1887
Volume 2012, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

There is no abstract available for this article.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2012.7
2012-07-04
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2012/1/gcsp.2012.7.html?itemId=/content/journals/10.5339/gcsp.2012.7&mimeType=html&fmt=ahah

References

  1. [1]. Frey   N., , Luedde   M., and Katus   HA. Mechanisms of disease: hypertrophic cardiomyopathy. . Nat Rev Cardiol . 2012; ;9: : 2 , 91– 100 .
    [Google Scholar]
  2. [2]. Girolami   F   et al.   Clinical features and outcome of hypertrophic cardiomyopathy associated with triplesarcomere protein gene mutations. . J Am Coll Cardiol . 2010; ;55: : 14 , 1444– 1453 .
    [Google Scholar]
  3. [3]. Olivotto   I   et al.   Myofilament protein gene mutation screening and outcome of patients withhypertrophic cardiomyopathy. . Mayo Clin Proc . 2008; ;83: : 6 , 630– 638 .
    [Google Scholar]
  4. [4]. Torricelli   F   et al.   Prevalence and clinical profile of troponin T mutations among patients withhypertrophic cardiomyopathy in tuscany. . Am J Cardiol . 2003; ;92: : 11 , 1358– 1362 .
    [Google Scholar]
  5. [5]. Landstrom   AP., and Ackerman   MJ. Mutation type is not clinically useful in predicting prognosis in hypertrophiccardiomyopathy. . Circ Heart Fail . 2010; ;122: : 23 , 2441– 2449 . discussion 2450 .
    [Google Scholar]
  6. [6]. Belus   A   et al.   The familial hypertrophic cardiomyopathy-associated myosin mutation R403Qaccelerates tension generation and relaxation of human cardiac myofibrils. . J Physiol . 2008; ;586: : Pt 15 , 3639– 3644 .
    [Google Scholar]
  7. [7]. Taegtmeyer   AB., , Barton   PJ., and Yacoub   MH. Genetic association studies: personalized medicine in cardiac transplantation. . NatClin Pract Cardiovasc Med . 2006; ;3: : 2 , 58– 59 .
    [Google Scholar]
  8. [8]. Taegtmeyer   AB   et al.   Effect of adenosine monophosphate deaminase-1 C34T allele on the requirement fordonor inotropic support and on the incidence of early graft dysfunction after cardiactransplantation. . Am J Cardiol . 2009; ;103: : 10 , 1457– 1462 .
    [Google Scholar]
  9. [9]. Taegtmeyer   AB   et al.   Effect of ABCB1 genotype on pre- and post-cardiac transplantation plasma lipidconcentrations. . J Cardiovasc Transl Res . 2011; ;4: : 3 , 304– 312 .
    [Google Scholar]
  10. [10]. Yuen   AH   et al.   Association of improved cardiac function in donors with C34T mutation of the AMPdeaminase 1 gene. . Nucleosides Nucleotides Nucleic Acids . 2005; ;24: : 4 , 275– 277 .
    [Google Scholar]
  11. [11]. Portela   A., and Esteller   M. Epigenetic modifications and human disease. . Nat Biotechnol . 2010; ;28: : 10 , 1057– 1068 .
    [Google Scholar]
  12. [12]. Feinberg   AP. Epigenomics reveals a functional genome anatomy and a new approach to commondisease. . Nat Biotechnol . 2010; ;28: : 10 , 1049– 1052 .
    [Google Scholar]
  13. [13]. Bernstein   BE   et al.   The NIH Roadmap Epigenomics Mapping Consortium. . Nat Biotechnol . 2010; ;28: : 10 , 1045– 1048 .
    [Google Scholar]
  14. [14]. Egger   G   et al.   Epigenetics in human disease and prospects for epigenetic therapy. . Nature . 2004; ;429: : 6990 , 457– 463 .
    [Google Scholar]
  15. [15]. Misteli   T. Beyond the sequence: cellular organization of genome function. . Cell . 2007; ;128: : 4 , 787– 800 .
    [Google Scholar]
  16. [16]. Suzuki   MM., and Bird   A. DNA methylation landscapes: provocative insights from epigenomics. . Nat RevGenet . 2008; ;9: : 6 , 465– 476 .
    [Google Scholar]
  17. [17]. Nikitina   T   et al.   Multiple modes of interaction between the methylated DNA binding protein MeCP2and chromatin. . Mol Cell Biol . 2007; ;27: : 3 , 864– 877 .
    [Google Scholar]
  18. [18]. Ng   HH   et al.   MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylasecomplex. . Nat Genet . 1999; ;23: : 1 , 58– 61 .
    [Google Scholar]
  19. [19]. Esteller   M. Epigenetics in cancer. . N Engl J Med . 2008; ;358: : 11 , 1148– 1159 .
    [Google Scholar]
  20. [20]. Mill   J   et al.   Epigenomic profiling reveals DNA-methylation changes associated with majorpsychosis. . Am J Hum Genet . 2008; ;82: : 3 , 696– 711 .
    [Google Scholar]
  21. [21]. Luger   K   et al.   Crystal structure of the nucleosome core particle at 2.8 A resolution. . Nature . 1997; ;389: : 6648 , 251– 260 .
    [Google Scholar]
  22. [22]. Peterson   CL., and Laniel   MA. Histones and histone modifications. . Curr Biol . 2004; ;14: : 14 , R546-51.
    [Google Scholar]
  23. [23]. Li   B., , Carey   M., and Workman   JL. The role of chromatin during transcription. . Cell . 2007; ;128: : 4 , 707– 719 .
    [Google Scholar]
  24. [24]. Kouzarides   T. Histone acetylases and deacetylases in cell proliferation. . Curr Opin Genet Dev . 1999; ;9: : 1 , 40– 48 .
    [Google Scholar]
  25. [25]. Bannister   AJ., and Kouzarides   T. Regulation of chromatin by histone modifications. . Cell Res . 2011; ;21: : 3 , 381– 395 .
    [Google Scholar]
  26. [26]. Haberland   M., , Montgomery   RL., and Olson   EN. The many roles of histone deacetylases in development and physiology: implicationsfor disease and therapy. . Nat Rev Genet . 2009; ;10: : 1 , 32– 42 .
    [Google Scholar]
  27. [27]. Hodawadekar   SC., and Marmorstein   R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanismand implications for effector design. . Oncogene . 2007; ;26: : 37 , 5528– 5540 .
    [Google Scholar]
  28. [28]. Martin   C., and Zhang   Y. The diverse functions of histone lysine methylation. . Nat Rev Mol Cell Biol . 2005; ;6: : 11 , 838– 849 .
    [Google Scholar]
  29. [29]. Kouzarides   T. Histone methylation in transcriptional control. . Curr Opin Genet Dev . 2002; ;12: : 2 , 198– 209 .
    [Google Scholar]
  30. [30]. Agger   K   et al.   The emerging functions of histone demethylases. . Curr Opin Genet Dev . 2008; ;18: : 2 , 159– 168 .
    [Google Scholar]
  31. [31]. Sims 3rd   RJ., , Nishioka   K., and Reinberg   D. Histone lysine methylation: a signature for chromatin function. . Trends Genet . 2003; ;19: : 11 , 629– 639 .
    [Google Scholar]
  32. [32]. Rea   S   et al.   Regulation of chromatin structure by site-specific histone H3 methyltransferases. . Nature . 2000; ;406: : 6796 , 593– 599 .
    [Google Scholar]
  33. [33]. Upadhyay   AK., and Cheng   X. Dynamics of histone lysine methylation: structures of methyl writers and erasers. . Prog Drug Res . 2011; ;67: : 107– 124 .
    [Google Scholar]
  34. [34]. Handy   DE., , Castro   R., and Loscalzo   J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. . Circulation . 2011; ;123: : 19 , 2145– 2156 .
    [Google Scholar]
  35. [35]. Zhang   Y., and Reinberg   D. Transcription regulation by histone methylation: interplay between different covalentmodifications of the core histone tails. . Genes Dev . 2001; ;15: : 18 , 2343– 2360 .
    [Google Scholar]
  36. [36]. Bedford   MT. Arginine methylation at a glance. . J Cell Sci . 2007; ;120: : Pt 24 , 4243– 4246 .
    [Google Scholar]
  37. [37]. Bedford   MT., and Clarke   SG. Protein arginine methylation in mammals: who, what, and why. . Mol Cell . 2009; ;33: : 1 , 1– 13 .
    [Google Scholar]
  38. [38]. Herrmann   F   et al.   Human protein arginine methyltransferases in vivo–distinct properties of eightcanonical members of the PRMT family. . J Cell Sci . 2009; ;122: : Pt 5 , 667– 677 .
    [Google Scholar]
  39. [39]. Wolf   SS. The protein arginine methyltransferase family: an update about function, newperspectives and the physiological role in humans. . Cell Mol Life Sci . 2009; ;66: : 13 , 2109– 2121 .
    [Google Scholar]
  40. [40]. Shi   Y. Histone lysine demethylases: emerging roles in development, physiology and disease. . Nat Rev Genet . 2007; ;8: : 11 , 829– 833 .
    [Google Scholar]
  41. [41]. Chang   B   et al.   JMJD6 is a histone arginine demethylase. . Science . 2007; ;318: : 5849 , 444– 447 .
    [Google Scholar]
  42. [42]. Lachner   M   et al.   Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. . Nature . 2001; ;410: : 6824 , 116– 120 .
    [Google Scholar]
  43. [43]. Wysocka   J   et al.   A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatinremodelling. . Nature . 2006; ;442: : 7098 , 86– 90 .
    [Google Scholar]
  44. [44]. Li   H   et al.   Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHDfinger of NURF. . Nature . 2006; ;442: : 7098 , 91– 95 .
    [Google Scholar]
  45. [45]. Strahl   BD., and Allis   CD. The language of covalent histone modifications. . Nature . 2000; ;403: : 6765 , 41– 45 .
    [Google Scholar]
  46. [46]. Movassagh   M   et al.   Differential DNA methylation correlates with differential expression of angiogenicfactors in human heart failure. . PLoS One . 2010; ;5: : 1 , e8564.
    [Google Scholar]
  47. [47]. Bratt   A   et al.   Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZbinding domains. . Gene . 2002; ;298: : 1 , 69– 77 .
    [Google Scholar]
  48. [48]. Su   ZJ   et al.   A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. . Proc Natl Acad Sci USA . 2004; ;101: : 33 , 12212– 12217 .
    [Google Scholar]
  49. [49]. Woodfin   A., , Voisin   MB., and Nourshargh   S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. . Arterioscler Thromb Vasc Biol . 2007; ;27: : 12 , 2514– 2523 .
    [Google Scholar]
  50. [50]. Camici   PG., and Crea   F. Coronary microvascular dysfunction. . N Engl J Med . 2007; ;356: : 8 , 830– 840 .
    [Google Scholar]
  51. [51]. Cecchi   F   et al.   Coronary Microvascular Dysfunction and Prognosis in Hypertrophic Cardiomyopathy. . New England Journal of Medicine . 2003; ;349: : 11 , 1027– 1035 .
    [Google Scholar]
  52. [52]. Meyer   M   et al.   Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. . Circulation . 1995; ;92: : 4 , 778– 784 .
    [Google Scholar]
  53. [53]. Inesi   G., , Prasad   AM., and Pilankatta   R. The Ca2+ ATPase of cardiac sarcoplasmic reticulum: Physiological role andrelevance to diseases. . Biochem Biophys Res Commun . 2008; ;369: : 1 , 182– 187 .
    [Google Scholar]
  54. [54]. Zarain-Herzberg   A   et al.   Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase incongestive heart failure due to myocardial infarction. . Mol Cell Biochem . 1996; ;163–164: : 285– 290 .
    [Google Scholar]
  55. [55]. Levine   B   et al.   Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. . NEngl J Med . 1990; ;323: : 4 , 236– 241 .
    [Google Scholar]
  56. [56]. Kao   YH   et al.   Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressionsvia the promoter methylation in cardiomyocytes. . Crit Care Med . 2010; ;38: : 1 , 217– 222 .
    [Google Scholar]
  57. [57]. Mathiyalagan   P   et al.   Cardiac ventricular chambers are epigenetically distinguishable. . Cell Cycle . 2010; ;9: : 3 , 612– 617 .
    [Google Scholar]
  58. [58]. Zhang   CL   et al.   Class II histone deacetylases act as signal-responsive repressors of cardiachypertrophy. . Cell . 2002; ;110: : 4 , 479– 488 .
    [Google Scholar]
  59. [59]. Chang   S   et al.   Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stresssignals and play redundant roles in heart development. . Mol Cell Biol . 2004; ;24: : 19 , 8467– 8476 .
    [Google Scholar]
  60. [60]. Lyons   GE   et al.   Expression of mef2 genes in the mouse central nervous system suggests a role inneuronal maturation. . J Neurosci . 1995; ;15: : 8 , 5727– 5738 .
    [Google Scholar]
  61. [61]. Edmondson   DG   et al.   Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouseembryogenesis. . Development . 1994; ;120: : 5 , 1251– 1263 .
    [Google Scholar]
  62. [62]. Vega   RB   et al.   Protein kinases C and D mediate agonist-dependent cardiac hypertrophy throughnuclear export of histone deacetylase 5. . Mol Cell Biol . 2004; ;24: : 19 , 8374– 8385 .
    [Google Scholar]
  63. [63]. McKinsey   TA., , Zhang   CL., and Olson   EN. Activation of the myocyte enhancer factor-2 transcription factor bycalcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 tohistone deacetylase 5. . Proc Natl Acad Sci USA . 2000; ;97: : 26 , 14400– 14405 .
    [Google Scholar]
  64. [64]. Lu   J   et al.   Signal-dependent activation of the MEF2 transcription factor by dissociationfrom histone deacetylases. . Proc Natl Acad Sci USA . 2000; ;97: : 8 , 4070– 4075 .
    [Google Scholar]
  65. [65]. Passier   R   et al.   CaM kinase signaling induces cardiac hypertrophy and activates the MEF2transcription factor in vivo. . J Clin Invest . 2000; ;105: : 10 , 1395– 1406 .
    [Google Scholar]
  66. [66]. Molkentin   JD   et al.   Cooperative activation of muscle gene expression by MEF2 and myogenic bHLHproteins. . Cell . 1995; ;83: : 7 , 1125– 1136 .
    [Google Scholar]
  67. [67]. Lu   J   et al.   Regulation of skeletal myogenesis by association of the MEF2 transcription factorwith class II histone deacetylases. . Mol Cell . 2000; ;6: : 2 , 233– 244 .
    [Google Scholar]
  68. [68]. Ha   CH   et al.   PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading tothe inhibition of gene transcription and cardiomyocyte hypertrophy. . Proc Natl AcadSci USA . 2010; ;107: : 35 , 15467– 15472 .
    [Google Scholar]
  69. [69]. Gusterson   RJ   et al.   The transcriptional co-activators CREB-binding protein (CBP) and p300 playa critical role in cardiac hypertrophy that is dependent on their histoneacetyltransferase activity. . J Biol Chem . 2003; ;278: : 9 , 6838– 6847 .
    [Google Scholar]
  70. [70]. Morimoto   T   et al.   The dietary compound curcumin inhibits p300 histone acetyltransferaseactivity and prevents heart failure in rats. . J Clin Invest . 2008; ;118: : 3 , 868– 878 .
    [Google Scholar]
  71. [71]. Grozinger   CM., and Schreiber   SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by14-3-3-dependent cellular localization. . Proc Natl Acad Sci USA . 2000; ;97: : 14 , 7835– 7840 .
    [Google Scholar]
  72. [72]. McKinsey   TA., , Zhang   CL., and Olson   EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. . Trends Biochem Sci . 2002; ;27: : 1 , 40– 47 .
    [Google Scholar]
  73. [73]. Lowes   BD   et al.   Myocardial gene expression in dilated cardiomyopathy treated with beta-blockingagents. . N Engl J Med . 2002; ;346: : 18 , 1357– 1365 .
    [Google Scholar]
  74. [74]. Li   C   et al.   The deltaA isoform of calmodulin kinase II mediates pathological cardiachypertrophy by interfering with the HDAC4-MEF2 signaling pathway. . BiochemBiophys Res Commun . 2011; ;409: : 1 , 125– 130 .
    [Google Scholar]
  75. [75]. Backs   J   et al.   CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocytehypertrophy. . J Clin Invest . 2006; ;116: : 7 , 1853– 1864 .
    [Google Scholar]
  76. [76]. Little   GH   et al.   Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmitssignals to histone deacetylase 4 in cardiac cells. . J Biol Chem . 2007; ;282: : 10 , 7219– 7231 .
    [Google Scholar]
  77. [77]. Zhang   T   et al.   The deltaC isoform of CaMKII is activated in cardiac hypertrophy and inducesdilated cardiomyopathy and heart failure. . Circ Res . 2003; ;92: : 8 , 912– 919 .
    [Google Scholar]
  78. [78]. Backs   J   et al.   The delta isoform of CaM kinase II is required for pathological cardiac hypertrophyand remodeling after pressure overload. . Proc Natl Acad Sci USA . 2009; ;106: : 7 , 2342– 2347 .
    [Google Scholar]
  79. [79]. Bossuyt   J   et al.   Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpressionreinforce the histone deacetylase 5 redistribution in heart failure. . Circ Res . 2008; ;102: : 6 , 695– 702 .
    [Google Scholar]
  80. [80]. Ling   H   et al.   Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressureoverload-induced cardiac hypertrophy to heart failure in mice. . J Clin Invest . 2009; ;119: : 5 , 1230– 1240 .
    [Google Scholar]
  81. [81]. Antos   CL   et al.   Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylaseinhibitors. . J Biol Chem . 2003; ;278: : 31 , 28930– 28937 .
    [Google Scholar]
  82. [82]. Kook   H   et al.   Cardiac hypertrophy and histone deacetylase-dependent transcriptional repressionmediated by the atypical homeodomain protein Hop. . J Clin Invest . 2003; ;112: : 6 , 863– 871 .
    [Google Scholar]
  83. [83]. Kee   HJ   et al.   Inhibition of histone deacetylation blocks cardiac hypertrophy induced byangiotensin II infusion and aortic banding. . Circulation . 2006; ;113: : 1 , 51– 59 .
    [Google Scholar]
  84. [84]. Olivotto   I   et al.   The many faces of hypertrophic cardiomyopathy: from developmental biology toclinical practice. . J Cardiovasc Transl Res . 2009; ;2: : 4 , 349– 367 .
    [Google Scholar]
  85. [85]. Kong   Y   et al.   Suppression of class I and II histone deacetylases blunts pressure-overload cardiachypertrophy. . Circulation . 2006; ;113: : 22 , 2579– 2588 .
    [Google Scholar]
  86. [86]. Gallo   P   et al.   Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiachypertrophy and failure. . Cardiovasc Res . 2008; ;80: : 3 , 416– 424 .
    [Google Scholar]
  87. [87]. Trivedi   CM   et al.   Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. . Nat Med . 2007; ;13: : 3 , 324– 331 .
    [Google Scholar]
  88. [88]. Zhu   H   et al.   Cardiac autophagy is a maladaptive response to hemodynamic stress. . J Clin Invest . 2007; ;117: : 7 , 1782– 1793 .
    [Google Scholar]
  89. [89]. Cao   DJ   et al.   Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy bysuppressing autophagy. . Proc Natl Acad Sci USA . 2011; ;108: : 10 , 4123– 4128 .
    [Google Scholar]
  90. [90]. Haddad   F   et al.   Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. . JBiol Chem . 2003; ;278: : 39 , 37132– 36138 .
    [Google Scholar]
  91. [91]. Majumdar   G   et al.   Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. . Mol CellBiochem . 2008; ;312: : 1–2 , 47– 60 .
    [Google Scholar]
  92. [92]. Zhang   QJ   et al.   The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy inresponse to hypertrophic stimuli in mice. . J Clin Invest . 2011; ;121: : 6 , 2447– 2456 .
    [Google Scholar]
  93. [93]. Bingham   AJ   et al.   The repressor element 1-silencing transcription factor regulates heart-specific geneexpression using multiple chromatin-modifying complexes. . Mol Cell Biol . 2007; ;27: : 11 , 4082– 4092 .
    [Google Scholar]
  94. [94]. Stein   AB   et al.   Loss of H3K4 methylation destabilizes gene expression patterns and physiologicalfunctions in adult murine cardiomyocytes. . J Clin Invest . 2011; ;121: : 7 , 2641– 2650 .
    [Google Scholar]
  95. [95]. Kaneda   R   et al.   Genome-wide histone methylation profile for heart failure. . Genes Cells . 2009; ;14: : 1 , 69– 77 .
    [Google Scholar]
  96. [96]. Nguyen   AT   et al.   DOT1L regulates dystrophin expression and is critical for cardiac function. . GenesDev . 2011; ;25: : 3 , 263– 274 .
    [Google Scholar]
  97. [97]. Peedicayil   J. Pharmacoepigenetics and pharmacoepigenomics. . Pharmacogenomics . 2008; ;9: : 12 , 1785– 1786 .
    [Google Scholar]
  98. [98]. Gal-Yam   EN   et al.   Cancer epigenetics: modifications, screening, and therapy. . Annu Rev Med . 2008; ;59: : 267– 280 .
    [Google Scholar]
  99. [99]. Gupta   MP   et al.   HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulatingmyofilament contractile activity. . J Biol Chem . 2008; ;283: : 15 , 10135– 10146 .
    [Google Scholar]
  100. [100]. Ordovas   JM., and Smith   CE. Epigenetics and cardiovascular disease. . Nat Rev Cardiol . 7: : 9 , 510– 519 .
    [Google Scholar]
  101. [101]. Yacoub   M., , Suzuki   K., and Rosenthal   N. The future of regenerative therapy in patients with chronic heart failure. . Nat ClinPract Cardiovasc Med . 2006; ;3: : Suppl 1 , S133-5.
    [Google Scholar]
  102. [102]. Assmus   B   et al.   Clinical outcome 2 years after intracoronary administration of bone marrow-derivedprogenitor cells in acute myocardial infarction. . Circ Heart Fail . 3: : 1 , 89– 96 .
    [Google Scholar]
  103. [103]. Ohtani   K., and Dimmeler   S. Epigenetic regulation of cardiovascular differentiation. . Cardiovasc Res . 90: : 3 , 404– 412 .
    [Google Scholar]
  104. [104]. Olson   EN. A decade of discoveries in cardiac biology. . Nat Med . 2004; ;10: : 5 , 467– 474 .
    [Google Scholar]
  105. [105]. Ieda   M   et al.   Direct reprogramming of fibroblasts into functional cardiomyocytes by definedfactors. . Cell . 142: : 3 , 375– 386 .
    [Google Scholar]
  106. [106]. Bernstein   BE   et al.   A bivalent chromatin structure marks key developmental genes in embryonic stemcells. . Cell . 2006; ;125: : 2 , 315– 326 .
    [Google Scholar]
  107. [107]. Takeuchi   JK., and Bruneau   BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. . Nature . 2009; ;459: : 7247 , 708– 711 .
    [Google Scholar]
  108. [108]. Olson   EN. Gene regulatory networks in the evolution and development of the heart. . Science . 2006; ;313: : 5795 , 1922– 1927 .
    [Google Scholar]
  109. [109]. Zhou   Q   et al.   In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. . Nature . 2008; ;455: : 7213 , 627– 632 .
    [Google Scholar]
  110. [110]. Fukuda   K., and Yuasa   S. Stem cells as a source of regenerative cardiomyocytes. . Circ Res . 2006; ;98: : 8 , 1002– 1013 .
    [Google Scholar]
  111. [111]. Karamboulas   C   et al.   HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. . JCell Sci . 2006; ;119: : Pt 20 , 4305– 4314 .
    [Google Scholar]
  112. [112]. Huebert   DJ   et al.   Genome-wide analysis of histone modifications by ChIP-on-chip. . Methods . 2006; ;40: : 4 , 365– 369 .
    [Google Scholar]
  113. [113]. Mikkelsen   TS   et al.   Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. . Nature . 2007; ;448: : 7153 , 553– 560 .
    [Google Scholar]
  114. [114]. Weber   M., and Schubeler   D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. . Curr Opin Cell Biol . 2007; ;19: : 3 , 273– 280 .
    [Google Scholar]
  115. [115]. Morahan   JM   et al.   A genome-wide analysis of brain DNA methylation identifies new candidate genes forsporadic amyotrophic lateral sclerosis. . Amyotroph Lateral Scler . 2009; ;10: : 5–6 , 418– 429 .
    [Google Scholar]
  116. [116]. Kaneda   R   et al.   High-throughput screening of genome fragments bound to differentially acetylatedhistones. . Genes Cells . 2004; ;9: : 12 , 1167– 1174 .
    [Google Scholar]
  117. [117]. Stankiewicz   P., and Lupski   JR. Structural variation in the human genome and its role in disease. . Annu Rev Med . 2010; ;61: : 437– 455 .
    [Google Scholar]
  118. [118]. Lander   ES   et al.   Initial sequencing and analysis of the human genome. . Nature . 2001; ;409: : 6822 , 860– 921 .
    [Google Scholar]
  119. [119]. Dietz   HC. New therapeutic approaches to mendelian disorders. . N Engl J Med . 2010; ;363: : 9 , 852– 863 .
    [Google Scholar]
  120. [120]. Brooke   BS   et al.   Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. . N Engl JMed . 2008; ;358: : 26 , 2787– 2795 .
    [Google Scholar]
  121. [121]. Bignell   GR   et al.   Signatures of mutation and selection in the cancer genome. . Nature . 2010; ;463: : 7283 , 893– 898 .
    [Google Scholar]
  122. [122]. Finishing the euchromatic sequence of the human genome, Nature. 2004; 431: 7011,931–945.
  123. [123]. Frueh   FW   et al.   Pharmacogenomic biomarker information in drug labels approved by theUnited States food and drug administration: prevalence of related drug use. . Pharmacotherapy . 2008; ;28: : 8 , 992– 998 .
    [Google Scholar]
  124. [124]. Lander   ES. Initial impact of the sequencing of the human genome. . Nature . 2011; ;470: : 7333 , 187– 197 .
    [Google Scholar]
  125. [125]. Collins   F. Has the revolution arrived?. . Nature . 2010; ;464: : 7289 , 674– 675 .
    [Google Scholar]
  126. [126]. Manolio   TA., and Collins   R. Enhancing the feasibility of large cohort studies. . JAMA . 2010; ;304: : 20 , 2290– 2291 .
    [Google Scholar]
  127. [127]. Manolio   TA., , Bailey-Wilson   JE., and Collins   FS. Genes, environment and the value of prospective cohort studies. . Nat Rev Genet . 2006; ;7: : 10 , 812– 820 .
    [Google Scholar]
  128. [128]. Thorisson   GA., and Stein   LD. The SNP Consortium website: past, present and future. . Nucleic Acids Res . 2003; ;31: : 1 , 124– 127 .
    [Google Scholar]
  129. [129]. Birney   E   et al.   Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project. . Nature . 2007; ;447: : 7146 , 799– 816 .
    [Google Scholar]
  130. [130]. Altshuler   DM   et al.   Integrating common and rare genetic variation in diverse human populations. . Nature . 2010; ;467: : 7311 , 52– 58 .
    [Google Scholar]
  131. [131]. A map of human genome variation from population-scale sequencing, Nature. 2010;467: 7319, 1061–1073.
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2012.7
Loading
/content/journals/10.5339/gcsp.2012.7
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error