1887
Volume 2015, Issue 4
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.47
2015-11-17
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/4/gcsp.2015.47.html?itemId=/content/journals/10.5339/gcsp.2015.47&mimeType=html&fmt=ahah

References

  1. [1]. Humbert   M., , Sitbon   O., , Chaouat   A., , Bertocchi   M., , Habib   G., , Gressin   V. , et al. , Pulmonary arterial hypertension in France: results from a national registry. . Am J Respir Crit Care Med . 2006; ;173: 9 : 1023– 1030 .
    [Google Scholar]
  2. [2]. Peacock   AJ., , Murphy   NF., , McMurray   JJ., , Caballero   L., , Stewart   S. . An epidemiological study of pulmonary arterial hypertension. . Eur Respir J . 2007; ;30: 1 : 104– 109 .
    [Google Scholar]
  3. [3]. Seferian   A., , Simonneau   G. . Therapies for pulmonary arterial hypertension: where are we today, where do we go tomorrow?.   European respiratory review: an official journal of the European Respiratory Society . 2013; ;22: 129 : 217– 226 .
    [Google Scholar]
  4. [4]. National Audit of Pulmonary Hypertension . In: Centre HaSCI, editor. . United Kingdom: : Health and Social Care Information Centre;   2013; .
  5. [5]. Stacher   E., , Graham   BB., , Hunt   JM., , Gandjeva   A., , Groshong   SD., , McLaughlin   VV. . Modern age pathology of pulmonary arterial hypertension. . Am J Respir Crit Care Med . 2012; ;186: 3 : 261– 272 .
    [Google Scholar]
  6. [6]. Austin   ED., , Loyd   JE. . The genetics of pulmonary arterial hypertension. . Circ Res . 2014; ;115: 1 : 189– 202 .
    [Google Scholar]
  7. [7]. Lane   KB., , Machado   RD., , Pauciulo   MW., , Thomson   JR., , Phillips   JA 3rd., , Loyd   JE. , et al. , Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. . Nat Genet . 2000; ;26: 1 : 81– 84 .
    [Google Scholar]
  8. [8]. Deng   Z., , Morse   JH., , Slager   SL., , Cuervo   N., , Moore   KJ., , Venetos   G. , et al. , Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. . Am J Hum Genet . 2000; ;67: 3 : 737– 744 .
    [Google Scholar]
  9. [9]. Soubrier   F., , Chung   WK., , Machado   R., , Grunig   E., , Aldred   M., , Geraci   M. , et al. , Genetics and genomics of pulmonary arterial hypertension. . J Am Coll Cardiol . 2013; ;62: 25 : D13– D21 .
    [Google Scholar]
  10. [10]. Machado   RD., , Aldred   MA., , James   V., , Harrison   RE., , Patel   B., , Schwalbe   EC. , et al. , Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. . Hum Mutat . 2006; ;27: 2 : 121– 132 .
    [Google Scholar]
  11. [11]. Atkinson   C., , Stewart   S., , Upton   PD., , Machado   R., , Thomson   JR., , Trembath   RC. , et al. , Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. . Circulation . 2002; ;105: 14 : 1672– 1678 .
    [Google Scholar]
  12. [12]. Long   L., , Crosby   A., , Yang   X., , Southwood   M., , Upton   PD., , Kim   DK. , et al. , Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. . Circulation . 2009; ;119: 4 : 566– 576 .
    [Google Scholar]
  13. [13]. Upton   PD., , Morrell   NW. . TGF-beta and BMPR-II pharmacology–implications for pulmonary vascular diseases. . Curr Opin Pharmacol . 2009; ;9: 3 : 274– 280 .
    [Google Scholar]
  14. [14]. Yang   J., , Davies   RJ., , Southwood   M., , Long   L., , Yang   X., , Sobolewski   A. , et al. , Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. . Circ Res . 2008; ;102: 10 : 1212– 1221 .
    [Google Scholar]
  15. [15]. Howe   JR., , Bair   JL., , Sayed   MG., , Anderson   ME., , Mitros   FA., , Petersen   GM. , et al. , Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. . Nat Genet . 2001; ;28: 2 : 184– 187 .
    [Google Scholar]
  16. [16]. Lehmann   K., , Seemann   P., , Stricker   S., , Sammar   M., , Meyer   B., , Suring   K. , et al. , Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. . Proc Natl Acad Sci U S A . 2003; ;100: 21 : 12277– 12282 .
    [Google Scholar]
  17. [17]. Toshner   M., , Voswinckel   R., , Southwood   M., , Al-Lamki   R., , Howard   LS., , Marchesan   D. , et al. , Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. . Am J Respir Crit Care Med . 2009; ;180: 8 : 780– 787 .
    [Google Scholar]
  18. [18]. Lavoie   JR., , Ormiston   ML., , Perez-Iratxeta   C., , Courtman   DW., , Jiang   B., , Ferrer   E. , et al. , Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. . Circulation . 2014; ;129: 21 : 2125– 2135 .
    [Google Scholar]
  19. [19]. Burton   VJ., , Ciuclan   LI., , Holmes   AM., , Rodman   DM., , Walker   C., , Budd   DC. . Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. . Blood . 2011; ;117: 1 : 333– 341 .
    [Google Scholar]
  20. [20]. Trembath   RC., , Thomson   JR., , Machado   RD., , Morgan   NV., , Atkinson   C., , Winship   I. , et al. , Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. . N Engl J Med . 2001; ;345: 5 : 325– 334 .
    [Google Scholar]
  21. [21]. Sobolewski   A., , Rudarakanchana   N., , Upton   PD., , Yang   J., , Crilley   TK., , Trembath   RC. , et al. , Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue. . Hum Mol Genet . 2008; ;17: 20 : 3180– 3190 .
    [Google Scholar]
  22. [22]. Keeling   KM., , Bedwell   DM. . Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. . Wiley interdisciplinary reviews RNA . 2011; ;2: 6 : 837– 852 .
    [Google Scholar]
  23. [23]. Nasim   MT., , Ghouri   A., , Patel   B., , James   V., , Rudarakanchana   N., , Morrell   NW. , et al. , Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension. . Hum Mol Genet . 2008; ;17: 11 : 1683– 1694 .
    [Google Scholar]
  24. [24]. Drake   KM., , Dunmore   BJ., , McNelly   LN., , Morrell   NW., , Aldred   MA. . Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. . Am J Respir Cell Mol Biol . 2013; ;49: 3 : 403– 409 .
    [Google Scholar]
  25. [25]. Hartung   A., , Bitton-Worms   K., , Rechtman   MM., , Wenzel   V., , Boergermann   JH., , Hassel   S. , et al. , Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. . Mol Cell Biol . 2006; ;26: 20 : 7791– 7805 .
    [Google Scholar]
  26. [26]. Dunmore   BJ., , Drake   KM., , Upton   PD., , Toshner   MR., , Aldred   MA., , Morrell   NW. . The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. . Hum Mol Genet . 2013; ;22: 18 : 3667– 3679 .
    [Google Scholar]
  27. [27]. Durrington   HJ., , Upton   PD., , Hoer   S., , Boname   J., , Dunmore   BJ., , Yang   J. , et al. , Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor type II. . J Biol Chem . 2010; ;285: 48 : 37641– 37649 .
    [Google Scholar]
  28. [28]. Long   L., , Yang   X., , Southwood   M., , Lu   J., , Marciniak   SJ., , Dunmore   BJ. , et al. , Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. . Circ Res . 2013; ;112: 8 : 1159– 1170 .
    [Google Scholar]
  29. [29]. Reynolds   AM., , Xia   W., , Holmes   MD., , Hodge   SJ., , Danilov   S., , Curiel   DT. , et al. , Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. . Am J Physiol Lung Cell Mol Physiol . 2007; ;292: 5 : L1182– L1192 .
    [Google Scholar]
  30. [30]. Reynolds   AM., , Holmes   MD., , Danilov   SM., , Reynolds   PN. . Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. . Eur Respir J . 2012; ;39: 2 : 329– 343 .
    [Google Scholar]
  31. [31]. McMurtry   MS., , Moudgil   R., , Hashimoto   K., , Bonnet   S., , Michelakis   ED., , Archer   SL. . Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. . Am J Physiol Lung Cell Mol Physiol . 2007; ;292: 4 : L872– L878 .
    [Google Scholar]
  32. [32]. Yang   J., , Li   X., , Al-Lamki   RS., , Southwood   M., , Zhao   J., , Lever   AM. , et al. , Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. . Circ Res . 2010; ;107: 2 : 252– 262 .
    [Google Scholar]
  33. [33]. Yang   J., , Li   X., , Al-Lamki   RS., , Wu   C., , Weiss   A., , Berk   J. , et al. , Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. . Arterioscler Thromb Vasc Biol . 2013; ;33: 1 : 34– 42 .
    [Google Scholar]
  34. [34]. Spiekerkoetter   E., , Tian   X., , Cai   J., , Hopper   RK., , Sudheendra   D., , Li   CG. , et al. , FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. . J Clin Invest . 2013; ;123: 8 : 3600– 3613 .
    [Google Scholar]
  35. [35]. David   L., , Mallet   C., , Mazerbourg   S., , Feige   JJ., , Bailly   S. . Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. . Blood . 2007; ;109: 5 : 1953– 1961 .
    [Google Scholar]
  36. [36]. Scharpfenecker   M., , van Dinther   M., , Liu   Z., , van Bezooijen   RL., , Zhao   Q., , Pukac   L. , et al. , BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. . J Cell Sci . 2007; ;120: Pt 6 : 964– 972 .
    [Google Scholar]
  37. [37]. Upton   PD., , Davies   RJ., , Trembath   RC., , Morrell   NW. . Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. . J Biol Chem . 2009; ;284: 23 : 15794– 15804 .
    [Google Scholar]
  38. [38]. Wei   Z., , Salmon   RM., , Upton   PD., , Morrell   NW., , Li   W. . Regulation of Bone Morphogenetic Protein 9 (BMP9) by Redox-dependent Proteolysis. . J Biol Chem . 2014; ;289: 45 : 31150– 31159 .
    [Google Scholar]
  39. [39]. Wooderchak-Donahue   WL., , McDonald   J., , O'Fallon   B., , Upton   PD., , Li   W., , Roman   BL. , et al. , BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. . Am J Hum Genet . 2013; ;93: 3 : 530– 537 .
    [Google Scholar]
  40. [40]. Townson   SA., , Martinez-Hackert   E., , Greppi   C., , Lowden   P., , Sako   D., , Liu   J. , et al. , Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. . J Biol Chem . 2012; ;287: 33 : 27313– 27325 .
    [Google Scholar]
  41. [41]. Long   L., , Ormiston   ML., , Yang   X., , Southwood   M., , Graf   S., , Machado   RD. , et al. , Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. . Nat Med . 2015; ;21: 7 : 777– 785 .
    [Google Scholar]
  42. [42]. Sugimoto   H., , LeBleu   VS., , Bosukonda   D., , Keck   P., , Taduri   G., , Bechtel   W. , et al. , Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. . Nat Med . 2012; ;18: 3 : 396– 404 .
    [Google Scholar]
  43. [43]. Whitman   M., , Rosen   V., , Brivanlou   AH., , Groppe   JC., , Sebald   W., , Mueller   T. . Regarding the mechanism of action of a proposed peptide agonist of the bone morphogenetic protein receptor activin-like kinase 3. . Nat Med . 2013; ;19: 7 : 809– 810 .
    [Google Scholar]
  44. [44]. Knaus   P., , Sebald   W. . Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. . Biol Chem . 2001; ;382: 8 : 1189– 1195 .
    [Google Scholar]
  45. [45]. Isaacs   MJ., , Kawakami   Y., , Allendorph   GP., , Yoon   BH., , Izpisua Belmonte   JC., , Choe   S. . Bone morphogenetic protein-2 and -6 heterodimer illustrates the nature of ligand-receptor assembly. . Mol Endocrinol . 2010; ;24: 7 : 1469– 1477 .
    [Google Scholar]
  46. [46]. Kang   Q., , Sun   MH., , Cheng   H., , Peng   Y., , Montag   AG., , Deyrup   AT. , et al. , Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. . Gene therapy . 2004; ;11: 17 : 1312– 1320 .
    [Google Scholar]
  47. [47]. Sengle   G., , Ono   RN., , Sasaki   T., , Sakai   LY. . Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. . J Biol Chem . 2011; ;286: 7 : 5087– 5099 .
    [Google Scholar]
  48. [48]. Ricard   N., , Ciais   D., , Levet   S., , Subileau   M., , Mallet   C., , Zimmers   TA. , et al. , BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. . Blood . 2012; ;119: 25 : 6162– 6171 .
    [Google Scholar]
  49. [49]. Chen   H., , Brady Ridgway   J., , Sai   T., , Lai   J., , Warming   S., , Chen   H. , et al. , Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. . Proc Natl Acad Sci U S A . 2013; ;110: 29 : 11887– 11892 .
    [Google Scholar]
  50. [50]. Souza   TA., , Chen   X., , Guo   Y., , Sava   P., , Zhang   J., , Hill   JJ. , et al. , Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. . Mol Endocrinol . 2008; ;22: 12 : 2689– 2702 .
    [Google Scholar]
  51. [51]. Herrera   B., , Inman   GJ. . A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. . BMC cell biology . 2009; ;10: : 20 .
    [Google Scholar]
  52. [52]. Miller   T., , Williams   K., , Johnstone   RW., , Shilatifard   A. . Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3. . J Biol Chem . 2000; ;275: 41 : 32052– 32056 .
    [Google Scholar]
  53. [53]. Bidart   M., , Ricard   N., , Levet   S., , Samson   M., , Mallet   C., , David   L. , et al. , BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. . Cellular and molecular life sciences: CMLS . 2012; ;69: 2 : 313– 324 .
    [Google Scholar]
  54. [54]. Neuhaus   H., , Rosen   V., , Thies   RS. . Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. . Mech Dev . 1999; ;80: 2 : 181– 184 .
    [Google Scholar]
  55. [55]. Chen   H., , Shi   S., , Acosta   L., , Li   W., , Lu   J., , Bao   S. , et al. , BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. . Development . 2004; ;131: 9 : 2219– 2231 .
    [Google Scholar]
  56. [56]. David   L., , Mallet   C., , Keramidas   M., , Lamande   N., , Gasc   JM., , Dupuis-Girod   S. , et al. , Bone morphogenetic protein-9 is a circulating vascular quiescence factor. . Circ Res . 2008; ;102: 8 : 914– 922 .
    [Google Scholar]
  57. [57]. Constam   DB., , Robertson   EJ. . Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. . J Cell Biol . 1999; ;144: 1 : 139– 149 .
    [Google Scholar]
  58. [58]. Lee   SJ., , McPherron   AC. . Regulation of myostatin activity and muscle growth. . Proc Natl Acad Sci U S A . 2001; ;98: 16 : 9306– 9311 .
    [Google Scholar]
  59. [59]. Thies   RS., , Chen   T., , Davies   MV., , Tomkinson   KN., , Pearson   AA., , Shakey   QA. , et al. , GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. . Growth factors . 2001; ;18: 4 : 251– 259 .
    [Google Scholar]
  60. [60]. Yang   J., , Ratovitski   T., , Brady   JP., , Solomon   MB., , Wells   KD., , Wall   RJ. . Expression of myostatin pro domain results in muscular transgenic mice. . Molecular reproduction and development . 2001; ;60: 3 : 351– 361 .
    [Google Scholar]
  61. [61]. Jiang   MS., , Liang   LF., , Wang   S., , Ratovitski   T., , Holmstrom   J., , Barker   C. , et al. , Characterization and identification of the inhibitory domain of GDF-8 propeptide. . Biochem Biophys Res Commun . 2004; ;315: 3 : 525– 531 .
    [Google Scholar]
  62. [62]. Brown   MA., , Zhao   Q., , Baker   KA., , Naik   C., , Chen   C., , Pukac   L. , et al. , Crystal structure of BMP-9 and functional interactions with pro-region and receptors. . J Biol Chem . 2005; ;280: 26 : 25111– 25118 .
    [Google Scholar]
  63. [63]. Chen   C., , Grzegorzewski   KJ., , Barash   S., , Zhao   Q., , Schneider   H., , Wang   Q. , et al. , An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. . Nat Biotechnol . 2003; ;21: 3 : 294– 301 .
    [Google Scholar]
  64. [64]. Laux   DW., , Young   S., , Donovan   JP., , Mansfield   CJ., , Upton   PD., , Roman   BL. . Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. . Development . 2013; ;140: 16 : 3403– 3412 .
    [Google Scholar]
  65. [65]. Roman   BL., , Pham   VN., , Lawson   ND., , Kulik   M., , Childs   S., , Lekven   AC. , et al. , Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. . Development . 2002; ;129: 12 : 3009– 3019 .
    [Google Scholar]
  66. [66]. Seki   T., , Yun   J., , Oh   SP. . Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. . Circ Res . 2003; ;93: 7 : 682– 689 .
    [Google Scholar]
  67. [67]. Oh   SP., , Seki   T., , Goss   KA., , Imamura   T., , Yi   Y., , Donahoe   PK. , et al. , Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. . Proc Natl Acad Sci U S A . 2000; ;97: 6 : 2626– 2631 .
    [Google Scholar]
  68. [68]. Levet   S., , Ciais   D., , Merdzhanova   G., , Mallet   C., , Zimmers   TA., , Lee   SJ. , et al. , Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. . Blood . 2013; ;122: 4 : 598– 607 .
    [Google Scholar]
  69. [69]. Levet   S., , Ouarne   M., , Ciais   D., , Coutton   C., , Subileau   M., , Mallet   C. , et al. , BMP9 and BMP10 are necessary for proper closure of the ductus arteriosus. . Proc Natl Acad Sci U S A . 2015; ;112: 25 : E3207– E3215 .
    [Google Scholar]
  70. [70]. Chen   H., , Yong   W., , Ren   S., , Shen   W., , He   Y., , Cox   KA. , et al. , Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. . J Biol Chem . 2006; ;281: 37 : 27481– 27491 .
    [Google Scholar]
  71. [71]. Luu   HH., , Song   WX., , Luo   X., , Manning   D., , Luo   J., , Deng   ZL. , et al. , Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. . Journal of orthopaedic research: official publication of the Orthopaedic Research Society . 2007; ;25: 5 : 665– 677 .
    [Google Scholar]
  72. [72]. Cheng   H., , Jiang   W., , Phillips   FM., , Haydon   RC., , Peng   Y., , Zhou   L. , et al. , Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). . The Journal of bone and joint surgery American volume . 2003; ;85-A: 8 : 1544– 1552 .
    [Google Scholar]
  73. [73]. Luo   Q., , Kang   Q., , Si   W., , Jiang   W., , Park   JK., , Peng   Y. , et al. , Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. . J Biol Chem . 2004; ;279: 53 : 55958– 55968 .
    [Google Scholar]
  74. [74]. Peng   Y., , Kang   Q., , Cheng   H., , Li   X., , Sun   MH., , Jiang   W. , et al. , Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. . Journal of cellular biochemistry . 2003; ;90: 6 : 1149– 1165 .
    [Google Scholar]
  75. [75]. Luo   J., , Tang   M., , Huang   J., , He   BC., , Gao   JL., , Chen   L. , et al. , TGFbeta/BMP type I receptors ALK1 and ALK2 are essential for BMP9-induced osteogenic signaling in mesenchymal stem cells. . J Biol Chem . 2010; ;285: 38 : 29588– 29598 .
    [Google Scholar]
  76. [76]. Hu   N., , Jiang   D., , Huang   E., , Liu   X., , Li   R., , Liang   X. , et al. , BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. . J Cell Sci . 2013; ;126: Pt 2 : 532– 541 .
    [Google Scholar]
  77. [77]. Sheyn   D., , Kimelman-Bleich   N., , Pelled   G., , Zilberman   Y., , Gazit   D., , Gazit   Z. . Ultrasound-based nonviral gene delivery induces bone formation in vivo. . Gene therapy . 2008; ;15: 4 : 257– 266 .
    [Google Scholar]
  78. [78]. Aslan   H., , Zilberman   Y., , Arbeli   V., , Sheyn   D., , Matan   Y., , Liebergall   M. , et al. , Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. . Tissue Eng . 2006; ;12: 4 : 877– 889 .
    [Google Scholar]
  79. [79]. Luther   G., , Wagner   ER., , Zhu   G., , Kang   Q., , Luo   Q., , Lamplot   J. , et al. , BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. . Current gene therapy . 2011; ;11: 3 : 229– 240 .
    [Google Scholar]
  80. [80]. Bosch   P., , Musgrave   D., , Ghivizzani   S., , Latterman   C., , Day   CS., , Huard   J. . The efficiency of muscle-derived cell-mediated bone formation. . Cell transplantation . 2000; ;9: 4 : 463– 470 .
    [Google Scholar]
  81. [81]. Lee   JY., , Musgrave   D., , Pelinkovic   D., , Fukushima   K., , Cummins   J., , Usas   A. , et al. , Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. . The Journal of bone and joint surgery American volume . 2001; ;83-A: 7 : 1032– 1039 .
    [Google Scholar]
  82. [82]. Lee   JY., , Peng   H., , Usas   A., , Musgrave   D., , Cummins   J., , Pelinkovic   D. , et al. , Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogenetic protein 2. . Hum Gene Ther . 2002; ;13: 10 : 1201– 1211 .
    [Google Scholar]
  83. [83]. Varady   P., , Li   JZ., , Cunningham   M., , Beres   EJ., , Das   S., , Engh   J. , et al. , Morphologic analysis of BMP-9 gene therapy-induced osteogenesis. . Hum Gene Ther . 2001; ;12: 6 : 697– 710 .
    [Google Scholar]
  84. [84]. Li   JZ., , Hankins   GR., , Kao   C., , Li   H., , Kammauff   J., , Helm   GA. . Osteogenesis in rats induced by a novel recombinant helper-dependent bone morphogenetic protein-9 (BMP-9) adenovirus. . The journal of gene medicine . 2003; ;5: 9 : 748– 756 .
    [Google Scholar]
  85. [85]. Leblanc   E., , Trensz   F., , Haroun   S., , Drouin   G., , Bergeron   E., , Penton   CM. , et al. , BMP-9-induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment. . Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research . 2011; ;26: 6 : 1166– 1177 .
    [Google Scholar]
  86. [86]. Zhu   SF., , Hu   HB., , Xu   HY., , Fu   XF., , Peng   DX., , Su   WY. , et al. , Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. . J Cell Mol Med . 2015; .
    [Google Scholar]
  87. [87]. Kim   CW., , Song   H., , Kumar   S., , Nam   D., , Kwon   HS., , Chang   KH. , et al. , Anti-inflammatory and antiatherogenic role of BMP receptor II in endothelial cells. . Arterioscler Thromb Vasc Biol . 2013; ;33: 6 : 1350– 1359 .
    [Google Scholar]
  88. [88]. Song   JJ., , Celeste   AJ., , Kong   FM., , Jirtle   RL., , Rosen   V., , Thies   RS. . Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. . Endocrinology . 1995; ;136: 10 : 4293– 4297 .
    [Google Scholar]
  89. [89]. Miller   AF., , Harvey   SA., , Thies   RS., , Olson   MS. . Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. . J Biol Chem . 2000; ;275: 24 : 17937– 17945 .
    [Google Scholar]
  90. [90]. Xia   Y., , Babitt   JL., , Sidis   Y., , Chung   RT., , Lin   HY. . Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. . Blood . 2008; ;111: 10 : 5195– 5204 .
    [Google Scholar]
  91. [91]. Li   Q., , Gu   X., , Weng   H., , Ghafoory   S., , Liu   Y., , Feng   T. , et al. , Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. . Cancer Sci . 2013; ;104: 3 : 398– 408 .
    [Google Scholar]
  92. [92]. Wiercinska   E., , Wickert   L., , Denecke   B., , Said   HM., , Hamzavi   J., , Gressner   AM. , et al. , Id1 is a critical mediator in TGF-beta-induced transdifferentiation of rat hepatic stellate cells. . Hepatology . 2006; ;43: 5 : 1032– 1041 .
    [Google Scholar]
  93. [93]. Herrera   B., , Garcia-Alvaro   M., , Cruz   S., , Walsh   P., , Fernandez   M., , Roncero   C. , et al. , BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells. . PloS one . 2013; ;8: 7 : e69535 .
    [Google Scholar]
  94. [94]. Caperuto   LC., , Anhe   GF., , Cambiaghi   TD., , Akamine   EH., , do Carmo Buonfiglio   D., , Cipolla-Neto   J. , et al. , Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. . Endocrinology . 2008; ;149: 12 : 6326– 6335 .
    [Google Scholar]
  95. [95]. George   S., , Rochford   JJ., , Wolfrum   C., , Gray   SL., , Schinner   S., , Wilson   JC. , et al. , A family with severe insulin resistance and diabetes due to a mutation in AKT2. . Science . 2004; ;304: 5675 : 1325– 1328 .
    [Google Scholar]
  96. [96]. Hussain   K., , Challis   B., , Rocha   N., , Payne   F., , Minic   M., , Thompson   A. , et al. , An activating mutation of AKT2 and human hypoglycemia. . Science . 2011; ;334: 6055 : 474 .
    [Google Scholar]
  97. [97]. Cho   H., , Mu   J., , Kim   JK., , Thorvaldsen   JL., , Chu   Q., , Crenshaw   EB 3rd. , et al. , Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). . Science . 2001; ;292: 5522 : 1728– 1731 .
    [Google Scholar]
  98. [98]. Anhe   FF., , Lellis-Santos   C., , Leite   AR., , Hirabara   SM., , Boschero   AC., , Curi   R. , et al. , Smad5 regulates Akt2 expression and insulin-induced glucose uptake in L6 myotubes. . Molecular and cellular endocrinology . 2010; ;319: 1–2 : 30– 38 .
    [Google Scholar]
  99. [99]. Bogaard   HJ., , Al Husseini   A., , Farkas   L., , Farkas   D., , Gomez-Arroyo   J., , Abbate   A. , et al. , Severe pulmonary hypertension: The role of metabolic and endocrine disorders. . Pulm Circ . 2012; ;2: 2 : 148– 154 .
    [Google Scholar]
  100. [100]. Cottrill   KA., , Chan   SY. . Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. . European journal of clinical investigation . 2013; ;43: 8 : 855– 865 .
    [Google Scholar]
  101. [101]. Herrera   B., , van Dinther   M., , Ten Dijke   P., , Inman   GJ. . Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. . Cancer Res . 2009; ;69: 24 : 9254– 9262 .
    [Google Scholar]
  102. [102]. Ye   L., , Kynaston   H., , Jiang   WG. . Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. . Molecular cancer research: MCR . 2008; ;6: 10 : 1594– 1606 .
    [Google Scholar]
  103. [103]. Li   B., , Yang   Y., , Jiang   S., , Ni   B., , Chen   K., , Jiang   L. . Adenovirus-mediated overexpression of BMP-9 inhibits human osteosarcoma cell growth and migration through downregulation of the PI3K/AKT pathway. . Int J Oncol . 2012; ;41: 5 : 1809– 1819 .
    [Google Scholar]
  104. [104]. Lv   Z., , Yang   D., , Li   J., , Hu   M., , Luo   M., , Zhan   X. , et al. , Bone morphogenetic protein 9 overexpression reduces osteosarcoma cell migration and invasion. . Molecules and cells . 2013; ;36: 2 : 119– 126 .
    [Google Scholar]
  105. [105]. Castonguay   R., , Werner   ED., , Matthews   RG., , Presman   E., , Mulivor   AW., , Solban   N. , et al. , Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. . J Biol Chem . 2011; ;286: 34 : 30034– 30046 .
    [Google Scholar]
  106. [106]. Cunha   SI., , Pardali   E., , Thorikay   M., , Anderberg   C., , Hawinkels   L., , Goumans   MJ. , et al. , Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. . J Exp Med . 2010; ;207: 1 : 85– 100 .
    [Google Scholar]
  107. [107]. Suzuki   Y., , Ohga   N., , Morishita   Y., , Hida   K., , Miyazono   K., , Watabe   T. . BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. . J Cell Sci . 2010; ;123: Pt 10 : 1684– 1692 .
    [Google Scholar]
  108. [108]. van Baardewijk   LJ., , van der Ende   J., , Lissenberg-Thunnissen   S., , Romijn   LM., , Hawinkels   LJ., , Sier   CF. , et al. , Circulating bone morphogenetic protein levels and delayed fracture healing. . International orthopaedics . 2013; ;37: 3 : 523– 527 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.47
Loading
/content/journals/10.5339/gcsp.2015.47
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error