1887
Volume 2012, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

There is no abstract available for this article.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2012.7
2012-07-04
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2012/1/gcsp.2012.7.html?itemId=/content/journals/10.5339/gcsp.2012.7&mimeType=html&fmt=ahah

References

  1. Frey N, Luedde M and Katus HA Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2012; 9::2, 91100.
    [Google Scholar]
  2. Girolami F  et al.  Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010; 55::14, 14441453.
    [Google Scholar]
  3. Olivotto I  et al.  Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008; 83::6, 630638.
    [Google Scholar]
  4. Torricelli F  et al.  Prevalence and clinical profile of troponin T mutations among patients with hypertrophic cardiomyopathy in tuscany. Am J Cardiol. 2003; 92::11, 13581362.
    [Google Scholar]
  5. Landstrom AP and Ackerman MJ Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circ Heart Fail. 2010; 122::23, 24412449. discussion 2450 .
    [Google Scholar]
  6. Belus A  et al.  The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol. 2008; 586::Pt 15, 36393644.
    [Google Scholar]
  7. Taegtmeyer AB, Barton PJ and Yacoub MH Genetic association studies: personalized medicine in cardiac transplantation. Nat Clin Pract Cardiovasc Med. 2006; 3::2, 5859.
    [Google Scholar]
  8. Taegtmeyer AB  et al.  Effect of adenosine monophosphate deaminase-1 C34T allele on the requirement for donor inotropic support and on the incidence of early graft dysfunction after cardiac transplantation. Am J Cardiol. 2009; 103::10, 14571462.
    [Google Scholar]
  9. Taegtmeyer AB  et al.  Effect of ABCB1 genotype on pre- and post-cardiac transplantation plasma lipid concentrations. J Cardiovasc Transl Res. 2011; 4::3, 304312.
    [Google Scholar]
  10. Yuen AH  et al.  Association of improved cardiac function in donors with C34T mutation of the AMP deaminase 1 gene. Nucleosides Nucleotides Nucleic Acids. 2005; 24::4, 275277.
    [Google Scholar]
  11. Portela A and Esteller M Epigenetic modifications and human disease. Nat Biotechnol. 2010; 28::10, 10571068.
    [Google Scholar]
  12. Feinberg AP Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol. 2010; 28::10, 10491052.
    [Google Scholar]
  13. Bernstein BE  et al.  The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010; 28::10, 10451048.
    [Google Scholar]
  14. Egger G  et al.  Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004; 429::6990, 457463.
    [Google Scholar]
  15. Misteli T Beyond the sequence: cellular organization of genome function. Cell. 2007; 128::4, 787800.
    [Google Scholar]
  16. Suzuki MM and Bird A DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008; 9::6, 465476.
    [Google Scholar]
  17. Nikitina T  et al.  Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol. 2007; 27::3, 864877.
    [Google Scholar]
  18. Ng HH  et al.  MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999; 23::1, 5861.
    [Google Scholar]
  19. Esteller M Epigenetics in cancer. N Engl J Med. 2008; 358::11, 11481159.
    [Google Scholar]
  20. Mill J  et al.  Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008; 82::3, 696711.
    [Google Scholar]
  21. Luger K  et al.  Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389::6648, 251260.
    [Google Scholar]
  22. Peterson CL and Laniel MA Histones and histone modifications. Curr Biol. 2004; 14::14, R546-51.
    [Google Scholar]
  23. Li B, Carey M and Workman JL The role of chromatin during transcription. Cell. 2007; 128::4, 707719.
    [Google Scholar]
  24. Kouzarides T Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev. 1999; 9::1, 4048.
    [Google Scholar]
  25. Bannister AJ and Kouzarides T Regulation of chromatin by histone modifications. Cell Res. 2011; 21::3, 381395.
    [Google Scholar]
  26. Haberland M, Montgomery RL and Olson EN The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009; 10::1, 3242.
    [Google Scholar]
  27. Hodawadekar SC and Marmorstein R Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene. 2007; 26::37, 55285540.
    [Google Scholar]
  28. Martin C and Zhang Y The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005; 6::11, 838849.
    [Google Scholar]
  29. Kouzarides T Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002; 12::2, 198209.
    [Google Scholar]
  30. Agger K  et al.  The emerging functions of histone demethylases. Curr Opin Genet Dev. 2008; 18::2, 159168.
    [Google Scholar]
  31. Sims 3rd RJ, Nishioka K and Reinberg D Histone lysine methylation: a signature for chromatin function. Trends Genet. 2003; 19::11, 629639.
    [Google Scholar]
  32. Rea S  et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000; 406::6796, 593599.
    [Google Scholar]
  33. Upadhyay AK and Cheng X Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog Drug Res. 2011; 67::107124.
    [Google Scholar]
  34. Handy DE, Castro R and Loscalzo J Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011; 123::19, 21452156.
    [Google Scholar]
  35. Zhang Y and Reinberg D Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001; 15::18, 23432360.
    [Google Scholar]
  36. Bedford MT Arginine methylation at a glance. J Cell Sci. 2007; 120::Pt 24, 42434246.
    [Google Scholar]
  37. Bedford MT and Clarke SG Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009; 33::1, 113.
    [Google Scholar]
  38. Herrmann F  et al.  Human protein arginine methyltransferases in vivo–distinct properties of eight canonical members of the PRMT family. J Cell Sci. 2009; 122::Pt 5, 667677.
    [Google Scholar]
  39. Wolf SS The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci. 2009; 66::13, 21092121.
    [Google Scholar]
  40. Shi Y Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet. 2007; 8::11, 829833.
    [Google Scholar]
  41. Chang B  et al.  JMJD6 is a histone arginine demethylase. Science. 2007; 318::5849, 444447.
    [Google Scholar]
  42. Lachner M  et al.  Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001; 410::6824, 116120.
    [Google Scholar]
  43. Wysocka J  et al.  A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 2006; 442::7098, 8690.
    [Google Scholar]
  44. Li H  et al.  Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature. 2006; 442::7098, 9195.
    [Google Scholar]
  45. Strahl BD and Allis CD The language of covalent histone modifications. Nature. 2000; 403::6765, 4145.
    [Google Scholar]
  46. Movassagh M  et al.  Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One. 2010; 5::1, e8564.
    [Google Scholar]
  47. Bratt A  et al.  Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene. 2002; 298::1, 6977.
    [Google Scholar]
  48. Su ZJ  et al.  A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc Natl Acad Sci USA. 2004; 101::33, 1221212217.
    [Google Scholar]
  49. Woodfin A, Voisin MB and Nourshargh S PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol. 2007; 27::12, 25142523.
    [Google Scholar]
  50. Camici PG and Crea F Coronary microvascular dysfunction. N Engl J Med. 2007; 356::8, 830840.
    [Google Scholar]
  51. Cecchi F  et al.  Coronary Microvascular Dysfunction and Prognosis in Hypertrophic Cardiomyopathy. New England Journal of Medicine. 2003; 349::11, 10271035.
    [Google Scholar]
  52. Meyer M  et al.  Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation. 1995; 92::4, 778784.
    [Google Scholar]
  53. Inesi G, Prasad AM and Pilankatta R The Ca2+ ATPase of cardiac sarcoplasmic reticulum: Physiological role and relevance to diseases. Biochem Biophys Res Commun. 2008; 369::1, 182187.
    [Google Scholar]
  54. Zarain-Herzberg A  et al.  Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem. 1996; 163–164::285290.
    [Google Scholar]
  55. Levine B  et al.  Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990; 323::4, 236241.
    [Google Scholar]
  56. Kao YH  et al.  Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med. 2010; 38::1, 217222.
    [Google Scholar]
  57. Mathiyalagan P  et al.  Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle. 2010; 9::3, 612617.
    [Google Scholar]
  58. Zhang CL  et al.  Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002; 110::4, 479488.
    [Google Scholar]
  59. Chang S  et al.  Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004; 24::19, 84678476.
    [Google Scholar]
  60. Lyons GE  et al.  Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J Neurosci. 1995; 15::8, 57275738.
    [Google Scholar]
  61. Edmondson DG  et al.  Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development. 1994; 120::5, 12511263.
    [Google Scholar]
  62. Vega RB  et al.  Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004; 24::19, 83748385.
    [Google Scholar]
  63. McKinsey TA, Zhang CL and Olson EN Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA. 2000; 97::26, 1440014405.
    [Google Scholar]
  64. Lu J  et al.  Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA. 2000; 97::8, 40704075.
    [Google Scholar]
  65. Passier R  et al.  CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000; 105::10, 13951406.
    [Google Scholar]
  66. Molkentin JD  et al.  Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 1995; 83::7, 11251136.
    [Google Scholar]
  67. Lu J  et al.  Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 2000; 6::2, 233244.
    [Google Scholar]
  68. Ha CH  et al.  PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci USA. 2010; 107::35, 1546715472.
    [Google Scholar]
  69. Gusterson RJ  et al.  The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem. 2003; 278::9, 68386847.
    [Google Scholar]
  70. Morimoto T  et al.  The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest. 2008; 118::3, 868878.
    [Google Scholar]
  71. Grozinger CM and Schreiber SL Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA. 2000; 97::14, 78357840.
    [Google Scholar]
  72. McKinsey TA, Zhang CL and Olson EN MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci. 2002; 27::1, 4047.
    [Google Scholar]
  73. Lowes BD  et al.  Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med. 2002; 346::18, 13571365.
    [Google Scholar]
  74. Li C  et al.  The deltaA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Biochem Biophys Res Commun. 2011; 409::1, 125130.
    [Google Scholar]
  75. Backs J  et al.  CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest. 2006; 116::7, 18531864.
    [Google Scholar]
  76. Little GH  et al.  Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem. 2007; 282::10, 72197231.
    [Google Scholar]
  77. Zhang T  et al.  The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003; 92::8, 912919.
    [Google Scholar]
  78. Backs J  et al.  The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA. 2009; 106::7, 23422347.
    [Google Scholar]
  79. Bossuyt J  et al.  Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res. 2008; 102::6, 695702.
    [Google Scholar]
  80. Ling H  et al.  Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009; 119::5, 12301240.
    [Google Scholar]
  81. Antos CL  et al.  Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem. 2003; 278::31, 2893028937.
    [Google Scholar]
  82. Kook H  et al.  Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest. 2003; 112::6, 863871.
    [Google Scholar]
  83. Kee HJ  et al.  Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006; 113::1, 5159.
    [Google Scholar]
  84. Olivotto I  et al.  The many faces of hypertrophic cardiomyopathy: from developmental biology to clinical practice. J Cardiovasc Transl Res. 2009; 2::4, 349367.
    [Google Scholar]
  85. Kong Y  et al.  Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 2006; 113::22, 25792588.
    [Google Scholar]
  86. Gallo P  et al.  Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res. 2008; 80::3, 416424.
    [Google Scholar]
  87. Trivedi CM  et al.  Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007; 13::3, 324331.
    [Google Scholar]
  88. Zhu H  et al.  Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007; 117::7, 17821793.
    [Google Scholar]
  89. Cao DJ  et al.  Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA. 2011; 108::10, 41234128.
    [Google Scholar]
  90. Haddad F  et al.  Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. J Biol Chem. 2003; 278::39, 3713236138.
    [Google Scholar]
  91. Majumdar G  et al.  Epigenetic regulation of cardiac muscle-specific genes in H9c2 cells by Interleukin-18 and histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide. Mol Cell Biochem. 2008; 312::1–2, 4760.
    [Google Scholar]
  92. Zhang QJ  et al.  The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011; 121::6, 24472456.
    [Google Scholar]
  93. Bingham AJ  et al.  The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes. Mol Cell Biol. 2007; 27::11, 40824092.
    [Google Scholar]
  94. Stein AB  et al.  Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest. 2011; 121::7, 26412650.
    [Google Scholar]
  95. Kaneda R  et al.  Genome-wide histone methylation profile for heart failure. Genes Cells. 2009; 14::1, 6977.
    [Google Scholar]
  96. Nguyen AT  et al.  DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 2011; 25::3, 263274.
    [Google Scholar]
  97. Peedicayil J Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics. 2008; 9::12, 17851786.
    [Google Scholar]
  98. Gal-Yam EN  et al.  Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med. 2008; 59::267280.
    [Google Scholar]
  99. Gupta MP  et al.  HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem. 2008; 283::15, 1013510146.
    [Google Scholar]
  100. Ordovas JM and Smith CE Epigenetics and cardiovascular disease. Nat Rev Cardiol. 7::9, 510519.
    [Google Scholar]
  101. Yacoub M, Suzuki K and Rosenthal N The future of regenerative therapy in patients with chronic heart failure. Nat Clin Pract Cardiovasc Med. 2006; 3::Suppl 1, S133-5.
    [Google Scholar]
  102. Assmus B  et al.  Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 3::1, 8996.
    [Google Scholar]
  103. Ohtani K and Dimmeler S Epigenetic regulation of cardiovascular differentiation. Cardiovasc Res. 90::3, 404412.
    [Google Scholar]
  104. Olson EN A decade of discoveries in cardiac biology. Nat Med. 2004; 10::5, 467474.
    [Google Scholar]
  105. Ieda M  et al.  Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 142::3, 375386.
    [Google Scholar]
  106. Bernstein BE  et al.  A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006; 125::2, 315326.
    [Google Scholar]
  107. Takeuchi JK and Bruneau BG Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009; 459::7247, 708711.
    [Google Scholar]
  108. Olson EN Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313::5795, 19221927.
    [Google Scholar]
  109. Zhou Q  et al.  In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008; 455::7213, 627632.
    [Google Scholar]
  110. Fukuda K and Yuasa S Stem cells as a source of regenerative cardiomyocytes. Circ Res. 2006; 98::8, 10021013.
    [Google Scholar]
  111. Karamboulas C  et al.  HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci. 2006; 119::Pt 20, 43054314.
    [Google Scholar]
  112. Huebert DJ  et al.  Genome-wide analysis of histone modifications by ChIP-on-chip. Methods. 2006; 40::4, 365369.
    [Google Scholar]
  113. Mikkelsen TS  et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007; 448::7153, 553560.
    [Google Scholar]
  114. Weber M and Schubeler D Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 2007; 19::3, 273280.
    [Google Scholar]
  115. Morahan JM  et al.  A genome-wide analysis of brain DNA methylation identifies new candidate genes for sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009; 10::5–6, 418429.
    [Google Scholar]
  116. Kaneda R  et al.  High-throughput screening of genome fragments bound to differentially acetylated histones. Genes Cells. 2004; 9::12, 11671174.
    [Google Scholar]
  117. Stankiewicz P and Lupski JR Structural variation in the human genome and its role in disease. Annu Rev Med. 2010; 61::437455.
    [Google Scholar]
  118. Lander ES  et al.  Initial sequencing and analysis of the human genome. Nature. 2001; 409::6822, 860921.
    [Google Scholar]
  119. Dietz HC New therapeutic approaches to mendelian disorders. N Engl J Med. 2010; 363::9, 852863.
    [Google Scholar]
  120. Brooke BS  et al.  Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008; 358::26, 27872795.
    [Google Scholar]
  121. Bignell GR  et al.  Signatures of mutation and selection in the cancer genome. Nature. 2010; 463::7283, 893898.
    [Google Scholar]
  122. Finishing the euchromatic sequence of the human genome, Nature. 2004; 431: 7011, 931–945.
  123. Frueh FW  et al.  Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy. 2008; 28::8, 992998.
    [Google Scholar]
  124. Lander ES Initial impact of the sequencing of the human genome. Nature. 2011; 470::7333, 187197.
    [Google Scholar]
  125. Collins F Has the revolution arrived?. Nature. 2010; 464::7289, 674675.
    [Google Scholar]
  126. Manolio TA and Collins R Enhancing the feasibility of large cohort studies. JAMA. 2010; 304::20, 22902291.
    [Google Scholar]
  127. Manolio TA, Bailey-Wilson JE and Collins FS Genes, environment and the value of prospective cohort studies. Nat Rev Genet. 2006; 7::10, 812820.
    [Google Scholar]
  128. Thorisson GA and Stein LD The SNP Consortium website: past, present and future. Nucleic Acids Res. 2003; 31::1, 124127.
    [Google Scholar]
  129. Birney E  et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007; 447::7146, 799816.
    [Google Scholar]
  130. Altshuler DM  et al.  Integrating common and rare genetic variation in diverse human populations. Nature. 2010; 467::7311, 5258.
    [Google Scholar]
  131. A map of human genome variation from population-scale sequencing, Nature. 2010; 467: 7319, 1061–1073.
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2012.7
Loading
/content/journals/10.5339/gcsp.2012.7
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error