1887
Volume 2015, Issue 4
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

The pulmonary circulation is a high-flow/low-pressure system, coupled with a flow generator chamber–the right ventricle–, which is relatively unable to tolerate increases in afterload. A right heart catheterization, using a fluid-filled, balloon-tipped Swan-Ganz catheter allows the measurement of all hemodynamic parameters characterizing the pulmonary circulation: the inflow pressure, an acceptable estimate the outflow pressure, and the pulmonary blood flow. However, the study of the pulmonary circulation as a continuous flow system is an oversimplification and a thorough evaluation of the pulmonary circulation requires a correct understanding of the load that the pulmonary vascular bed imposes on the right ventricle, which includes static and dynamic components. This is critical to assess the prognosis of patients with pulmonary hypertension or with heart failure.

Pulmonary compliance is a measure of arterial distensibility and, either alone or in combination with pulmonary vascular resistance, gives clinicians the possibility of a good prognostic stratification of patients with heart failure or with pulmonary hypertension. The measurement of pulmonary arterial compliance should be included in the routine clinical evaluation of such patients.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.58
2015-11-28
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/4/gcsp.2015.58.html?itemId=/content/journals/10.5339/gcsp.2015.58&mimeType=html&fmt=ahah

References

  1. [1]. Naeije   R. . Physiology of the pulmonary circulation and the right heart. . Curr Hypertens Rep . 2013; ;15: : 623– 631 .
    [Google Scholar]
  2. [2]. Voelkel   NF., , Quaife   RA., , Leinwand   LA., , Barst   RJ., , McGoon   MD., , Meldrum   DR., , Dupuis   J., , Long   CS., , Rubin   LJ., , Smart   FW., , Suzuki   YJ., , Gladwin   M., , Denholm   EM., , Gail   DB., . National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. . Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. . Circulation . 2006; ;114: : 1883– 1891 .
    [Google Scholar]
  3. [3]. Swan   HJ., , Ganz   W., , Forrester   J., , Marcus   H., , Diamond   G., , Chonette   D. . Catheterization of the heart in man with use of a flow-directed catheter. . N Engl J Med . 1970; ;283: : 447– 451 .
    [Google Scholar]
  4. [4]. McDonald's blood flow in arteries. . In: Nichols   WW., O'Rourke   MF. , eds. Theoretical, Experimental and Clinical Principles . , 5th edition. . London: : Hodder Arnold;   2005; .
    [Google Scholar]
  5. [5]. Frank   O. . The basic shape of the arterial pulse. First treatise: Mathematical analysis. 1889. . J Mol Cell Cardiol . 1990; ;22: : 255– 277 .
    [Google Scholar]
  6. [6]. Saouti   N., , Westerhof   N., , Postmus   PE., , Vonk-Noordegraaf   A. . The arterial load in pulmonary hypertension. . Eur Respir Rev . 2010; ;19: : 197– 203 .
    [Google Scholar]
  7. [7]. Janicki   JS., , Weber   KT., , Likoff   MJ., , Fishman   AP. . The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. . Circulation . 1985; ;72: : 1270– 1278 .
    [Google Scholar]
  8. [8]. Chemla   D., , Castelain   V., , Hervé   P., , Lecarpentier   Y., , Brimioulle   S. . Haemodynamic evaluation of pulmonary hypertension. . Eur Respir J . 2002; ;20: : 1314– 1331 .
    [Google Scholar]
  9. [9]. O'Rourke   MF. . Vascular impedance in studies of arterial and cardiac function. . Physiol Review . 1982; ;62: : 570– 623 .
    [Google Scholar]
  10. [10]. Wang   Z., , Chesler   NC. . Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension. . Pulm Circ . 2011; ;1: : 212– 223 .
    [Google Scholar]
  11. [11]. Lankhaar   JW., , Noordegraaf   AV., , Marcus   JT. . A computed method for non invasive MRI assessment of pulmonary arterial hypertension. . J Appl Physiol . 2004; ;97: : 794– 795 .
    [Google Scholar]
  12. [12]. Sanz   J., , Kariisa   M., , Dellegrottaglie   S., , Prat-González   S., , Garcia   MJ., , Fuster   V., , Rajagopalan   S. . Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. . JACC Cardiovasc Imaging . 2009; ;2: : 286– 295 .
    [Google Scholar]
  13. [13]. Lankhaar   JW., , Westerhof   N., , Faes   TJ., , Gan   CT., , Marques   KM., , Boonstra   A., , van den Berg   FG., , Postmus   PE., , Vonk-Noordegraaf   A. . Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. . Eur Heart J . 2008; ;29: : 1688– 1695 .
    [Google Scholar]
  14. [14]. Reuben   SR. . Compliance of the pulmonary arterial system in disease. . Circ Res . 1971; ;29: : 40– 50 .
    [Google Scholar]
  15. [15]. Gan   CT., , Lankhaar   JW., , Westerhof   N., , Marcus   JT., , Becker   A., , Twisk   JW., , Boonstra   A., , Postmus   PE., , Vonk-Noordegraaf   A. . Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary hypertension. . Chest . 2007; ;132: : 1906– 1912 .
    [Google Scholar]
  16. [16]. Saouti   N., , Westerhof   N., , Helderman   F., , Marcus   JT., , Stergiopulos   N., , Westerhof   BE., , Boonstra   A., , Postmus   PE., , Vonk-Noordegraaf   A. . RC-time constant of single lung equals that of both lungs together: A study in chronic thromboembolic pulmonary hypertension. . Am J Physiol Heart Circ Physiol . 2009; ;297: : H2154– H2160 .
    [Google Scholar]
  17. [17]. Tedford   RJ., , Hassoun   PM., , Mathai   SC., , Girgis   RE., , Russell   SD., , Thiemann   DR., , Cingolani   OH., , Mudd   JO., , Borlaug   BA., , Redfield   MM., , Lederer   DJ., , Kass   DA. . Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. . Circulation . 2012; ;125: : 289– 297 .
    [Google Scholar]
  18. [18]. Tedford   RJ. . Determinants of right ventricular afterload (2013 Grover conference series). . Pulmonary Circulation . 2014; ;4: 2 : 211– 219 . doi:10.1086/676020 .
    [Google Scholar]
  19. [19]. Pietra   GG., , Capron   F., , Stewart   S., , Leone   O., , Humbert   M., , Robbins   IM., , Reid   LM., , Tuder   RM. . Pathologic assessment of vasculopathies in pulmonary hypertension. . J Am Coll Cardiol . 2004; ;43: Suppl. 12 : 25S– 32S .
    [Google Scholar]
  20. [20]. Humbert   M., , Morrell   NW., , Archer   SL., , Stenmark   KR., , MacLean   MR., , Lang   IM., , Christman   BW., , Weir   EK., , Eickelberg   O., , Voelkel   NF., , Rabinovitch   M. . Cellular and molecular pathobiology of pulmonary arterial hypertension. . J Am Coll Cardiol . 2004; ;43: Suppl. 12 : 13S– 124 .
    [Google Scholar]
  21. [21]. D'Alonzo   GE., , Barst   RJ., , Ayres   SM., , Bergofsky   EH., , Brundage   BH., , Detre   KM., , Fishman   AP., , Goldring   RM., , Groves   BM., , Kernis   JT., , Levy   PS., , Pietra   GG., , Reid   LM., , Reeves   JT., , Rich   S., , Vreim   CE., , Williams   GW., , Wu   M. . Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. . Ann Intern Med . 1991; ;115: : 343– 349 .
    [Google Scholar]
  22. [22]. Brimioulle   S., , Naeije   R., , Vachiéry   JL. . Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension. . Chest . 2004; ;125: : 2121– 2128 .
    [Google Scholar]
  23. [23]. Hunter   KS., , Lee   PF., , Lanning   CJ., , Ivy   DD., , Kirby   KS., , Claussen   LR., , Chan   KC., , Shandas   R. . Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. . Am Heart J . 2008; ;155: : 166– 174 .
    [Google Scholar]
  24. [24]. Mahapatra   S., , Nishimura   RA., , Sorajja   P., , Cha   S., , McGoon   MD. . Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. . J Am Coll Cardiol . 2006; ;47: : 799– 803 .
    [Google Scholar]
  25. [25]. Mahapatra   S., , Nishimura   RA., , Oh   JK., , McGoon   MD. . The prognostic value of pulmonary vascular capacitance determined by Doppler echocardiography in patients with pulmonary arterial hypertension. . J Am Soc Echocardiogr . 2006; ;19: : 1045– 1050 .
    [Google Scholar]
  26. [26]. Lankhaar   JW., , Westerhof   N., , Faes   TJ., , Marques   KM., , Marcus   JT., , Postmus   PE., , Vonk-Noordegraaf   A. . Quantification of right ventricular afterload in patients with and without pulmonary hypertension. . Am J Physiol Heart Circ Physiol . 2006; ;291: : H1731– H1737 .
    [Google Scholar]
  27. [27]. Domanski   MJ., , Mitchell   GF., , Norman   JE., , Exner   DV., , Pitt   B., , Pfeffer   MA. . Independent prognostic information provided by sphygmomanometrically determined pulse pressure and mean arterial pressure in patients with left ventricular dysfunction. . J Am Coll Cardiol . 1999; ;33: : 951– 958 .
    [Google Scholar]
  28. [28]. Bonapace   S., , Rossi   A., , Cicoira   M., , Franceschini   L., , Golia   G., , Zanolla   L., , Marino   P., , Zardini   P. . Aortic distensibility independently affects exercise tolerance in patients with dilated cardiomyopathy. . Circulation . 2003; ;107: : 1603– 1608 .
    [Google Scholar]
  29. [29]. Miller   WL., , Grill   DE., , Borlaug   BA. . Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction. . J Am Coll Cardiol HF . 2013; ;1: : 290– 299 .
    [Google Scholar]
  30. [30]. Dupont   M., , Mullens   W., , Skouri   HN., , Abrahams   Z., , Wu   Y., , Taylor   DO., , Starling   RC., , Tang   WH. . Prognostic role of pulmonary arterial capacitance in advanced heart failure. . Circ Heart Fail . 2012; ;5: : 778– 785 .
    [Google Scholar]
  31. [31]. Pellegrini   P., , Rossi   A., , Pasotti   M., , Raineri   C., , Cicoira   M., , Bonapace   S., , Dini   FL., , Temporelli   PL., , Vassanelli   C., , Vanderpool   R., , Naeije   R., , Ghio   S. . Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. . Chest . 2014; ;145: : 1064– 1070 .
    [Google Scholar]
  32. [32]. Delgado   JF., , Conde   E., , Sánchez   V., , López-Ríos   F., , Gómez-Sánchez   MA., , Escribano   P., , Sotelo   T., , Gómez de la Cámara   A., , Cortina   J., , de la Calzada   CS. . Pulmonary vascular remodeling in pulmonary hypertension due to chronic heart failure. . Eur J Heart Fail . 2005; ;7: : 1011– 1016 .
    [Google Scholar]
  33. [33]. Nakayama   Y., , Nakanishi   N., , Hayashi   T., , Nagaya   N., , Sakamaki   F., , Satoh   N., , Ohya   H., , Kyotani   S. . Pulmonary artery reflection for differentially diagnosing primary pulmonary hypertension and chronic pulmonary thromboembolism. . J Am Coll Cardiol . 2001; ;38: : 214– 218 .
    [Google Scholar]
  34. [34]. Castelain   V., , Hervé   P., , Lecarpentier   Y., , Duroux   P., , Simonneau   G., , Chemla   D. . Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. . J Am Coll Cardiol . 2001; ;37: : 1085– 1092 .
    [Google Scholar]
  35. [35]. Pagnamenta   A., , Vanderpool   R., , Brimioulle   S., , Naeije   R. . Proximal pulmonary arterial obstruction decreases the time constant of the pulmonary circulation and increases right ventricular afterload. . J Appl Physiol . 2013; ;114: : 1586– 1592 .
    [Google Scholar]
  36. [36]. MacKenzie Ross   RV., , Toshner   MR., , Soon   E., , Naeije   R., , Pepke-Zaba   J. . Decreased time constant of the pulmonary circulation in chronic thromboembolic pulmonary hypertension. . Am J Physiol Heart Circ Physiol . 2013; ;305: : H259– H264 .
    [Google Scholar]
  37. [37]. Mayer   E., , Jenkins   D., , Lindner   J., , D'Armini   A., , Kloek   J., , Meyns   B., , Ilkjaer   LB., , Klepetko   W., , Delcroix   M., , Lang   I., , Pepke-Zaba   J., , Simonneau   G., , Dartevelle   P. . Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry. . J Thorac Cardiovasc Surg . 2011; ;141: : 702– 710 .
    [Google Scholar]
  38. [38]. Madani   MM., , Auger   WR., , Pretorius   V., , Sakakibara   N., , Kerr   KM., , Kim   NH., , Fedullo   PF., , Jamieson   SW. . Pulmonary endarterectomy: Recent changes in a single institution's experience of more than 2.700 patients. . Ann Thorac Surg . 2012; ;94: : 97– 103 .
    [Google Scholar]
  39. [39]. Corsico   AG., , D'Armini   AM., , Cerveri   I., , Klersy   C., , Ansaldo   E., , Niniano   R., , Gatto   E., , Monterosso   C., , Morsolini   M., , Nicolardi   S., , Tramontin   C., , Pozzi   E., , Viganò   M. . Long-term outcome after pulmonary endarterectomy. . Am J Respir Crit Care Med . 2008; ;178: : 419– 424 .
    [Google Scholar]
  40. [40]. Bonderman   D., , Martischnig   AM., , Vonbank   K., , Nikfardjam   M., , Meyer   B., , Heinz   G., , Klepetko   W., , Naeije   R., , Lang   IM. . Right ventricular load at exercise is a cause of persistent exercise limitation in patients with normal resting pulmonary vascular resistance after pulmonary endarterectomy. . Chest . 2011; ;139: : 122– 127 .
    [Google Scholar]
  41. [41]. Ghio   S., , Morsolini   M., , Corsico   A., , Klersy   C., , Mattiucci   G., , Raineri   C., , Scelsi   L., , Vistarini   N., , D'Armini   AM. . Pulmonary arterial compliance and exercise capacity after pulmonary endarterectomy. . Eur Respir J . 2014; ;43: : 1403– 1409 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.58
Loading
/content/journals/10.5339/gcsp.2015.58
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): pulmonary arterial compliance and pulmonary circulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error