1887
Volume 2015, Issue 5
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Bioresorbable polymers and biocorrodible metals are the latest developments in biodegradable materials used in interventional cardiology for the mechanical treatment of coronary atherosclerosis. Poly-L-lactic acid is the most frequently used bioresorbable polymer and initial evidence of feasibility, efficacy and clinical safety following deployment of polymer-based platforms was gained after completion of the first-in-man longitudinal ABSORB registries, Cohorts A and B and ABSORB Extend.

In these studies, the biologic interaction of the first-generation Absorb Bioresorbable Vascular Scaffold (BVS) (Abbott Vascular, SC, Calif., US) with the underlying vascular tissue was evaluated with multiple imaging modalities such as intravascular ultrasound (IVUS), virtual histology-IVUS, IVUS-palpography, optical coherence tomography as well as with coronary computed tomography. Efficacy measures following this multi-imaging assessment as well as clinical safety were comparable with current generation drug-eluting stents (DES) (Abbott Vascular, SC, Calif., US) in non-complex lesions over a 3-year follow-up. Furthermore, novel properties of functional and anatomic restoration of the vessel wall during the late phases of resorption and vascular healing were observed transforming the field of mechanical treatment of atherosclerosis from delivering only acute revascularization to additionally enable late repair and subsequent restoration of a more physiologic underlying vascular tissue.

Despite the sufficient evidence and the subsequent Conformité Européenne mark approval of the first fully biodegradable scaffold (Absorb BVS) in 2012 for revascularizing non-complex lesions, the paucity of randomized comparisons of fully bioresorbable scaffolds (BRS) with metallic DES in a “real-world” clinical setting raised controversies among the interventional community for the merit of these technologies. Only recently, results from international large-scale randomized trials from the United States (U.S.), China and Japan were revealed.

Herein we provide a comprehensive overview of the ABSORB III, ABSORB China and ABSORB Japan studies demonstrating the consistent non-inferiority in clinical safety and efficacy measures of the Absorb BVS vs. current generation DES.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.62
2015-12-22
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/5/gcsp.2015.62.html?itemId=/content/journals/10.5339/gcsp.2015.62&mimeType=html&fmt=ahah

References

  1. [1]. Gogas   BD., , Maniel   M., , Samady   H., , King   SB. . Novel drug-eluting stents for coronary revascularization. . Trends Cardiovasc Med . 2014; ;24: 7 : 305– 313 , doi:10.1016/j.tcm.2014.07.004 .
    [Google Scholar]
  2. [2]. Gogas   BD. . Bioresorbable scaffolds for percutaneous coronary interventions. . Glob Cardiol Sci Pract . 2014; ;2014: 4 : 409– 427 , doi:10.5339/gcsp.2014.55 .
    [Google Scholar]
  3. [3]. Sigwart   U. . Treatment of coronary artery disease from the inside: Light at the end of the tunnel?.   Glob Cardiol Sci Pract . 2015; ;53: , doi:10.5339/gcsp.2015.53 .
    [Google Scholar]
  4. [4]. Ormiston   JA., , Serruys   PW., , Regar   E., , Dudek   D., , Thuesen   L., , Webster   MWI., , Onuma   Y., , Garcia-Garcia   HM., , Mreevy   R., , Veldhof   S. . A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): A prospective open-label trial. . Lancet . 2008; ;371: 9616 : 899– 907 , doi:10.1016/S0140-6736(08)60415-8 .
    [Google Scholar]
  5. [5]. Serruys   PW., , Ormiston   JA., , Onuma   Y., , Regar   E., , Gonzalo   N., , Garcia-Garcia   HM., , Nieman   K., , Bruining   N., , Dorange   C., , Miquel-Hébert   K., , Veldhof   S., , Webster   M., , Thuesen   L., , Dudek   D. . A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. . Lancet . 2009; ;373: 9667 : 897– 910 , doi:10.1016/S0140-6736(09)60325-1 .
    [Google Scholar]
  6. [6]. Abizaid   A., , Ribamar Costa   J., , Bartorelli   AL., , Whitbourn   R., , van Geuns   RJ., , Chevalier   B., , Patel   T., , Seth   A., , Stuteville   M., , Dorange   C., , Cheong   W-F., , Sudhir   K., , Serruys   PW., , ABSORB EXTEND investigators. . The ABSORB EXTEND study: Preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. . EuroIntervention . 2015; ;10: 12 : 1396– 1401 , doi:10.4244/EIJV10I12A243 .
    [Google Scholar]
  7. [7]. Kereiakes   DJ., , Ellis   SG., , Popma   JJ., , Fitzgerald   PJ., , Samady   H., , Jones-Means   J., , Zhang   Z., , Cheong   W-F., , Su   X., , Ben-Yehuda   O., , Stone   GW. . Evaluation of a fully bioresorbable vascular scaffold in patients with coronary artery disease: Design of and rationale for the ABSORB III randomized trial. . Am Heart J . 2015; ;170: 4 : 641– 651.e3 , doi:10.1016/j.ahj.2015.07.013 .
    [Google Scholar]
  8. [8]. Ellis   SG., , Kereiakes   DJ., , Metzger   DC., , Caputo   RP., , Rizik   DG., , Teirstein   PS., , Litt   MR., , Kini   A., , Kabour   A., , Marx   SO., , Popma   JJ., , Mreevy   R., , Zhang   Z., , Simonton   C., , Stone   GW., , ABSORB III Investigators. . Everolimus-eluting bioresorbable scaffolds for coronary artery disease. . N Engl J Med . 2015; ;373: 20 : 1905– 1915 , doi:10.1056/NEJMoa1509038 .
    [Google Scholar]
  9. [9]. Kastrati   A., , Mehilli   J., , Dirschinger   J., , Dotzer   F., , Schühlen   H., , Neumann   FJ., , Fleckenstein   M., , Pfafferott   C., , Seyfarth   M., , Schömig   A. . Intracoronary stenting and angiographic results: Strut thickness effect on restenosis outcome (ISAR-STEREO) trial. . Circulation . 2001; ;103: 23 : 2816– 2821 .
    [Google Scholar]
  10. [10]. Capodanno   D., , Gori   T., , Nef   H., , Latib   A., , Mehilli   J., , Lesiak   M., , Caramanno   G., , Naber   C., , Di Mario   C., , Colombo   A., , Capranzano   P., , Wiebe   J., , Araszkiewicz   A., , Geraci   S., , Pyxaras   S., , Mattesini   A., , Naganuma   T., , Münzel   T., , Tamburino   C. . Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: Early and midterm outcomes from the European multicentre GHOST-EU registry. . EuroIntervention . 2015; ;10: 10 : 1144– 1153 , doi:10.4244/EIJY14M07_11 .
    [Google Scholar]
  11. [11]. Gao   R., , Yang   Y., , Han   Y., , Huo   Y., , Chen   J., , Yu   B., , Su   X., , Li   L., , Kuo   H-C., , Ying   S-W., , Cheong   W-F., , Zhang   Y., , Su   X., , Xu   B., , Popma   JJ., , Stone   GW., , ABSORB China Investigators. . Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. . J Am Coll Cardiol . 2015; ;66: 21 : 2298– 2309 , doi:10.1016/j.jacc.2015.09.054 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.62
Loading
/content/journals/10.5339/gcsp.2015.62
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error