1887
Volume 4(2023) Number 1
  • EISSN: 2708-0463

Abstract

نُفذ هذا البحث في كلية الزراعة، في جامعة دمشق (دمشق/ سورية) خلال عام 2021، بهدف دراسة تأثير الرش بالبورون (حمض البوريك) (0, 50, 100 ppm) والسكريات الكحولية (السوربيتول والمانيتول) بثلاثة تراكيز (10، 20، 30 غ/ل1) في نمو وإنتاج نبات الفراولة ونوعية ثماره () صنف أوزوغراند. لوحظ من النتائج أن الرش بالسكريات الكحولية (السوربيتول، والمانيتول) يحسّن نمو وإنتاج نبات الفراولة، وكذلك نوعية ثماره؛ فازدادت قيم المؤشرات المدروسة بزيادة التركيز، فوصل عدد الأوراق (19.06، 21.62، 23.95 ورقة/نبات) عند رش النبات بالسوربيتول (19.78، 22.57، 25.13 ورقة/نبات) والمانيتول (10، 20، 30 غ/ل، على الترتيب) مقارنة بالشاهد 15.27 ورقة/نبات. تأثر الإنتاج الكلي إيجابياً عند الرش بالمانيتول تركيز 30 غ/ل (556.29 غ/ نبات)، في حين وصل إلى (465.48 غ/ نبات) للسوربيتول بتركيز 30 غ/ل، مقارنةً بالشاهد. تحسنت نوعية الثمار بزيادة تركيز البورون (القيمة الأعلى للمواد الصلبة الذائبة (8.69%) سُجّلت عند التركيز (100 ppm) من البورون، مقارنة بالشاهد (7.59%). تفوق التفاعل بين (المانيتول 30غ/ل، والبورون 100 ppm) معنوياً في أغلب المؤشرات المدروسة وعلى نحو ملحوظ، مثل عدد الأوراق (29.06) ورقة/ نبات، والإنتاج الكلي (712.03غ)، وكمية فيتامين (C) (52.03 مغ/100غ وزن طازج)، مقارنةً بالشاهد 0غ/ل. أظهرت نتائجنا التأثير الإيجابي للرش الورقي بالسكريات الكحولية والبورون في نبات الفراولة، فينصح باستخدام التركيز (30غ/ل) للسكريات الكحولية و(100 ppm) للبورون؛ للتفوق المعنوي الذي حققاه مقارنةً بشكل مستقل ببقية التراكيز، ويفضل الرش بالمانيتول لأنه سجّل قيماً أكثر ارتفاعاً مقارنةً بالسورية.

This research aimed to study the effect of spraying boron and sugar alcohols on vegetative growth, fruit quality and total yield of Strawberry plants ( Oso Grande). The experiment was carried out at the Faculty of Agriculture (University of Damascus/Syria) during 2021. Results showed that spraying strawberry plants with sorbitol and mannitol at three different concentrations (10, 20 and 30 g/L-1) and boric acid at three concentrations of (0, 50 and 100 mg l-1) increased most of the studied parameters. It was also noticed that the number of leaves increased (19.06, 21.62, 23.95 leaf/plant) when plants were sprayed with sorbitol (10, 20 and 30 g/L-1) respectively, and (19.78, 22.57, and 25.13 leaf/plant) when plants were sprayed with mannitol (10, 20 and 30 g/L-1) respectively as compared to the control treatment (15.27 leaf/plant). Total yield was positively affected by spraying with mannitol 30 g/L-1 (556.29 g/plant) while it reached (465.48 g/plant) with sorbitol 30 g/L-1 in comparison with the control (fruit quality was increased by increasing boron concentration). The highest total soluble solids (8.69%) were observed at the concentration of 100 ppm of boron in comparative with the control (7.59%). The interaction between two variables (30g/L-1 mannitol and 100 ppm boron) significantly increased all studied parameters, such as number of leaves (29.06), leaf area (32.60cm2), number of flowers (35.43), total yield (712.03 gm.) in addition to fruit quality (TSS 9.30% and ascorbic acid content 52.03 mg/100g fresh weight) as compared to control treatment (0 mg/l).

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2023.2
2023-04-30
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2023/1/ajsr.2023.2.html?itemId=/content/journals/10.5339/ajsr.2023.2&mimeType=html&fmt=ahah

References

  1. Hummer KE, Bassil N, Njuguna W. Wild crop relatives: Genomic and breeding resources – temperate fruits. Cole C editor; 2011. Berlin, Heidelberg: Springer-Verlag. pp. 17–44.
    [Google Scholar]
  2. FAO. Food and agriculture organization of the United Nations; 2019. Available from FAOSTAT Agricultural Statistics Database: http://www.Fao.org
  3. Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, Hohtola A. Expression of genes involved in anthocyanin bio-synthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology. 2002;130:729–739.
    [Google Scholar]
  4. Himelrick DG, Dozier WA Jr. Soil fumigation and soil solarisation in strawberry production. Advances in Strawberry Production. 1991;10:12–28.
    [Google Scholar]
  5. Kilic B, Sonmez I. Determination of the effects of different organic fertilizers and doses on soil properties. Mediterranean Agricultural Sciences. 2019;32(Special issue):91–96.
    [Google Scholar]
  6. Negi YK, Sajwan P, Uniyal S, Mishra AC. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertlizers. Scientia Horticulturae. 2021;283:110038.
    [Google Scholar]
  7. Brown PH, Hu H. Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species. Annals of Botany. 1996; 77:(5):497–506.
    [Google Scholar]
  8. Mufty RK, Taha SM. Response Two Strawberry Cultivars (Fragaria x ananassa Duch) for foliar application of two organic fertlizers. IOP Conference Series: Earth and Environmental Science. 2021;910:012033.
    [Google Scholar]
  9. Gutiérrez E, Gaudillère JP. Carbon partitioning in source leaves of peach, a sorbitol-synthesizing species, is modified by photosynthetic rate. Physiologia Plantarum. Physiologia Plantarum. 1997;100:353–360.
    [Google Scholar]
  10. Warington K. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany. 1923; 37:(4):629–672.
    [Google Scholar]
  11. Shorrock VM. The occurrence and correction of boron deficiency. Plant Soil. 1997;193:121–148.
    [Google Scholar]
  12. Meng D, He M, ABi Y, Xu H, Dandekar AM, Fei Z, et al. Decrease DE sorbitol synthesis leads to abnormal stamen development and reduce Pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica). New Phytologist. 2018; 217:(2):641–656.
    [Google Scholar]
  13. AL-Taee RWM, AL-Shammari MFM. Effect of spraying with organic fertilizer and sorbitol sugar on growth and yeild of cabbage. Diyala University, Collage of Agriculture, Iraq. 2022; 13:(1):362–367.
    [Google Scholar]
  14. Awuchl CG. Sugar alcohols chemistry production, importance of mannitol, sorbitol, and erythritol. International Journal of Advanced Academic Research Sciences, Technology Engineering. 2017; 3:(2488):49–98.
    [Google Scholar]
  15. Moulin HR, Obaid IA. Effect of sorbitol and boron spraying on vegetative growth and flowering of strawberry Fragaria ananassa Duch. Cv. Ruby gem. Arab Journal of Sciences & Research Publishing. 2019; 3:(2):14–27. DOI: https://doi.org/10.26389/AJSRP.H101218
    [Google Scholar]
  16. Kuwada K, Kuramoto M, Utamura M, et al. Effect of mannitol from Laminaria japonica, other sugar alcohols, and marine alga polysaccharides on in vitro hyphal growth of Gigasopra margarita and root colonization of trifoliate orange. Plant and Soil. 2005; 276:(1–2):279.
    [Google Scholar]
  17. Raefii S, Zahra P. Effect of boric acid spray on growth and development of ‘Camarosa’strawberry (Fragaria× ananassa Duch.). International Journal of Advanced Biological and Biomedical Research. 2014; 2:(4):1060–1063. http://www.ijabbr.com/article_7277.html
    [Google Scholar]
  18. Obaed IA, Mowlan EA. Effect of boric acid and sorbitol spray on growth and flowering of ‘Rubygem’ strawberry (Fragaria× ananassa Duch.). Journal of Agriculture and Veterinary Sciences. 2019; 3:(2):14-27.
    [Google Scholar]
  19. Mosleh MF, Abdul Rassol IJ. Role of spraying boron and sugar alcohols on growth, yield and seeds production of pepper. Iraqi Journal of Agricultural Sciences. 2019; 50:(2):646–652.
    [Google Scholar]
  20. AOAC. Official methods of analysis. 14th ed. Washington, DC: Association of Official Agricultural Chemists; 1989
  21. Serenella N, Pizzeghelloa D, Muscolob A, Vianello A. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry. 2002; 34:(11):1527–1536.
    [Google Scholar]
  22. Hu H, Penn SG, Lebrilla CB, Brown PH. Isolation and characterization of soluble boron complexes in higher plants. Plant Physiology. 1997; 113:(2):649–655.
    [Google Scholar]
  23. Al-Sahaf FH. Applied plant nutrition. University of Baghdad, Ministry of Higher Education and Scientific Research; 1989. pp. 45–47.
    [Google Scholar]
  24. Barker AV, Pilbeam DJ. Handbook of plant nutrition, 2nd edition. Boca Raton: CRC Press; 2015.
    [Google Scholar]
  25. Battal, P. Effects of some mineral nutrients on gibbrellic acid levels in maize plants. Economic Botany. 2006; 58:(2):195–203.
    [Google Scholar]
  26. Silke W. Boron foliar fertilization: Impacts on absorption and subsequent translocation of foliar applied boron. Ph.D. Dissertation in Agricultural Sciences. Faculty of Agricultural Sciences, University of Hohenheim, Germany; 2011. pp. 93.
    [Google Scholar]
  27. Mengel K, Kirkhy EA. Principles of plant nutrition. 5th ed. Dordrecht/Bern, Switzerland: Kluwer Academic Publishers; 2001. pp. 849.
    [Google Scholar]
  28. Motesharezade B, Malakuty MJ, Nakhoda B. Effects of N, Zn and B sprays on photochemical efficiency of sweet cherry. Hort Newsletter. 2001;12:106–111.
    [Google Scholar]
  29. Hagreaves C, Adi S, Warman RR. The effects of municipal solid waste compost and compost tea on mineral element uptake and fruits quality of strawberry. Compost Science and Utilization. 2009; 17:(2):85–94.
    [Google Scholar]
  30. Smirnoff N. Botanical Briefing: The function and metabolism of ascorbic acid in plants. Annals of Botany. 1996; 78:(6):661–669. https://doi.org/10.1006/anbo.1996.0175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2023.2
Loading
/content/journals/10.5339/ajsr.2023.2
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error