1887
Volume 2012, Issue 1
  • ISSN: 2305-7823
  • EISSN:

Abstract

Abstract

Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2012.6
2012-07-04
2020-09-18
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2012/1/gcsp.2012.6.html?itemId=/content/journals/10.5339/gcsp.2012.6&mimeType=html&fmt=ahah

References

  1. Watson JD and Crick FH Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953; 171::4356, 737738.
    [Google Scholar]
  2. Watson JD and Crick FH The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953; 18::123131.
    [Google Scholar]
  3. Thoma F and Koller T Influence of histone H1 on chromatin structure. Cell. 1977; 12::1, 101107.
    [Google Scholar]
  4. Franklin RE and Gosling RG Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature. 1953; 172::4369, 156157.
    [Google Scholar]
  5. Franklin RE and Gosling RG Molecular configuration in sodium thymonucleate. Nature. 1953; 171::4356, 740741.
    [Google Scholar]
  6. Wilkins MH  et al.  Helical structure of crystalline deoxypentose nucleic acid. Nature. 1953; 172::4382, 759762.
    [Google Scholar]
  7. Wilkins MH, Stokes AR and Wilson HR Molecular structure of deoxypentose nucleic acids. Nature. 1953; 171::4356, 738740.
    [Google Scholar]
  8. Crick FH The Complementary Structure of DNA. Proc Natl Acad Sci USA. 1954; 40::8, 756758.
    [Google Scholar]
  9. Spector DL The dynamics of chromosome organization and gene regulation. Annu Rev Biochem. 2003; 72::573608.
    [Google Scholar]
  10. Lamond AI and Earnshaw WC Structure and function in the nucleus. Science. 1998; 280::5363, 54753.
    [Google Scholar]
  11. Antequera F and Bird A Predicting the total number of human genes. Nat Genet. 1994; 8::2, 114.
    [Google Scholar]
  12. Nowak R Mining treasures from ’junk DNA’. Science. 1994; 263::5147, 608610.
    [Google Scholar]
  13. Small D, Nelkin B and Vogelstein B Nonrandom distribution of repeated DNA sequences with respect to supercoiled loops and the nuclear matrix. Proc Natl Acad Sci U S A. 1982; 79::19, 59115915.
    [Google Scholar]
  14. Tsongalis GJ  et al.  Partial characterization of nuclear matrix attachment regions from human fibroblast DNA using Alu-polymerase chain reaction. Cancer Res. 1992; 52::13, 38073810.
    [Google Scholar]
  15. Finishing the euchromatic sequence of the human genome, Nature. 2004;431:7011,931–945.
  16. Pennisi E Genomics. DNA study forces rethink of what it means to be a gene. Science. 2007; 316::5831, 15561557.
    [Google Scholar]
  17. Crick FH On protein synthesis. Symp Soc Exp Biol. 1958; 12::138163.
    [Google Scholar]
  18. Crick F Central dogma of molecular biology. Nature. 1970; 227::5258, 561563.
    [Google Scholar]
  19. Kollmar R and Farnham PJ Site-specific initiation of transcription by RNA polymerase II. Proc Soc Exp Biol Med. 1993; 203::2, 127139.
    [Google Scholar]
  20. Balvay L, Libri D and Fiszman MY Pre-mRNA secondary structure and the regulation of splicing. Bioessays. 1993; 15::3, 165169.
    [Google Scholar]
  21. Gorlach M, Burd CG and Dreyfuss G The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp Cell Res. 1994; 211::2, 400407.
    [Google Scholar]
  22. Munroe D and Jacobson A Tales of poly(A): a review. Gene. 1990; 91::2, 151158.
    [Google Scholar]
  23. Varani G A cap for all occasions. Structure. 1997; 5::7, 855858.
    [Google Scholar]
  24. Staley JP and Guthrie C Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998; 92::3, 315326.
    [Google Scholar]
  25. Gebauer F and Hentze MW Molecular mechanisms of translational control. Nat Rev Mol Cell Biol. 2004; 5::10, 827835.
    [Google Scholar]
  26. McCarthy MI  et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008; 9::5, 356369.
    [Google Scholar]
  27. Arvanitis DA  et al.  The Ser96Ala variant in histidine-rich calcium-binding protein is associated with life-threatening ventricular arrhythmias in idiopathic dilated cardiomyopathy. Eur Heart J. 2008; 29::20, 25142525.
    [Google Scholar]
  28. Sachidanandam R  et al.  A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 6822;409, 928933.
    [Google Scholar]
  29. International HapMap Consortium  A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007 Oct 18; 449::7164, 851861.
    [Google Scholar]
  30. Weber JL  et al.  Human diallelic insertion/deletion polymorphisms. Am J Hum Genet. 2002 Oct; 71::4, 854862.
    [Google Scholar]
  31. Mills RE  et al.  An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 2006 Sep; 16::9, 11821190.
    [Google Scholar]
  32. Hastings PJ  et al.  Mechanisms of change in gene copy number. Nat Rev Genet. 2009; 10::8, 551564.
    [Google Scholar]
  33. Olivotto I  et al.  Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol. 2009; 6::4, 317321.
    [Google Scholar]
  34. Shephard R and Semsarian C Role of animal models in HCM research. J Cardiovasc Transl Res. 2009; 2::4, 471482.
    [Google Scholar]
  35. Vignier N  et al.  Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res. 2009; 105::3, 239248.
    [Google Scholar]
  36. Nishi H  et al.  Possible gene dose effect of a mutant cardiac beta-myosin heavy chain gene on the clinical expression of familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 1994; 200::1, 549556.
    [Google Scholar]
  37. Nanni L  et al.  Hypertrophic cardiomyopathy: two homozygous cases with “typical” hypertrophic cardiomyopathy and three new mutations in cases with progression to dilated cardiomyopathy. Biochem Biophys Res Commun. 2003; 309::2, 391398.
    [Google Scholar]
  38. Frey N, Luedde M and Katus HA Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 9::2, 91100.
    [Google Scholar]
  39. Kelly M and Semsarian C Multiple mutations in genetic cardiovascular disease: a marker of disease severity?. Circ Cardiovasc Genet. 2009; 2::2, 182190.
    [Google Scholar]
  40. Girolami F  et al.  Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010; 55::14, 14441453.
    [Google Scholar]
  41. Ingles J  et al.  Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005; 42::10, e59.
    [Google Scholar]
  42. Richard P  et al.  Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003; 107::17, 22272232.
    [Google Scholar]
  43. Van Driest SL  et al.  Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004; 44::9, 19031910.
    [Google Scholar]
  44. Lekanne Deprez RH  et al.  Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006; 43::10, 829832.
    [Google Scholar]
  45. Tester DJ  et al.  Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005; 2::5, 507517.
    [Google Scholar]
  46. Roger VL  et al.  Executive summary: heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012; 125::1, 188197.
    [Google Scholar]
  47. Roger VL  et al.  Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012; 125::1, e2e220.
    [Google Scholar]
  48. Maron BJ  et al.  American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J. 2003; 24::21, 19651991.
    [Google Scholar]
  49. Ackerman MJ  et al.  HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 13::8, 10771109.
    [Google Scholar]
  50. Ackerman MJ  et al.  HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 8::8, 13081339.
    [Google Scholar]
  51. Priori SG  et al.  Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002; 106::1, 6974.
    [Google Scholar]
  52. Thierfelder L  et al.  Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994; 77::5, 701712.
    [Google Scholar]
  53. Kathiresan S and Srivastava D Genetics of human cardiovascular disease. Cell. 148::6, 12421257.
    [Google Scholar]
  54. Charron P  et al.  Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 31::22, 27152726.
    [Google Scholar]
  55. Skrzynia C, Demo EM and Baxter SM Genetic counseling and testing for hypertrophic cardiomyopathy: an adult perspective. J Cardiovasc Transl Res. 2009; 2::4, 493499.
    [Google Scholar]
  56. Bos JM, Towbin JA and Ackerman MJ Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009; 54::3, 201211.
    [Google Scholar]
  57. Girolami F  et al.  A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2006; 7::8, 601607.
    [Google Scholar]
  58. Demo EM, Skrzynia C and Baxter S Genetic counseling and testing for hypertrophic cardiomyopathy: the pediatric perspective. J Cardiovasc Transl Res. 2009; 2::4, 500507.
    [Google Scholar]
  59. Morita H  et al.  Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med. 2008; 358::18, 18991908.
    [Google Scholar]
  60. Hershberger RE  et al.  Genetic evaluation of cardiomyopathy–a Heart Failure Society of America practice guideline. J Card Fail. 2009; 15::2, 8397.
    [Google Scholar]
  61. Semsarian C Guidelines for the diagnosis and management of hypertrophic cardiomyopathy. Heart Lung Circ. 2007; 16::1, 1618.
    [Google Scholar]
  62. Cowan J  et al.  Genetic testing and genetic counseling in cardiovascular genetic medicine: overview and preliminary recommendations. Congest Heart Fail. 2008; 14::2, 97105.
    [Google Scholar]
  63. Hershberger RE Cardiovascular genetic medicine: evolving concepts, rationale, and implementation. J Cardiovasc Transl Res. 2008; 1::2, 137143.
    [Google Scholar]
  64. Olivotto I, Kassem HS and Girolami F Genetic testing for hypertrophic cardiomyopathy: ongoing voyage from exploration to clinical exploitation. Cardiogenetics. 2011;e5-8.
    [Google Scholar]
  65. Wordsworth S  et al.  DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur Heart J. 2010; 31::8, 926935.
    [Google Scholar]
  66. Vidal M, Cusick ME and Barabasi AL Interactome networks and human disease. Cell. 2011; 144::6, 986998.
    [Google Scholar]
  67. Hall JL  et al.  Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur Heart J. 2007; 28::5, 613627.
    [Google Scholar]
  68. Birks EJ  et al.  Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation. 2005; 112::9 Suppl, I57I64.
    [Google Scholar]
  69. Pham MX  et al.  Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med. 2010; 362::20, 18901900.
    [Google Scholar]
  70. Movassagh M  et al.  Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011; 124::22, 24112422.
    [Google Scholar]
  71. D’Alessandra Y  et al.  Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010; 31::22, 27652773.
    [Google Scholar]
  72. Willner D  et al.  Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci U S A. 2011; 108::Suppl 1, 45474553.
    [Google Scholar]
  73. Li S  et al.  Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011; 124::2, 175184.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2012.6
Loading
/content/journals/10.5339/gcsp.2012.6
Loading

Data & Media loading...

Supplements

Supplementary File 1

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error