1887
Volume 2012, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Abstract

Heart failure with preserved ejection fraction (HFpEF) has recently emerged as a major cause of cardiovascular morbidity and mortality. Contrary to initial beliefs, HFpEF is now known to be as common as heart failure with reduced ejection fraction (HFrEF) and carries an unacceptably high mortality rate. With a prevalence that has been steadily rising over the past two decades, it is very likely that HFpEF will represent the dominant heart failure phenotype over the coming few years. The scarcity of trials in this semi-discrete form of heart failure and lack of unified enrolment criteria in the studies conducted to date might have contributed to the current absence of specific therapies. Understanding the epidemiological, pathophysiological and molecular differences (and similarities) between these two forms of heart failure is cornerstone to the development of targeted therapies. Carefully designed studies that adhere to unified diagnostic criteria with the recruitment of appropriate controls and adoption of practical end-points are urgently needed to help identify effective treatment strategies.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2012.10
2012-07-17
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2012/1/gcsp.2012.10.html?itemId=/content/journals/10.5339/gcsp.2012.10&mimeType=html&fmt=ahah

References

  1. Bhatia RS  et al.  Outcome of heart failure with preserved ejection fraction in a population-based study. The New England Journal of Medicine. 2006; 355::260269.
    [Google Scholar]
  2. Tribouilloy C  et al.  Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. European Heart Journal. 2008; 29::339347.
    [Google Scholar]
  3. Hogg K, Swedberg K and McMurray J Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. Journal of the American College of Cardiology. 2004; 43::317327.
    [Google Scholar]
  4. Redfield MM Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. Heart Failure. 2006;251259.
    [Google Scholar]
  5. Paulus WJ and van Ballegoij JJM Treatment of heart failure with normal ejection fraction: an inconvenient truth!. Journal of the American College of Cardiology. 2010; 55::526537.
    [Google Scholar]
  6. Holland DJ, Kumbhani DJ, Ahmed SH and Marwick TH Effects of treatment on exercise tolerance, cardiac function, and mortality in heart failure with preserved ejection fraction. A meta-analysis. Journal of the American College of Cardiology. 2011; 57::16761686.
    [Google Scholar]
  7. Hunt SA ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guideli. Journal of the American College of Cardiology. 2005; 46::e1-82.
    [Google Scholar]
  8. Hunt SA  et al.  2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: develope. Circulation. 2009; 119::e391-479.
    [Google Scholar]
  9. Roger VL  et al.  Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012; 125::e2-e220.
    [Google Scholar]
  10. Group ES and Failure DH Working Group Report How to diagnose diastolic heart failure. Heart. 1998;9901003.
    [Google Scholar]
  11. Sanderson JE Heart failure with a normal ejection fraction. Heart (British Cardiac Society). 2007; 93::155158.
    [Google Scholar]
  12. McMurray J New Therapeutic Options in Congestive Heart Failure: Part II. Circulation. 2002; 105::22232228.
    [Google Scholar]
  13. Yu C-M Progression of Systolic Abnormalities in Patients With Isolated Diastolic Heart Failure and Diastolic Dysfunction. Circulation. 2002; 105::11951201.
    [Google Scholar]
  14. Baicu CF, Zile MR, Aurigemma GP and Gaasch WH Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation. 2005; 111::23062312.
    [Google Scholar]
  15. Yip G Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition?. Heart. 2002; 87::121125.
    [Google Scholar]
  16. Wang J, Khoury DS, Yue Y, Torre-Amione G and Nagueh SF Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. European Heart Journal. 2008; 29::12831289.
    [Google Scholar]
  17. Petrie MC Diastolic heart failure or heart failure caused by subtle left ventricular systolic dysfunction?. Heart. 2002; 87::2931.
    [Google Scholar]
  18. Vinereanu D, Nicolaides E, Tweddel AC and Fraser AG Pure diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure. European Journal of Heart Failure. 2005; 7::820828.
    [Google Scholar]
  19. Davies M  et al.  Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study. The Lancet. 2001; 358::439444.
    [Google Scholar]
  20. Petrie M and McMurray J Changes in notions about heart failure. The Lancet. 2001; 358::432434.
    [Google Scholar]
  21. Hunt SA  et al.  2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed. Journal of the American College of Cardiology. 2009; 53::e1-e90.
    [Google Scholar]
  22. Dickstein K  et al.  ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart. European heart journal. 2008; 29::23882442.
    [Google Scholar]
  23. Redfield MM Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. Heart Failure. 2006;251259.
    [Google Scholar]
  24. Vasan R, Benjamin E and Levy D Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. J Am Coll Cardiol. 1995; 26::15651574.
    [Google Scholar]
  25. Wheeldon NM, Clarkson P and Macdonald TM Diastolic heart failure. Eur Heart J. 1994; 15::16891697.
    [Google Scholar]
  26. Owan TE and Redfield MM Epidemiology of Diastolic Heart Failure. Progress in Cardiovascular Diseases. 2005; 47::320332.
    [Google Scholar]
  27. Somaratne JB  et al.  The prognostic significance of heart failure with preserved left ventricular ejection fraction: a literature-based meta-analysis. European Journal of Heart Failure. 2009; 11::855862.
    [Google Scholar]
  28. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. European heart journal ehr254- (2011). doi: 10.1093/eurheartj/ehr254.
  29. Burkhoff D Mortality in heart failure with preserved ejection fraction: an unacceptably high rate. European Heart Journal. 2011; [CrossRef]
    https://doi.org/10.1093/eurheartj/ehr339 [Google Scholar]
  30. Cleland J The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe Part 1: patient characteristics and diagnosis. European Heart Journal. 2003; 24::442463.
    [Google Scholar]
  31. Yancy CW, Lopatin M, Stevenson LW, De Marco T and Fonarow GC Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. Journal of the American College of Cardiology. 2006; 47::7684.
    [Google Scholar]
  32. Schulman KA and Gottdiener JS. Costs for Heart Failure With Normal vs Reduced Ejection Fraction. 166 (2006).
  33. Aurigemma GP. Diastolic Heart Failure — A Common and Lethal Condition by Any Name. 2005–2007 (2006).
  34. Sanderson JE, Gibson DG, Brown DJ and Goodwin JF. Left ventricular filling in hypertrophic cardiomyopathy An angiographic study’. 661–670 (1977).
  35. Hanrath P, Mathey DG, Siegert R and Bleifeld W Left ventricular relaxation and filling pattern in different forms of left ventricular hypertrophy: An echocardiographic study. The American Journal of Cardiology. 1980; 45::1523.
    [Google Scholar]
  36. Desk R, Williams L and Health K. Diastolic Simple Elastic and Viscoelastic Properties of the Left Ventricle in Man. 1178–1187 (1979). doi:10.1161/01.CIR.59.6.1178.
  37. Soufer R  et al.  Intact systolic left ventricular function in clinical congestive heart failure. The American Journal of Cardiology. 1985; 55::10321036.
    [Google Scholar]
  38. Nishimura R and Tajik A Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol. 1997; 30::818.
    [Google Scholar]
  39. Zile MR, Baicu CF and Gaasch WH. Diastolic Heart Failure — Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle. 1953–1959 (2004).
  40. Westermann D.  et al.  Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 2008; 117::2051260.
    [Google Scholar]
  41. Borlaug BA, Nishimura RA, Sorajja P, Lam CSP and Redfield MM Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circulation. Heart Failure. 2010; 3::588595.
    [Google Scholar]
  42. Kawaguchi M Combined Ventricular Systolic and Arterial Stiffening in Patients With Heart Failure and Preserved Ejection Fraction: Implications for Systolic and Diastolic Reserve Limitations. Circulation. 2003; 107::714720.
    [Google Scholar]
  43. Frenneaux M and Williams L Ventricular-arterial and ventricular-ventricular interactions and their relevance to diastolic filling. Progress in Cardiovascular Diseases. 2007; 49::252262.
    [Google Scholar]
  44. Hundley WG  et al.  Leg flow-mediated arterial dilation in elderly patients with heart failure and normal left ventricular ejection fraction. American Journal of Physiology. Heart and Circulatory Physiology. 2007; 292::H1427-34.
    [Google Scholar]
  45. Borlaug Ba  et al.  Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. Journal of the American College of Cardiology. 2010; 56::845854.
    [Google Scholar]
  46. Borlaug B.a  et al.  Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006; 114::213847.
    [Google Scholar]
  47. Phan TT  et al.  Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. Journal of the American College of Cardiology. 2009; 54::402409.
    [Google Scholar]
  48. García EH  et al.  Reduced systolic performance by tissue Doppler in patients with preserved and abnormal ejection fraction: New insights in chronic heart failure. International Journal of Cardiology. 2006; 108::181188.
    [Google Scholar]
  49. Bruch C, Gradaus R, Gunia S, Breithardt G and Wichter T Doppler tissue analysis of mitral annular velocities: evidence for systolic abnormalities in patients with diastolic heart failure. Journal of the American Society of Echocardiography. 2003; 16::10311036.
    [Google Scholar]
  50. Tan YT  et al.  The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. Journal of the American College of Cardiology. 2009; 54::3646.
    [Google Scholar]
  51. Roncon-Albuquerque R and Leite-Moreira AF Cinética do cálcio na progressao da insuficiência cardíaca. Revista portuguesa de cardiologia. 23::II.25-II.40.
    [Google Scholar]
  52. Frank KF, Bölck B, Brixius K, Kranias EG and Schwinger RHG Modulation of SERCA: implications for the failing human heart. Basic Research in Cardiology. 2002; 97::Suppl 1, I72-I78.
    [Google Scholar]
  53. del Monte F, Harding SE, Dec GW, Gwathmey JK and Hajjar RJ Targeting phospholamban by gene transfer in human heart failure. Circulation. 2002; 105::904907.
    [Google Scholar]
  54. MacLennan DH and Kranias EG Phospholamban: a crucial regulator of cardiac contractility. Nature Reviews. Molecular Cell Biology. 2003; 4::56677.
    [Google Scholar]
  55. Hasenfuss G Calcium Cycling in Congestive Heart Failure. Journal of Molecular and Cellular Cardiology. 2002; 34::951969.
    [Google Scholar]
  56. Ginsburg KS and Bers DM Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. The Journal of Physiology. 2004; 556::463480.
    [Google Scholar]
  57. Li Y, Kranias EG, Mignery GA and Bers DM Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circulation Research. 2002; 90::309316.
    [Google Scholar]
  58. Lyon AR  et al.  Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106::68546859.
    [Google Scholar]
  59. Louch WE  et al.  T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. The Journal of Physiology. 2006; 574::519533.
    [Google Scholar]
  60. Bénitah J-P, Kerfant BG, Vassort G, Richard S and Gómez AM Altered communication between L-type calcium channels and ryanodine receptors in heart failure. Frontiers in Bioscience?: a Journal and Virtual Library. 2002; 7::e263-75.
    [Google Scholar]
  61. Chase A and Orchard CH Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. Journal of Molecular and Cellular Cardiology. 2011; 50::187193.
    [Google Scholar]
  62. Ibrahim M, Gorelik J, Yacoub MH and Terracciano CM The structure and function of cardiac t-tubules in health and disease. Proceedings. Biological Sciences/The Royal Society. 2011; 278::2714223.
    [Google Scholar]
  63. Wei S  et al.  T-tubule remodeling during transition from hypertrophy to heart failure. Circulation Research. 2010; 107::520531.
    [Google Scholar]
  64. Paulus WJ, Bronzwaer JG, Felice H, Kishan N and Wellens F Deficient acceleration of left ventricular relaxation during exercise after heart transplantation. Circulation. 1992; 86::11751185.
    [Google Scholar]
  65. Leite-Moreira AF and Gillebert TC Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation. 1994; 90::24812491.
    [Google Scholar]
  66. Leite-Moreira A Afterload induced changes in myocardial relaxation A mechanism for diastolic dysfunction. Cardiovascular Research. 1999; 43::344353.
    [Google Scholar]
  67. Wu Y Changes in Titin and Collagen Underlie Diastolic Stiffness Diversity of Cardiac Muscle. Journal of Molecular and Cellular Cardiology. 2000; 32::21512162.
    [Google Scholar]
  68. Lim CC Modulation of Cardiac Function: Titin Springs into Action. The Journal of General Physiology. 2005; 125::249252.
    [Google Scholar]
  69. Fukuda N Phosphorylation of Titin Modulates Passive Stiffness of Cardiac Muscle in a Titin Isoform-dependent Manner. The Journal of General Physiology. 2005; 125::257271.
    [Google Scholar]
  70. Yamamoto K Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovascular Research. 2002; 55::7682.
    [Google Scholar]
  71. Neagoe C Titin Isoform Switch in Ischemic Human Heart Disease. Circulation. 2002; 106::13331341.
    [Google Scholar]
  72. Guo W  et al.  RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nature Medicine. 2012; [CrossRef]
    https://doi.org/10.1038/nm.2693 [Google Scholar]
  73. Linke Wa and Bücker S King of hearts: a splicing factor rules cardiac proteins. Nature Medicine. 2012; 18::660661.
    [Google Scholar]
  74. Kato S  et al.  Inhibition of collagen cross-linking: effects on fibrillar collagen and ventricular diastolic function. Am J Physiol Heart Circ Physiol. 1995; 269::H863-868.
    [Google Scholar]
  75. Ahmed SH  et al.  Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006; 113::20892096.
    [Google Scholar]
  76. Heymans S. Increased Cardiac Expression of Tissue Inhibitor of Metalloproteinase-1 and Tissue Inhibitor of Metalloproteinase-2 Is Related to Cardiac Fibrosis and Dysfunction in the Chronic Pressure-Overloaded Human Heart. Circulation. 2005; 112::11361144.
    [Google Scholar]
  77. Gonzalez A  et al.  Filling Pressures and Collagen Metabolism in Hypertensive Patients With Heart Failure and Normal Ejection Fraction. Hypertension. 2010; 55::14181424.
    [Google Scholar]
  78. Hitch DC and Nolan SP Descriptive analysis of instantaneous left atrial volume—with special reference to left atrial function. Journal of Surgical Research. 1981; 30::110120.
    [Google Scholar]
  79. Prioli A, Marino P, Lanzoni L and Zardini P Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. The American Journal of Cardiology. 1998; 82::756761.
    [Google Scholar]
  80. Stefanadis C, Dernellis J and Toutouzas P Evaluation of the Left Atrial Performance Using Acoustic Quantification. Echocardiography (Mount Kisco, N.Y.). 1999; 16::117125.
    [Google Scholar]
  81. Bowman AW and Kovács SJ Left atrial conduit volume is generated by deviation from the constant-volume state of the left heart: a combined MRI-echocardiographic study. American Journal of Physiology. Heart and Circulatory Physiology. 2004; 286::H2416-24.
    [Google Scholar]
  82. Kurt M, Wang J, Torre-Amione G and Nagueh SF Left atrial function in diastolic heart failure. Circulation. Cardiovascular Imaging. 2009; 2::10-5.
    [Google Scholar]
  83. Lester SJ  et al.  Unlocking the Mysteries of Diastolic Function. Journal of the American College of Cardiology. 2010; [CrossRef]
    https://doi.org/10.1016/j.jacc.2007.09.061 [Google Scholar]
  84. Kuznetsova T  et al.  Prevalence of left ventricular diastolic dysfunction in a general population. Circulation. Heart Failure. 2009; 2::105112.
    [Google Scholar]
  85. Redfield MM  et al.  Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA: the Journal of the American Medical Association. 2003; 289::194202.
    [Google Scholar]
  86. Melenovsky V  et al.  Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. Journal of the American College of Cardiology. 2007; 49::198207.
    [Google Scholar]
  87. Hundley WG  et al.  Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. Journal of the American College of Cardiology. 2001; 38::796802.
    [Google Scholar]
  88. Borlaug BA and Kass DA Ventricular-vascular interaction in heart failure. Heart Failure Clinics. 2008; 4::2336.
    [Google Scholar]
  89. Dauterman K  et al.  Contribution of external forces to left ventricular diastolic pressure. Implications for the clinical use of the Starling law. Annals of Internal Medicine. 1995; 122::737742.
    [Google Scholar]
  90. Yacoub MH Two hearts that beat as one. Circulation. 1995; 92::156157.
    [Google Scholar]
  91. Lam CSP  et al.  Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. Journal of the American College of Cardiology. 2009; 53::11191126.
    [Google Scholar]
  92. Ennezat PV  et al.  Left ventricular abnormal response during dynamic exercise in patients with heart failure and preserved left ventricular ejection fraction at rest. Journal of Cardiac Failure. 2008; 14::475480.
    [Google Scholar]
  93. Haykowsky MJ  et al.  Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. Journal of the American College of Cardiology. 2011; 58::265274.
    [Google Scholar]
  94. Brubaker PH  et al.  Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. Journal of Cardiopulmonary Rehabilitation. 26::8689.
    [Google Scholar]
  95. Nikitin NP, Witte KK, Clark AL and Cleland JG Color tissue Doppler-derived long-axis left ventricular function in heart failure with preserved global systolic function. The American Journal of Cardiology. 2002; 90::11741177.
    [Google Scholar]
  96. Wang J, Kurrelmeyer KM, Torre-amione G, Sherif F and Nagueh SF and the Effect of Medical Therapy Systolic and Diastolic Dyssynchrony in Patients With Diastolic Heart Failure and the Effect of Medical Therapy. Journal of the American College of Cardiology. 2010; [CrossRef]
    https://doi.org/10.1016/j.jacc.2006.10.023 [Google Scholar]
  97. Lee AP-W  et al.  LV mechanical dyssynchrony in heart failure with preserved ejection fraction complicating acute coronary syndrome. JACC. Cardiovascular Imaging. 2011; 4::348357.
    [Google Scholar]
  98. Sanderson JE Systolic and diastolic ventricular dyssynchrony in systolic and diastolic heart failure. Journal of the American College of Cardiology. 2007; 49::106108.
    [Google Scholar]
  99. Sengupta PP  et al.  Focus issue?: Cardiac imaging left ventricular structure and function. Journal of the American College of Cardiology. 2010; [CrossRef]
    https://doi.org/10.1016/j.jacc.2006.08.030 [Google Scholar]
  100. Baicu CF, Zile MR, Aurigemma GP and Gaasch WH Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation. 2005; 111::23062312.
    [Google Scholar]
  101. Willenheimer R  et al.  Left atrioventricular plane displacement is related to both systolic and diastolic left ventricular performance in patients with chronic heart failure. Heart. 1999;612618.
    [Google Scholar]
  102. Vasan RS and Levy D Defining diastolic heart failure: a call for standardized diagnostic criteria. Circulation. 2000; 101::21182121.
    [Google Scholar]
  103. Yturralde RF and Gaasch WH Diagnostic criteria for diastolic heart failure. Progress in Cardiovascular Diseases. 47::314319.
    [Google Scholar]
  104. Paulus WJ  et al.  How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. European Heart Journal. 2007; 28::25392550.
    [Google Scholar]
  105. Galiè N  et al.  Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the Internat. European Heart Journal. 2009; 30::24932537.
    [Google Scholar]
  106. Persson H  et al.  Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence:results from the CHARM Echocardiographic Substudy-CHARMES. Journal of the American College of Cardiology. 2007; 49::687694.
    [Google Scholar]
  107. Ommen SR  et al.  Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation. 2000; 102::17881794.
    [Google Scholar]
  108. Ha J-W  et al.  Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. The American Journal of Cardiology. 2004; 94::316319.
    [Google Scholar]
  109. Kasner M  et al.  Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007; 116::637647.
    [Google Scholar]
  110. Handoko ML and Paulus WJ Polishing the diastolic dysfunction measurement stick. European journal of echocardiography?. Journal of the Working Group on Echocardiography of the European Society of Cardiology. 2008; 9::575577.
    [Google Scholar]
  111. Douglas PS The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. Journal of the American College of Cardiology. 2003; 42::12061207.
    [Google Scholar]
  112. Emery WT, Jadavji I, Choy JB and Lawrance RA Investigating the European Society of Cardiology Diastology Guidelines in a practical scenario. European Journal of Echocardiography?: the Journal of the Working Group on Echocardiography of the European Society of Cardiology. 2008; 9::685691.
    [Google Scholar]
  113. Tschöpe C  et al.  The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. European Heart Journal. 2005; 26::22772284.
    [Google Scholar]
  114. Watanabe S  et al.  Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure. European Heart Journal. 2006; 27::832838.
    [Google Scholar]
  115. Mottram PM, Leano R and Marwick TH Usefulness of B-type natriuretic peptide in hypertensive patients with exertional dyspnea and normal left ventricular ejection fraction and correlation with new echocardiographic indexes of systolic and diastolic function. The American Journal of Cardiology. 2003; 92::14341438.
    [Google Scholar]
  116. Ambrosi P Utility of B-Natriuretic Peptide in Detecting Diastolic Dysfunction: Comparison With Doppler Velocity Recordings. Circulation. 2002; 106::70e-70.
    [Google Scholar]
  117. McDonagh TA  et al.  NT-proBNP and the diagnosis of heart failure: a pooled analysis of three European epidemiological studies. European Journal of Heart Failure. 2004; 6::269273.
    [Google Scholar]
  118. Jones AE and Kline JA Elevated brain natriuretic peptide in septic patients without heart failure. Annals of Emergency Medicine. 2003; 42::714715.
    [Google Scholar]
  119. La Villa G  et al.  Plasma levels of brain natriuretic peptide in patients with cirrhosis. Hepatology (Baltimore, Md.). 1992; 16::156161.
    [Google Scholar]
  120. Forfia PR, Watkins SP, Rame JE, Stewart KJ and Shapiro EP Relationship between B-type natriuretic peptides and pulmonary capillary wedge pressure in the intensive care unit. Journal of the American College of Cardiology. 2005; 45::16671671.
    [Google Scholar]
  121. Tsutamoto T  et al.  Relationship between renal function and plasma brain natriuretic peptide in patients with heart failure. Journal of the American College of Cardiology. 2006; 47::582586.
    [Google Scholar]
  122. Ando T, Ogawa K, Yamaki K, Hara M and Takagi K Plasma concentrations of atrial, brain, and C-type natriuretic peptides and endothelin-1 in patients with chronic respiratory diseases. Chest. 1996; 110::4628.
    [Google Scholar]
  123. Tulevski II  et al.  Increased brain natriuretic peptide as a marker for right ventricular dysfunction in acute pulmonary embolism. Thrombosis and Haemostasis. 2001; 86::11931196.
    [Google Scholar]
  124. Daniels LB  et al.  How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure. Results from the Breathing Not Properly Multinational Study. American Heart Journal. 2006; 151::9991005.
    [Google Scholar]
  125. Horwich TB, Hamilton MA and Fonarow GC B-type natriuretic peptide levels in obese patients with advanced heart failure. Journal of the American College of Cardiology. 2006; 47::8590.
    [Google Scholar]
  126. Maeder MT and Kaye DM Heart failure with normal left ventricular ejection fraction. Journal of the American College of Cardiology. 2009; 53::905918.
    [Google Scholar]
  127. Burgess MI, Jenkins C, Sharman JE and Marwick TH Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. Journal of the American College of Cardiology. 2006; 47::1891900.
    [Google Scholar]
  128. Talreja DR, Nishimura RA and Oh JK Estimation of left ventricular filling pressure with exercise by Doppler echocardiography in patients with normal systolic function: a simultaneous echocardiographic-cardiac catheterization study. Journal of the American Society of Echocardiography?: Official Publication of the American Society of Echocardiography. 2007; 20::477479.
    [Google Scholar]
  129. Grewal J, McCully RB, Kane GC, Lam C and Pellikka PA Left ventricular function and exercise capacity. JAMA?: the journal of the American Medical Association. 2009; 301::286294.
    [Google Scholar]
  130. Borlaug Ba and Paulus WJ Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. European Heart Journal. 2011; 32::670679.
    [Google Scholar]
  131. Philbin EF, Rocco TA, Lindenmuth NW, Ulrich K and Jenkins PL Systolic versus diastolic heart failure in community practice: clinical features, outcomes, and the use of angiotensin-converting enzyme inhibitors. The American Journal of Medicine. 2000; 109::605613.
    [Google Scholar]
  132. Yusuf S.  et al.  Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003; 362::777781.
    [Google Scholar]
  133. Ahmed A  et al.  Effects of digoxin on morbidity and mortality in diastolic heart failure: the ancillary digitalis investigation group trial. Circulation. 2006; 114::397403.
    [Google Scholar]
  134. Shah SJ and Gheorghiade MHeart Failure With Preserved Ejection Fraction. 2008; 300::2426.
    [Google Scholar]
  135. Ather S.  et al.  Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. Journal of the American College of Cardiology. 2012; 59::9981005.
    [Google Scholar]
  136. Gary RA  et al.  Home-based exercise improves functional performance and quality of life in women with diastolic heart failure. Heart & Lung: The Journal of Acute and Critical Care. 2004; 33::210218.
    [Google Scholar]
  137. Nodari S, Metra M and Dei Cas L Beta-blocker treatment of patients with diastolic heart failure and arterial hypertension. A prospective, randomized, comparison of the long-term effects of atenolol vs. nebivolol. European Journal of Heart Failure. 2003; 5::621627.
    [Google Scholar]
  138. Flather MD  et al.  Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). European Heart Journal. 2005; 26::215225.
    [Google Scholar]
  139. Bergström A  et al.  Effect of carvedilol on diastolic function in patients with diastolic heart failure and preserved systolic function. Results of the Swedish Doppler-echocardiographic study (SWEDIC). European Journal of Heart Failure. 2004; 6::453461.
    [Google Scholar]
  140. Palazzuoli A  et al.  Left ventricular diastolic function improvement by carvedilol therapy in advanced heart failure. Journal of Cardiovascular Pharmacology. 2005; 45::563568.
    [Google Scholar]
  141. Cleland JGF  et al.  The perindopril in elderly people with chronic heart failure (PEP-CHF) study. European Heart Journal. 2006; 27::23382345.
    [Google Scholar]
  142. Massie BM  et al.  Irbesartan in patients with heart failure and preserved ejection fraction. The New England Journal of Medicine. 2008; 359::24562467.
    [Google Scholar]
  143. McMurray JJV  et al.  Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. European Journal of Heart Failure. 2008; 10::149156.
    [Google Scholar]
  144. The effect of digoxin on mortality and morbidity in patients with heart failure. The Digitalis Investigation Group. The New England Journal of Medicine. 1997; 336, 525–533.
  145. Schmidt U  et al.  Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation. 2000; 101::790796.
    [Google Scholar]
  146. Jorgensen K, Bech-Hanssen O, Houltz E and Ricksten S-E Effects of Levosimendan on Left Ventricular Relaxation and Early Filling at Maintained Preload and Afterload Conditions After Aortic Valve Replacement for Aortic Stenosis. Circulation. 2008; 117::10751081.
    [Google Scholar]
  147. Daniel KR, Wells G, Stewart K, Moore B and Kitzman DW Effect of aldosterone antagonism on exercise tolerance, Doppler diastolic function, and quality of life in older women with diastolic heart failure. Congestive heart failure (Greenwich, Conn.). 15::6874.
    [Google Scholar]
  148. Desai AS  et al.  Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. American Heart Journal. 2011; 162::966-972.e10.
    [Google Scholar]
  149. Little WC  et al.  The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. Journal of Cardiac Failure. 2005; 11::191195.
    [Google Scholar]
  150. Busseuil D  et al.  Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology. 2010; 117::234242.
    [Google Scholar]
  151. De Masi De Luca G Ivabradine and Diastolic Heart Failure. Journal of the American College of Cardiology. 2012; 59::E1009.
    [Google Scholar]
  152. Kaye D.M. and Krum H. Drug discovery for heart failure: a new era or the end of the pipeline?. Nature Reviews. Drug Discovery. 2007; 6::127139.
    [Google Scholar]
  153. Kuwahara F  et al.  Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002; 106::130135.
    [Google Scholar]
  154. Zeisberg EM  et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine. 2007; 13::952961.
    [Google Scholar]
  155. Towbin JA. Clinical implications of basic research Scarring in the Heart — A Reversible Phenomenon?? 1767–1768 (2007).
  156. McKinsey TA Targeting inflammation in heart failure with histone deacetylase inhibitors. Molecular medicine (Cambridge, Mass.). 2011; 17::434441.
    [Google Scholar]
  157. Oka T  et al.  Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012; 485::251255.
    [Google Scholar]
  158. Kjekshus J  et al.  Rosuvastatin in older patients with systolic heart failure. The New England Journal of Medicine. 2007; 357::22482261.
    [Google Scholar]
  159. Fukuta H, Sane DC, Brucks S and Little WC Statin therapy may be associated with lower mortality in patients with diastolic heart failure: a preliminary report. Circulation. 2005; 112::357363.
    [Google Scholar]
  160. Vlachopoulos C, Hirata K and O’Rourke MF Effect of sildenafil on arterial stiffness and wave reflection. Vascular medicine (London, England). 2003; 8::243248.
    [Google Scholar]
  161. Katz SD  et al.  Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. Journal of the American College of Cardiology. 2000; 36::845851.
    [Google Scholar]
  162. Lewis GD  et al.  Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007; 115::5966.
    [Google Scholar]
  163. Guazzi M, Vicenzi M, Arena R and Guazzi MD Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011; 124::164174.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2012.10
Loading
/content/journals/10.5339/gcsp.2012.10
Loading

Data & Media loading...

Supplements

Supplementary File 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error