1887
Volume 2015, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

There is no abstract available for this article.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.12
2015-04-09
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/1/gcsp.2015.12.html?itemId=/content/journals/10.5339/gcsp.2015.12&mimeType=html&fmt=ahah

References

  1. [1]. Owan   TE., , Hodge   DO., , Herges   RM., , Jacobsen   SJ., , Roger   VL., , Redfield   MM. . Trends in prevalence and outcome of heart failure with preserved ejection fraction. . N. Engl. J. Med.   2006; ;355: : 251– 259 .
    [Google Scholar]
  2. [2]. Holland   DJ., , Kumbhani   DJ., , Ahmed   SH., , Marwick   TH. . Effects of treatment on exercise tolerance, cardiac function, and mortality in heart failure with preserved ejection fraction. A meta-analysis. . J. Am. Coll. Cardiol.   2011; ;57: : 1676– 1686 .
    [Google Scholar]
  3. [3]. ElGuindy   A., , Yacoub   M. . Review article: Heart Failure with Preserved Ejection Fraction. . Glob. Cardiol. Sci. Pract.   2012; ; 10 .
    [Google Scholar]
  4. [4]. Yusuf   S., , Pfeffer   MA., , Swedberg   K., , Granger   CB., , Held   P., , McMurray   JJ., , Michelson   EL., , Olofsson   B., , Ostergren   J., , CHARM Investigators and Committees. . Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. . Lancet . 2003; ;362: : 777– 781 .
    [Google Scholar]
  5. [5]. Cleland   JGF., , Tendera   M., , Adamus   J., , Freemantle   N., , Polonski   L., , Taylor   J. . The perindopril in elderly people with chronic heart failure (PEP-CHF) study. . Eur. Heart J.   2006; ;27: : 2338– 2345 .
    [Google Scholar]
  6. [6]. Massie   BM., , Carson   PE., , McMurray   JJ., , Komajda   M., , McKelvie   R., , Zile   MR., , Anderson   S., , Donovan   M., , Iverson   E., , Staiger   C., , Ptaszynska   A., , I-PRESERVE Investigators. . Irbesartan in patients with heart failure and preserved ejection fraction. . N. Engl. J. Med.   2008; ;359: : 2456– 2467 .
    [Google Scholar]
  7. [7]. Pitt   B., , Pfeffer   MA., , Assmann   SF., , Boineau   R., , Anand   IS., , Claggett   B., , Clausell   N., , Desai   AS., , Diaz   R., , Fleg   JL., , Gordeev   I., , Harty   B., , Heitner   JF., , Kenwood   CT., , Lewis   EF., , O'Meara   E., , Probstfield   JL., , Shaburishvili   T., , Shah   SJ., , Solomon   SD., , Sweitzer   NK., , Yang   S., , McKinlay   SM., , TOPCAT Investigators. . Spironolactone for heart failure with preserved ejection fraction. . N. Engl. J. Med.   2014; ;370: : 1383– 1392 .
    [Google Scholar]
  8. [8]. Steinberg   BA., , Zhao   X., , Heidenreich   PA., , Peterson   ED., , Bhatt   DL., , Cannon   CP., , Hernandez   AF., , Fonarow   GC. . Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. . Circulation . 2012; ;126: : 65– 75 .
    [Google Scholar]
  9. [9]. Gottdiener   JS., , Arnold   AM., , Aurigemma   GP., , Polak   JF., , Tracy   RP., , Kitzman   DW., , Gardin   JM., , Rutledge   JE., , Boineau   RC. . Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. . J. Am. Coll. Cardiol.   2000; ;35: : 1628– 1637 .
    [Google Scholar]
  10. [10]. Borlaug   B., , Olson   TP., , Lam   CS., , Flood   KS., , Lerman   A., , Johnson   BD., , Redfield   MM. . Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. . J. Am. Coll. Cardiol.   2010; ;56: : 845– 854 .
    [Google Scholar]
  11. [11]. Maurer   MS., , Hummel   SL. . Heart failure with a preserved ejection fraction: what is in a name?.   J. Am. Coll. Cardiol.   2011; ;58: : 275– 277 .
    [Google Scholar]
  12. [12]. Lakatta   EG., , Levy   D. . Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. . Circulation . 2003; ;107: : 346– 354 .
    [Google Scholar]
  13. [13]. Bhella   PS., , Prasad   A., , Heinicke   K., , Hastings   JL., , Arbab-Zadeh   A., , Adams-Huet   B., , Pacini   EL., , Shibata   S., , Palmer   MD., , Newcomer   BR., , Levine   BD. . Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. . Eur. J. Heart Fail.   2011; ;13: : 1296– 1304 .
    [Google Scholar]
  14. [14]. Nicklas   BJ., , Leng   I., , Delbono   O., , Kitzman   DW., , Marsh   AP., , Hundley   WG., , Lyles   MF., , O'Rourke   KS., , Annex   BH., , Kraus   WE. . Relationship of physical function to vastus lateralis capillary density and metabolic enzyme activity in elderly men and women. . Aging Clin. Exp. Res.   2008; ;20: : 302– 309 .
    [Google Scholar]
  15. [15]. Haykowsky   MJ., , Brubaker   PH., , John   JM., , Stewart   KP., , Morgan   TM., , Kitzman   DW. . Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. . J. Am. Coll. Cardiol.   2011; ;58: : 265– 274 .
    [Google Scholar]
  16. [16]. Haykowsky   MJ., , Brubaker   PH., , Morgan   TM., , Kritchevsky   S., , Eggebeen   J., , Kitzman   DW. . Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. . J. Gerontol. A. Biol. Sci. Med. Sci.   2013; ;68: : 968– 975 .
    [Google Scholar]
  17. [17]. Westermann   D., , Lindner   D., , Kasner   M., , Zietsch   C., , Savvatis   K., , Escher   F., , von Schlippenbach   J., , Skurk   C., , Steendijk   P., , Riad   A., , Poller   W., , Schultheiss   HP., , Tschöpe   C. . Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. . Circ. Heart Fail.   2011; ;4: : 44– 52 .
    [Google Scholar]
  18. [18]. Kitzman   DW., , Little   WC., , Brubaker   PH., , Anderson   RT., , Hundley   WG., , Marburger   CT., , Brosnihan   B., , Morgan   TM., , Stewart   KP. . Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. . JAMA . 2002; ;288: : 2144– 2150 .
    [Google Scholar]
  19. [19]. Clarkson   PB., , Wheeldon   NM., , MacFadyen   RJ., , Pringle   SD., , MacDonald   TM. . Effects of brain natriuretic peptide on exercise hemodynamics and neurohormones in isolated diastolic heart failure. . Circulation . 1996; ;93: : 2037– 2042 .
    [Google Scholar]
  20. [20]. Maurer   MS., , Burkhoff   D., , Fried   LP., , Gottdiener   J., , King   DL., , Kitzman   DW. . Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the Cardiovascular Health Study. . J. Am. Coll. Cardiol.   2007; ;49: : 972– 981 .
    [Google Scholar]
  21. [21]. Brubaker   PH., , Joo   KC., , Stewart   KP., , Fray   B., , Moore   B., , Kitzman   DW. . Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. . J. Cardiopulm. Rehabil.   2006; ;26: : 86– 89 .
    [Google Scholar]
  22. [22]. Guazzi   M., , Vicenzi   M., , Arena   R., , Guazzi   MD. . Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. . Circulation . 2011; ;124: : 164– 174 .
    [Google Scholar]
  23. [23]. Kawaguchi   M. . Combined Ventricular Systolic and Arterial Stiffening in Patients With Heart Failure and Preserved Ejection Fraction: Implications for Systolic and Diastolic Reserve Limitations. . Circulation . 2003; ;107: : 714– 720 .
    [Google Scholar]
  24. [24]. Frenneaux   M., , Williams   L. . Ventricular-arterial and ventricular-ventricular interactions and their relevance to diastolic filling. . Prog. Cardiovasc. Dis.   2007; ;49: : 252– 262 .
    [Google Scholar]
  25. [25]. Hundley   WG., , Bayram   E., , Hamilton   CA., , Hamilton   EA., , Morgan   TM., , Darty   SN., , Stewart   KP., , Link   KM., , Herrington   DM., , Kitzman   DW. . Leg flow-mediated arterial dilation in elderly patients with heart failure and normal left ventricular ejection fraction. . Am. J. Physiol. Heart Circ. Physiol.   2007; ;292: : H1427– H1434 .
    [Google Scholar]
  26. [26]. Borlaug   B., , Melenovsky   V., , Russell   SD., , Kessler   K., , Pacak   K., , Becker   LC., , Kass   DA. . Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. . Circulation . 2006; ;114: : 2138– 2147 .
    [Google Scholar]
  27. [27]. Loffredo   FS., , Steinhauser   ML., , Jay   SM., , Gannon   J., , Pancoast   JR., , Yalamanchi   P., , Sinha   M., , Dall'Osso   C., , Khong   D., , Shadrach   JL., , Miller   CM., , Singer   BS., , Stewart   A., , Psychogios   N., , Gerszten   RE., , Hartigan   AJ., , Kim   MJ., , Serwold   T., , Wagers   AJ., , Lee   RT. . Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. . Cell . 2013; ;153: : 828– 839 .
    [Google Scholar]
  28. [28]. Frank   KF., , Bölck   B., , Brixius   K., , Kranias   EG., , Schwinger   RH. . Modulation of SERCA: implications for the failing human heart. . Basic Res. Cardiol.   2002; ;97: Suppl 1 : I72– I78 .
    [Google Scholar]
  29. [29]. Del Monte   F., , Harding   SE., , Dec   GW., , Gwathmey   JK., , Hajjar   RJ. . Targeting phospholamban by gene transfer in human heart failure. . Circulation . 2002; ;105: : 904– 907 .
    [Google Scholar]
  30. [30]. MacLennan   DH., , Kranias   EG. . Phospholamban: a crucial regulator of cardiac contractility. . Nat. Rev. Mol. Cell Biol.   2003; ;4: : 566– 577 .
    [Google Scholar]
  31. [31]. Hasenfuss   G. . Calcium Cycling in Congestive Heart Failure. . J. Mol. Cell. Cardiol.   2002; ;34: : 951– 969 .
    [Google Scholar]
  32. [32]. Govinden   R., , Bhoola   KD. . Genealogy, expression, and cellular function of transforming growth factor-beta. . Pharmacol. Ther.   2003; ;98: : 257– 265 .
    [Google Scholar]
  33. [33]. Lara-Pezzi   E., , Felkin   LE., , Birks   EJ., , Sarathchandra   P., , Panse   KD., , George   R., , Hall   JL., , Yacoub   MH., , Rosenthal   N., , Barton   PJ. . Expression of follistatin-related genes is altered in heart failure. . Endocrinology . 2008; ;149: : 5822– 5827 .
    [Google Scholar]
  34. [34]. Rando   TA., , Finkel   T. . Cardiac aging and rejuvenation–a sense of humors?.   N. Engl. J. Med.   2013; ;369: : 575– 576 .
    [Google Scholar]
  35. [35]. Janssen   I., , Heymsfield   SB., , Ross   R. . Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. . J. Am. Geriatr. Soc.   2002; ;50: : 889– 896 .
    [Google Scholar]
  36. [36]. Szulc   P., , Beck   TJ., , Marchand   F., , Delmas   PD. . Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men–the MINOS study. . J. Bone Miner. Res.   2005; ;20: : 721– 729 .
    [Google Scholar]
  37. [37]. Arthur   ST., , Cooley   ID. . The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. . Int. J. Biol. Sci.   2012; ;8: : 731– 760 .
    [Google Scholar]
  38. [38]. Renault   V., , Thornell   LE., , Eriksson   PO., , Butler-Browne   G., , Mouly   V. . Regenerative potential of human skeletal muscle during aging. . Aging Cell . 2002; ;1: : 132– 139 .
    [Google Scholar]
  39. [39]. Coats   AJ. . The “muscle hypothesis” of chronic heart failure. . J. Mol. Cell. Cardiol.   1996; ;28: : 2255– 2262 .
    [Google Scholar]
  40. [40]. Piepoli   MF., , Coats   AJS. . The “skeletal muscle hypothesis in heart failure” revised. . Eur. Heart J.   2013; ;34: : 486– 488 .
    [Google Scholar]
  41. [41]. Bunout   D., , de la Maza   MP., , Barrera   G., , Leiva   L., , Hirsch   S. . Association between sarcopenia and mortality in healthy older people. . Australas. J. Ageing . 2011; ;30: : 89– 92 .
    [Google Scholar]
  42. [42]. Krakauer   JC., , Franklin   B., , Kleerekoper   M., , Karlsson   M., , Levine   JA. . Body composition profiles derived from dual-energy X-ray absorptiometry, total body scan, and mortality. . Prev. Cardiol.   2004; ;7: : 109– 115 .
    [Google Scholar]
  43. [43]. Kuang   S., , Kuroda   K., , Le Grand   F., , Rudnicki   MA. . Asymmetric self-renewal and commitment of satellite stem cells in muscle. . Cell . 2007; ;129: : 999– 1010 .
    [Google Scholar]
  44. [44]. Troy   A., , Cadwallader   AB., , Fedorov   Y., , Tyner   K., , Tanaka   KK., , Olwin   BB. . Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. . Cell Stem Cell . 2012; ;11: : 541– 553 .
    [Google Scholar]
  45. [45]. Bernet   JD., , Doles   JD., , Hall   JK., , Kelly Tanaka   K., , Carter   TA., , Olwin   BB. . p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. . Nat. Med.   2014; ;20: : 265– 271 .
    [Google Scholar]
  46. [46]. Chakkalakal   JV., , Jones   KM., , Basson   MA., , Brack   AS. . The aged niche disrupts muscle stem cell quiescence. . Nature . 2012; ;490: : 355– 360 .
    [Google Scholar]
  47. [47]. Conboy   IM., , Conboy   MJ., , Wagers   AJ., , Girma   ER., , Weissman   IL., , Rando   TA. . Rejuvenation of aged progenitor cells by exposure to a young systemic environment. . Nature . 2005; ;433: : 760– 764 .
    [Google Scholar]
  48. [48]. Sousa-Victor   P., , Gutarra   S., , García-Prat   L., , Rodriguez-Ubreva   J., , Ortet   L., , Ruiz-Bonilla   V., , Jardí   M., , Ballestar   E., , González   S., , Serrano   AL., , Perdiguero   E., , Muñoz-Cánoves   P. . Geriatric muscle stem cells switch reversible quiescence into senescence. . Nature . 2014; ;506: : 316– 321 .
    [Google Scholar]
  49. [49]. Li   M., , Izpisua Belmonte   JC. . Ageing: Genetic rejuvenation of old muscle. . Nature . 2014; ;506: : 304– 305 .
    [Google Scholar]
  50. [50]. Price   FD., , von Maltzahn   J., , Bentzinger   CF., , Dumont   NA., , Yin   H3., , Chang   NC., , Wilson   DH., , Frenette   J., , Rudnicki   MA. . Inhibition of JAK-STAT signaling stimulates adult satellite cell function. . Nat. Med.   2014; ;20: : 1174– 1181 .
    [Google Scholar]
  51. [51]. Tierney   MT., , Aydogdu   T., , Sala   D., , Malecova   B., , Gatto   S., , Puri   PL., , Latella   L., , Sacco   A. . STAT3 signaling controls satellite cell expansion and skeletal muscle repair. . Nat. Med.   2014; ;20: : 1182– 1186 .
    [Google Scholar]
  52. [52]. Doles   JD., , Olwin   BB. . The impact of JAK-STAT signaling on muscle regeneration. . Nat. Med.   2014; ;20: : 1094– 1095 .
    [Google Scholar]
  53. [53]. Sinha   M., , Jang   YC., , Oh   J., , Khong   D., , Wu   EY., , Manohar   R., , Miller   C., , Regalado   SG., , Loffredo   FS., , Pancoast   JR., , Hirshman   MF., , Lebowitz   J., , Shadrach   JL., , Cerletti   M., , Kim   MJ., , Serwold   T., , Goodyear   LJ., , Rosner   B., , Lee   RT., , Wagers   AJ. . Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. . Science . 2014; ;344: : 649– 652 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.12
Loading
/content/journals/10.5339/gcsp.2015.12
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error