1887
Volume 5(2024) Number 1
  • EISSN: 2708-0463

Abstract

يُعْتبرُ قطاع النسيج في تونس قوةً دافعةً للاقتصاد الوطني. ومع ذلك، فإن هذا القطاع يستهلك كمياتٍ كبيرةً من المياه العذبة، ومجموعة متنوعة من المواد الكيميائية، وبالتالي تُشكّل مياه الصرف الصحّي المُتأتية من قطاع النسيج تهديداً بيئيّاً. والغرض من هذه الدراسة هو البحث عن المُلَوّثات الموجودة في مياه الصرف الصحّي التي تم جمعها من ثلاثة مصانع للنسيج والتحقيق في تأثيرها على البيئة. وأظهرت التحاليل الفيزيوكيميائية (TSS ،BOD ،COD... إلخ) وجود نسبة عالية من المُلوّثات في العينات المُجمَّعة، كما كشف التحليل الكروماتوغرافي بواسطة UPLC-MS / MS عن وجود صبغة ثلاثي فينيل ميثان (الكريستال البنفسجي) في عينة واحدة. ويمكن أن يؤدي وجود الملوّثات الكيميائية في مياه الصرف الصحي لقطاع النسيج إلى تأثيرات ضارّة على النظام البيئي. في هذا السياق، تم إجراء تقييم للسُّميّة البيئية، باعتماد اختبار السُّمِّية خارج الجسم () في أنظمة الخلايا حقيقية النواة (اختبار المذنب). ولم نلاحظ أيّ آثار ذات صلة بيولوجية لأيّ من العيّنات المُختبرة. وأظهرت النتائج أيضاً أن عملية معالجة المياه المُستعملة باعتماد تقنية التخثر والتلبد لا تقلل من تركيز المُلوّثات. ولهذا السبب سعينا إلى استخدام مواد تخثر طبيعية كمسحوق ألواح التين الشوكي ومسحوق قشور الباذنجان . وأوضحت النتائج أن المعالجة باستخدام هذين المخثرين كانت فعّالة في تقليل تركيزات مؤشرات التلوث والسمية الجينية للعيّنات. وأَبْرَزت نتائج التحاليل أنَّ التركيز 0.8 غم/لتر مكّن من الحصول على أفضل النتائج بالنسبة لجميع المُخثرات الطبيعية المُستعملة. بعد مقارنة النتائج، لاحظنا أنَّ مسحوق ألواح التّين الشوكي كان تأثيره ملحوظاً في تقليل تركيزات مؤشرات التلوث؛ حيث تراوحت مختلف القيم بين BOD (119-63 مغ/لتر)، COD (204-97 مغ/لتر) وTSS (64-14 مغ/لتر)، كما أنّه أظهر النسب الأعلى والأفضل في إزالة المُلّونات (89.78%-92.87%).

The textile sector is a cornerstone of the Tunisian economy. However, this sector consumes significant volumes of fresh water and a wide variety of chemicals. Accordingly, derived wastewater is causing environmental disturbance. The objective of this study is to search for contaminants present in the finishing wastewater obtained from three textile industries and to investigate their environmental impact. The physicochemical analysis (COD, BOD, TSS, etc.) revealed a high pollutant load within the effluents collected from the three textile industries under investigation. Likewise, chromatographic analysis by UPLC-MS/MS revealed the presence of triphenylmethane (crystal violet) in one sample. The presence of micropollutants in textile wastewater could induce harmful effects on environmental flora and fauna. In this context, an ecotoxicological evaluation, bioassays (the comet test), was carried out. Results didn’t show any biologically relevant effects for all tested samples. The results also revealed that the coagulation-flocculation treatment process adopted by the textile industries is unable to reduce the pollutant load. For this reason, we have sought to use natural coagulants prepared from cactus and eggplant . The results showed that the treatment using these two biocoagulants was effective in reducing the pollutant load and the genotoxicity of the effluents. The best results of coagulation-floculation were obtained with the concentration of 0.8 g/L for all natural coagulants. After comparing the results, we noticed that cactus powder had a significant effect on reducing the concentrations of pollution indicators, different values ranged between BOD (63-119 mg/l), COD (97-204 mg/l) and TSS (14-64 mg/l). Moreover, it showed the highest percentages and the best in removing colorants (89.78% - 92.87%).

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2024.1
2024-04-30
2024-05-24
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/5/1/AJSR.2024.issue1.1.html?itemId=/content/journals/10.5339/ajsr.2024.1&mimeType=html&fmt=ahah

References

  1. Dellai A, Dridi D, Lemorvan V, Robert J, Cherif A, Mosrati R, et al. Decolorization does not always mean detoxification: Case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environmental Science and Pollution Research. 2013;20:5790–5796.
    [Google Scholar]
  2. Hai FI, Yamamoto K, Fukushi K. Hybrid treatment system for dye wastewater. Critical Reviews in Environmental Science and Technology. 2007;37:315–377.
    [Google Scholar]
  3. Jadhav SB, Chougule AS, Shah DP, Pereira CS, Jadhav JP. Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technologies and Environmental Policy. 2015;17:709–720.
    [Google Scholar]
  4. Faouzi J, Rezouki S, Bourhia M, Moubchir T, Abbou MB, Baammi S, . et al. Assessment of impacts of industrial effluents on physico-chemical and microbiological qualities of irrigation water of the Fez Rriver, Morocco. Environmental Geochemistry and Health. 2023;45:3933–3946.
    [Google Scholar]
  5. Jadhav SB, Phugare SS, Patil PS, Jadhav JP. Biochemical degradation pathway Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration and Biodegradation. 2011;65:733–743.
    [Google Scholar]
  6. Lima ROA, Bazo AP, Salvadori DMF, Rech CM, Oliveira DP, Umbuzeiro GA. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutation Research. 2007;626:53–60.
    [Google Scholar]
  7. Schiliro T, Porfido A, Spina F, Varese GC, Gilli G. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay. Science of the Total Environment. 2012;432: 389–395.
    [Google Scholar]
  8. Suryavathi V, Sharma S, Sharma S, Saxena P, Pandey S, Grover R, . et al. Acute toxicity of textile dye wastewaters (untreated and treated) of Sanganer on male reproductive systems of albino rats and mice. Reproductive Toxicology. 2005;19:547–556.
    [Google Scholar]
  9. Makene VW, Tijani JO, Petrik LF, Pool EJ. Evaluation of cytotoxicity and inflammatory activity of wastewater collected from a textile factory before and after treatment by coagulation–flocculation methods. Environmental Monitoring and Assessment. 2016;188:471.
    [Google Scholar]
  10. Cao JS, Lin JX, Fang F, Zhang MT, Hu ZR. A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresource Technology. 2014;163:199–205.
    [Google Scholar]
  11. Moraes SG, Freire RS, Duran N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere. 2000;40:369–373.
    [Google Scholar]
  12. Srinivasan V, Bhavan PS, Krishnakumar J. Bioremediation of textile dye effluent by Bacillus and Pseudomonas spp. International Journal of Science, Environment and Technology. . 2014;3:2215–2224.
    [Google Scholar]
  13. Marcucci M, Ciabatti I, Matteucci A, Vernaglione G. Membrane technologies applied to textile wastewater treatment. Annals of the New York Academy of Sciences. 2003;984:53–64.
    [Google Scholar]
  14. Meric S, Selcuk H, Belgiorno V. Acute toxicity removal in textile finishing wastewater by Fenton’s, ozone and coagulation-flocculation processes. Water Research. 2005;39:1147–1153.
    [Google Scholar]
  15. Huang X, Bo X, Zhao Y, Gao B, Wang Y, Sun S, et al. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresource Technology. 2014;165:116–121.
    [Google Scholar]
  16. Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management. 2012;93:154–168.
    [Google Scholar]
  17. Teh CY, Budiman PM, Shak KPY, Wu TY. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research. 2016;55:4363–4389.
    [Google Scholar]
  18. Freitas TKFS, Almeida CA, Manholer DD, Geraldino HCL, de Souza MTF, Garcia JC. Review of utilization plant-based coagulants as alternatives to textile wastewater treatment. In: Muthu S (ed.) Detox fashion. Textile science and clothing technology. Singapore: Springer; 2018. p. 27–79.
    [Google Scholar]
  19. Liang CZ, Sun SP, Li FY, Ong YK, Chung TS. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science. 2014;469:306–315.
    [Google Scholar]
  20. Furlan FR, de Mel da Silva LG, Morgado AF, de Souza AAU, de Souz SMAGU. . Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resources, Conservation and Recycling. 2010;54:283–290.
    [Google Scholar]
  21. Flaten TP. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin. 2001;55:187–196.
    [Google Scholar]
  22. Rudén C. Acrylamide and cancer risk – Expert risk assessments and the public debate. Food and Chemical Toxicology. 2004;42:335–349.
    [Google Scholar]
  23. Yin CY. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemistry. 2010;45:1437–1444.
    [Google Scholar]
  24. Poleo ABS. Aluminium polymerization – A mechanism of acute toxicity of aqueous aluminium to fish. Aquatic Toxicology. 1995;31:347–356.
    [Google Scholar]
  25. Zhang K, Zhou Q. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions. Environmental Toxicology. 2005;20:179–187.
    [Google Scholar]
  26. Akpomie KG, Ojo FK, Akpomie TM, Abuh MG. Coagulation–flocculation process of Citropsis articulata seed powders as natural coagulant for textile effluent. Leonardo Electronic Journal of Practices and Technologies. 2018;32:271–284.
    [Google Scholar]
  27. Kristianto H, Kurniawan MA, Soetedjo JNM. Utilization of papaya seeds as natural coagulant for synthetic textile coloring agent wastewater treatment. International Journal on Advanced Science, Engineering and Information Technology. 2018;8:2071–2077.
    [Google Scholar]
  28. Chethana M, Sorokhaibam LG, Bhandari VM, Raja S, Ranade VV. Green approach to dye wastewater treatment using biocoagulants. ACS Sustainable Chemistry & Engineering. 2016;4:2495–2507.
    [Google Scholar]
  29. Sanghi R, Bhattacharya B, Singh V. Use of Cassia javahikai seed gum and gum-g-polyacrylamide as coagulant aid for the decolorization of textile dye solutions. Bioresource Technology. 2006;97:1259–1264.
    [Google Scholar]
  30. Patel H, Vashi RT. Removal of Congo red dye from its aqueous solution using natural coagulants. Journal of Saudi Chemical Society. 2012;16:131–136.
    [Google Scholar]
  31. Reck IM, Baptista ATA, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS. Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes. Environmental Science and Pollution Research. 2020;27:12192–12201.
    [Google Scholar]
  32. Kumar R, Barakat MA. Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chemical Engineering Journal. 2013;226:377–383.
    [Google Scholar]
  33. Barka N, Ouzaouit K, Abdennouri M, Makhfouk ME. Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers. 2013;44:52–60.
    [Google Scholar]
  34. Dakiky M, Khamis M, Manassra A, Mer’eb M. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research. 2002;6:533–540.
    [Google Scholar]
  35. Miretzky P, Munoz C, Chavez AC. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha). Bioresource Technology. 2008;99:1211–1217.
    [Google Scholar]
  36. Kazi T, Virupakshi A. Treatment of tannery wastewater using natural coagulants. International Journal of Innovative Research in Science, Engineering and Technology. 2013;2:4061–4068.
    [Google Scholar]
  37. Kannadasan DRT, Thirumarimurugan M, Sowmya KS, Karuppannan S, Vijayashanthi M. Dye industry effluent treatment using cactus (Opuntia) and water hyacinth (Eichhornia crassipes). Journal of Environmental Science, Toxicology and Food Technology. 2013;3:41–43.
    [Google Scholar]
  38. Bouaouine O, Baudu M, Khalil F, Chtioui H, Zaitan H. Comparative study between Moroccan cactus and chemicals coagulants for textile effluent treatment. Journal of Materials and Environmental Sciences. 2017;8:2687– 2693.
    [Google Scholar]
  39. Darvanjooghi MHK, Davoodi SM, Dursun AY, Ehsani MR, Karimpour I, Ameri E. Application of treated eggplant peel as a low-cost adsorbent for water treatment toward elimination of Pb2+: Kinetic modeling and isotherm study. Adsorption Science & Technology. 2018;36:1112–1143.
    [Google Scholar]
  40. Massimi L, Giuliano A, Astolfi ML, Congedo R, Masotti A, Canepari S. Efficiency evaluation of food waste materials for the removal of metals and metalloids from complex multi-element solutions. Materials (Basel). 2018;11:334.
    [Google Scholar]
  41. Gulistan AS, Ibrahim TH, Khamis MI, ElSayed Y. Application of eggplant peels powder for the removal of oil from produced water. Desalination and Water Treatment. 2015;57:15724–15732.
    [Google Scholar]
  42. Abbas MN, Abbas FS, Ibrahim TA. Treatment of polluted aqueous solutions with different types of dyes by eggplant peels accessing to zero residue levels. International Journal of Science Engineering and Technology. 2018;4:525–533.
    [Google Scholar]
  43. Chethana M, Sorokhaibam LG, Bhandari MV, et al. Application of biocoagulant Acanthocereus tetragonus (Triangle cactus) in dye wastewater treatment. Journal of Environmental Research and Development. 2015;9:813.
    [Google Scholar]
  44. De Souza MTF, Almeida CA, Ambrosio E, Santos LB, de Souz Freitas TKF, Manholer DD, . et al. Extraction and use of Cereus peruvianus cactus mucilage in the treatment of textile effluents. Journal of the Taiwan Institute of Chemical Engineers. 2016;67:174–183.
    [Google Scholar]
  45. Vishali S, Karthikeyan R. Cactus opuntia (ficus-indica): An eco-friendly alternative coagulant in the treatment of paint effluent. Desalination and Water Treatment. 2015;56:1489–1497.
    [Google Scholar]
  46. Lozano-Rivas WA, Whiting KE, Gómez-Lahoz C, RodrÍguez-Maroto JM. Use of glycosides extracted from the fique (Furcraea sp.) in wastewater treatment for textile industry. International Journal of Environmental Science and Technology. 2016;13:1131–1136.
    [Google Scholar]
  47. Hemapriya G, Abinaya R, Dhinesh KS. Textile effluent treatment using Moringa oleifera. International Journal of Innovative Research and Development. 2015;4:385–390.
    [Google Scholar]
  48. Shilpa BS, Akanksha K, Girish P. Evaluation of cactus and hyacinth bean peels as natural coagulants. International Journal of Chemical and Environmental Engineering. 2012;3:1242–1246.
    [Google Scholar]
  49. Abhishek J, Sharma SK, Jyothi PM. Colour and COD removal in textile effluents using coagulation flocculation. International Journal of Innovative Research in Science, Engineering and Technology. 2016;6:10233–10239.
    [Google Scholar]
  50. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, . et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35:206–221.
    [Google Scholar]
  51. Sethu V, Selvarajoo A, Chee Wei L, Ganesan P, See Lim G, Xin Yua M. Opuntia cactus as a novel bio-coagulant for the treatment of Palm Oil Mill Effluent (POME). Progress in Energy and Environment. 2019;9:11–26.
    [Google Scholar]
  52. Zhao C, Zhou J, Yan Y, Yang L, Xing G, Li H, . et al. Application of coagulation/flocculation in oily wastewater treatment: A review. Science of the Total Environment. 2021;765:142795.
    [Google Scholar]
  53. Adachi A, Radouane S, Faiçal EO, Moubchir T, Anouar H, Noureddine E, . et al. Cactus and holm oak acorn for efficient textile wastewater treatment by coagulation–flocculation process optimization using Box–Benhken design. Journal of Ecological Engineering. 2023;24:315–328.
    [Google Scholar]
  54. Government Decre. No. 2018-315 of March 26, 2018 setting the limit values for effluent discharges into the receiving environment. http://www.onas.nat.tn/Ar/image.php?id=964
    [Google Scholar]
  55. Fersi C, Gzara L, Dhahbi M. Flux decline study for textile wastewater treatment by membrane processes. Desalination. 2009;244:321–332.
    [Google Scholar]
  56. Khlifi R, Belbahri L, Woodward S, Ellouz M, Dhouib A, Sayadi S, . et al. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. Journal of Hazardous Materials. 2010;175:802–808.
    [Google Scholar]
  57. Ben Younes S, Ellouz M, Sayadi S. A comparative study of an industrial effluent treatment using enzymatic and alkaline adapted consortium assays. Journal of Chemical Technology and Biotechnology. 2012;88:563–571.
    [Google Scholar]
  58. Mnif I, Bouassida M, Ayed L, Ghribi D. Optimization of textile effluent bacterial treatment and improvement of the process efficiency through SPB1 biosurfactant addition. Water Science & Technology. 2023;87:1764-1778.
    [Google Scholar]
  59. Tishmack J, Jones D. Meeting the challenges of swine manure management. BioCycle. 2003;44:24.
    [Google Scholar]
  60. Elango G, Rathika G, Elango S. Physico-chemical parameters of textile dyeing effluent and its impacts with case study. International Journal of Research in Chemistry and Environment. 2017;7:17–24.
    [Google Scholar]
  61. Mohabansi NP, Tekade PV, Bawankar SV. Physico-chemical parameters of textile mill effluent, Hinganghat, Dist. Wardha (M.S.). Current World Environment. 2011;6:165–168.
    [Google Scholar]
  62. FEPA. Interim guidelines and standards for industrial effluent, gaseous emissions and noise limitations. Nigeria: Federal Environmental Protection Agency; 1991.
  63. Ajao AT, Adebayo GB, Yakubu SE. Bioremediation of textile industrial effluent using mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized on agar agar in a bioreactor. Journal of Microbiology and Biotechnology Research. 2011;1:50–56.
    [Google Scholar]
  64. Manikandan P, Palanisamy PN, Baskar R, Sivakumar P, Sakthisharmila P. Physico chemical analysis of textile industrial effluents from Tirupur City, TN, India. International Journal of Advance Research in Science and Engineering. 2015;4:93–104.
    [Google Scholar]
  65. Panhwar A, Faryal K, Kandhro A, Qaisar S. Assessment of textile industrial effluent by wastewater quality standards. International Journal of Scientific & Engineering Research. 2019;10:1659–1663.
    [Google Scholar]
  66. Nourmoradi H, Rahmati Z, Javaheri M, Moradnejadi K, Noorimotlagh Z. Effect of praestol as a coagulant aid to improve coagulation–flocculation in dye containing wastewater. Global NEST Journal. 2015;18:38–46.
    [Google Scholar]
  67. Vijayaragharan G, Sivakumar T, Kumar AV. Application of plant based coagulants for waste water treatment. International Journal of Advanced Engineering Research and Studies. 2011;1:88–92.
    [Google Scholar]
  68. Dkhissi O, El Hakmaoui A, Souabi S, Chatoui M, Jada A, Akssira M. Treatment of vegetable oil refinery wastewater by coagulation–flocculation process using the cactus as a bio-flocculant. Journal of Materials and Environmental Sciences. 2018;9:18–25.
    [Google Scholar]
  69. Jinna A, Anu MR, Krishnan N, Sanal V, Das L. Comparative study of efficiency of local plants in water treatment. International Research Journal of Engineering and Technology. 2019;6:4046–4052.
    [Google Scholar]
  70. Deshmukh SO, Hedaoo MN. Wastewater treatment using bio-coagulant as cactus Opuntia ficus indica – A review. International Journal for Scientific Research & Development. 2018;6:711–717.
    [Google Scholar]
  71. Oladoja NA. Headway on natural polymeric coagulants in water and wastewater treatment operations. Journal of Water Process Engineering. 2015;6:174–192.
    [Google Scholar]
  72. Choudhary M, Ray MB, Neogi S. Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Separation and Purification Technology. 2019;209:714–724.
    [Google Scholar]
  73. Miller SM, Fugate EJ, Craver VO, Smith J.A., Zimmerma JB. Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environmental Science & Technology. 2008;42:4274–4279.
    [Google Scholar]
  74. Maurya S, Daverey A. Evaluation of plant-based natural coagulants for municipal wastewater treatment. 3 Biotech. 2018;8:77.
    [Google Scholar]
  75. Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. Environmental Technology. 2016;37:1829–1842.
    [Google Scholar]
  76. Mohamed M, Zeitoun A, Abdalla AE. Assessment of chemical composition and bioactive compounds in the peel, pulp and whole Egyptian eggplant flour. Journal of the Advances in Agricultural Researches. 2019;24:14-37.
    [Google Scholar]
  77. Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Analytical and Bioanalytical Chemistry. 2013;405:5937–5952.
    [Google Scholar]
  78. Shi Z, Hu J, Li Q, Zhang S, Liang Y, Zhang H. Graphene based solid phase extraction combined with ultra-high performance liquid chromatography–tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. Journal of Chromatography A. 2014;1355:219–227.
    [Google Scholar]
  79. Shan XM, Shen DH, Wang BS, Lu BB, Huang FY. Simultaneous determination of bisphenols and alkylphenols in water by solid phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Biomedical and Environmental Sciences. 2014;27:471–474.
    [Google Scholar]
  80. Au W, Pathak S, Colie CJ, Hsu TC. Cytogenetic toxicity of gentian violet and crystal violet on mammalian cells in vitro. Mutation Research. 1978;58:269–276.
    [Google Scholar]
  81. Azmi W, Sani RK, Banerjee UC. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology. 1998;22:185–191.
    [Google Scholar]
  82. Chen CC, Liao HJ, Cheng CY, Yen CY, Chung YC. Biodegradation of crystal violet by Pseudomonas putida. Biotechnology Letters. 2007;29:391–396.
    [Google Scholar]
  83. Schuetze A, Heberer T, Juergensen S. Occurrence of residues of the veterinary drug crystal (gentian) violet in wild eels caught downstream from municipal sewage treatment plants. Environmental Chemistry. 2008;5:194–199.
    [Google Scholar]
  84. Belpaire C, Reyns T, Geeraerts C, Van Loc J. Toxic textile dyes accumulate in wild European eel Anguilla anguilla. Chemosphere. 2015;138:784–791.
    [Google Scholar]
  85. Parshetti GK, Parshetti SG, Telke AA, Kalyani DC, Doong RA, Govindwar SP. Biodegradation of crystal violet by Agrobacterium radiobacter. Journal of Environmental Sciences. 2011;23:1384–1393.
    [Google Scholar]
  86. Fan HJ, Huang ST, Chung WH, Jan JL, Lin WY, Chen CC. Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediate separation and identification. Journal of Hazardous Materials. 2009;171:1032–1044.
    [Google Scholar]
  87. Mani S, Bharagava RN. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. . Reviews of Environmental Contamination and Toxicology. 2016;237:71–104.
    [Google Scholar]
  88. Kudlak B, Wieczerzak M, Yotova G, Tsakovski S, Simeonov V, Namiesnik J. Environmental risk assessment of Polish wastewater treatment plant activity. Chemosphere. 2016;160:181–188.
    [Google Scholar]
  89. Tahrani L, Van Loco J, Anthonissen R, Verschaeve L, Ben Mansour H, Reyns T. Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Science & Technology. 2017;76:3000–3021.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2024.1
Loading
/content/journals/10.5339/ajsr.2024.1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error