [15]. Dearani   JA, , Ommen   SR, and Gersh   BJ   et al.   Surgery insight: Septal myectomy for obstructive hypertrophic cardiomyopathy–theMayo Clinic experience. . Nat Clin Pract Cardiovasc Med . 2007; ;4: : 503– 512 .
    [Google Scholar]
  16. [16]. Sigwart   U. Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. . Lancet . 1995; ;346: : 211– 214 .
    [Google Scholar]
  17. [17]. Yacoub   MH. Surgical versus alcohol septal ablation for hypertrophic obstructive cardiomyopathy:the pendulum swings. . Circulation . 2005; ;112: : 450– 452 .
    [Google Scholar]
  18. [18]. Cerqueira   MD, , Weissman   NJ, and Dilsizian   V   et al.   Standardized Myocardial Segmentation and Nomenclature for Tomographic Imagingof the Heart: A Statement for Healthcare Professionals From the Cardiac ImagingCommittee of the Council on Clinical Cardiology of the American Heart Association. . Circulation . 2002; ;105: : 539– 542 .
    [Google Scholar]
  19. [19]. Myerson   SG., , Bellenger   NG., and Pennell   DJ. Assessment of Left Ventricular Mass by Cardiovascular Magnetic Resonance. . Hypertension . 2002; ;39: : 750– 755 .
    [Google Scholar]
  20. [20]. Buakhamsri   A, , Popovic   ZB, and Lin   J   et al.   Impact of left ventricular volume/mass ratio on diastolic function. . Eur Heart J . 2009; ;30: : 1213– 1221 .
    [Google Scholar]
  21. [21]. Hahn   C., and Schwartz   MA. Mechanotransduction in vascular physiology and atherogenesis. . Nat Rev Mol CellBiol . 2009; ;10: : 53– 62 .
    [Google Scholar]
  22. [22]. Cai   C-L, , Martin   JC, and Sun   Y   et al.   A myocardial lineage derives from Tbx18 epicardial cells. . Nature . 2008; ;454: : 104– 108 .
    [Google Scholar]
  23. [23]. Zhou   B, , Ma   Q, and Rajagopal   S   et al.   Epicardial progenitors contribute to the cardiomyocyte lineage in the developingheart. . Nature . 2008; ;454: : 109– 113 .
    [Google Scholar]
  24. [24]. Franco   D, , Meilhac   SM, and Christoffels   VM   et al.   Left and right ventricular contributions to the formation of the interventricularseptum in the mouse heart. . Developmental Biology . 2006; ;294: : 366– 375 .
    [Google Scholar]
  25. [25]. Lie-Venema   H, , van den Akker   NMS, and Bax   NAM   et al.   Origin, Fate, and Function of Epicardium-Derived Cells (EPDCs) in Normal andAbnormal Cardiac Development. . The Scientific World Journal . 2007; ;7: : 1777– 1798 .
    [Google Scholar]
  26. [26]. Topouzis   S., and Majesky   MW. Smooth muscle lineage diversity in the chick embryo. Two types of aorticsmooth muscle cell differ in growth and receptor-mediated transcriptionalresponses to transforming growth factor-beta. . Dev Biol . 1996; ;178: : 430– 445 .
    [Google Scholar]
  27. [27]. Haimovici   H., and Maier   N. Fate of Aortic Homografts in Canine Atherosclerosis: III. Study of Fresh Abdominaland Thoracic Aortic Implants Into Thoracic Aorta: Role of Tissue Susceptibility inAtherogenesis. . AMA Arch Surg . 1964; ;89: : 961– 969 .
    [Google Scholar]
  28. [28]. Thieszen   SL, , Dalton   M, and Gadson   PF   et al.   Embryonic lineage of vascular smooth muscle cells determines responses to collagenmatrices and integrin receptor expression. . Exp Cell Res . 1996; ;227: : 135– 145 .
    [Google Scholar]
  29. [29]. Monteiro   PF, , Ommen   SR, and Gersh   BJ   et al.   Effects of Surgical Septal Myectomy on Left Ventricular Wall Thickness andDiastolic Filling. . The American Journal of Cardiology . 2007; ;100: : 1776– 1778 .
    [Google Scholar]
  30. [30]. Valeti   US, , Nishimura   RA, and Holmes   DR   et al.   Comparison of Surgical Septal Myectomy and Alcohol Septal Ablation With CardiacMagnetic Resonance Imaging in Patients With Hypertrophic ObstructiveCardiomyopathy. . Journal of the American College of Cardiology . 2007; ;49: : 350– 357 .
    [Google Scholar]
  31. [31]. De Castro   S, , Caselli   S, and Maron   M   et al.   Left ventricular remodelling index (LVRI) in various pathophysiological conditions: areal-time three-dimensional echocardiographic study. . Heart . 2007; ;93: : 205– 209 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2012.9
Loading
/content/journals/10.5339/gcsp.2012.9
Loading

Data & Media loading...

Supplementary File 1

  • Article Type: Research Article
Keyword(s): hypertrophic cardiomyopathy , tailored myectomy and ventricular remodelling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error