1887
Volume 2015, Issue 1
  • ISSN: 2305-7823
  • EISSN:
Preview this article:
Zoom in
Zoomout

Towards ‘Eternal Youth’ of cardiac and skeletal muscle, Page 1 of 1

| /docserver/preview/fulltext/gcsp/2015/1/gcsp.2015.12-1.gif

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.12
2015-04-09
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/1/gcsp.2015.12.html?itemId=/content/journals/10.5339/gcsp.2015.12&mimeType=html&fmt=ahah

References

  1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 2006; 355::251259.
    [Google Scholar]
  2. Holland DJ, Kumbhani DJ, Ahmed SH, Marwick TH. Effects of treatment on exercise tolerance, cardiac function, and mortality in heart failure with preserved ejection fraction. A meta-analysis. J. Am. Coll. Cardiol. 2011; 57::16761686.
    [Google Scholar]
  3. ElGuindy A, Yacoub M. Review article: Heart Failure with Preserved Ejection Fraction. Glob. Cardiol. Sci. Pract. 2012;10.
    [Google Scholar]
  4. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, Olofsson B, Ostergren J, CHARM Investigators and Committees . Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003; 362::777781.
    [Google Scholar]
  5. Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur. Heart J. 2006; 27::23382345.
    [Google Scholar]
  6. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A, I-PRESERVE Investigators . Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J. Med. 2008; 359::24562467.
    [Google Scholar]
  7. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O'Meara E, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM, TOPCAT Investigators . Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014; 370::13831392.
    [Google Scholar]
  8. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, Hernandez AF, Fonarow GC. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012; 126::6575.
    [Google Scholar]
  9. Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, Gardin JM, Rutledge JE, Boineau RC. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 2000; 35::16281637.
    [Google Scholar]
  10. Borlaug B, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, Redfield MM. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2010; 56::845854.
    [Google Scholar]
  11. Maurer MS, Hummel SL. Heart failure with a preserved ejection fraction: what is in a name? J. Am. Coll. Cardiol. 2011; 58::275277.
    [Google Scholar]
  12. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003; 107::346354.
    [Google Scholar]
  13. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2011; 13::12961304.
    [Google Scholar]
  14. Nicklas BJ, Leng I, Delbono O, Kitzman DW, Marsh AP, Hundley WG, Lyles MF, O'Rourke KS, Annex BH, Kraus WE. Relationship of physical function to vastus lateralis capillary density and metabolic enzyme activity in elderly men and women. Aging Clin. Exp. Res. 2008; 20::302309.
    [Google Scholar]
  15. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J. Am. Coll. Cardiol. 2011; 58::265274.
    [Google Scholar]
  16. Haykowsky MJ, Brubaker PH, Morgan TM, Kritchevsky S, Eggebeen J, Kitzman DW. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J. Gerontol. A. Biol. Sci. Med. Sci. 2013; 68::968975.
    [Google Scholar]
  17. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschöpe C. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 2011; 4::4452.
    [Google Scholar]
  18. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002; 288::21442150.
    [Google Scholar]
  19. Clarkson PB, Wheeldon NM, MacFadyen RJ, Pringle SD, MacDonald TM. Effects of brain natriuretic peptide on exercise hemodynamics and neurohormones in isolated diastolic heart failure. Circulation. 1996; 93::20372042.
    [Google Scholar]
  20. Maurer MS, Burkhoff D, Fried LP, Gottdiener J, King DL, Kitzman DW. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 2007; 49::972981.
    [Google Scholar]
  21. Brubaker PH, Joo KC, Stewart KP, Fray B, Moore B, Kitzman DW. Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. J. Cardiopulm. Rehabil. 2006; 26::8689.
    [Google Scholar]
  22. Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011; 124::164174.
    [Google Scholar]
  23. Kawaguchi M. Combined Ventricular Systolic and Arterial Stiffening in Patients With Heart Failure and Preserved Ejection Fraction: Implications for Systolic and Diastolic Reserve Limitations. Circulation. 2003; 107::714720.
    [Google Scholar]
  24. Frenneaux M, Williams L. Ventricular-arterial and ventricular-ventricular interactions and their relevance to diastolic filling. Prog. Cardiovasc. Dis. 2007; 49::252262.
    [Google Scholar]
  25. Hundley WG, Bayram E, Hamilton CA, Hamilton EA, Morgan TM, Darty SN, Stewart KP, Link KM, Herrington DM, Kitzman DW. Leg flow-mediated arterial dilation in elderly patients with heart failure and normal left ventricular ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2007; 292::H1427H1434.
    [Google Scholar]
  26. Borlaug B, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, Kass DA. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006; 114::21382147.
    [Google Scholar]
  27. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall'Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013; 153::828839.
    [Google Scholar]
  28. Frank KF, Bölck B, Brixius K, Kranias EG, Schwinger RH. Modulation of SERCA: implications for the failing human heart. Basic Res. Cardiol. 2002; 97:Suppl 1:I72I78.
    [Google Scholar]
  29. Del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ. Targeting phospholamban by gene transfer in human heart failure. Circulation. 2002; 105::904907.
    [Google Scholar]
  30. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 2003; 4::566577.
    [Google Scholar]
  31. Hasenfuss G. Calcium Cycling in Congestive Heart Failure. J. Mol. Cell. Cardiol. 2002; 34::951969.
    [Google Scholar]
  32. Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol. Ther. 2003; 98::257265.
    [Google Scholar]
  33. Lara-Pezzi E, Felkin LE, Birks EJ, Sarathchandra P, Panse KD, George R, Hall JL, Yacoub MH, Rosenthal N, Barton PJ. Expression of follistatin-related genes is altered in heart failure. Endocrinology. 2008; 149::58225827.
    [Google Scholar]
  34. Rando TA, Finkel T. Cardiac aging and rejuvenation–a sense of humors? N. Engl. J. Med. 2013; 369::575576.
    [Google Scholar]
  35. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002; 50::889896.
    [Google Scholar]
  36. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men–the MINOS study. J. Bone Miner. Res. 2005; 20::721729.
    [Google Scholar]
  37. Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int. J. Biol. Sci. 2012; 8::731760.
    [Google Scholar]
  38. Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V. Regenerative potential of human skeletal muscle during aging. Aging Cell. 2002; 1::132139.
    [Google Scholar]
  39. Coats AJ. The “muscle hypothesis” of chronic heart failure. J. Mol. Cell. Cardiol. 1996; 28::22552262.
    [Google Scholar]
  40. Piepoli MF, Coats AJS. The “skeletal muscle hypothesis in heart failure” revised. Eur. Heart J. 2013; 34::486488.
    [Google Scholar]
  41. Bunout D, de la Maza MP, Barrera G, Leiva L, Hirsch S. Association between sarcopenia and mortality in healthy older people. Australas. J. Ageing. 2011; 30::8992.
    [Google Scholar]
  42. Krakauer JC, Franklin B, Kleerekoper M, Karlsson M, Levine JA. Body composition profiles derived from dual-energy X-ray absorptiometry, total body scan, and mortality. Prev. Cardiol. 2004; 7::109115.
    [Google Scholar]
  43. Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007; 129::9991010.
    [Google Scholar]
  44. Troy A, Cadwallader AB, Fedorov Y, Tyner K, Tanaka KK, Olwin BB. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell. 2012; 11::541553.
    [Google Scholar]
  45. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 2014; 20::265271.
    [Google Scholar]
  46. Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature. 2012; 490::355360.
    [Google Scholar]
  47. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005; 433::760764.
    [Google Scholar]
  48. Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014; 506::316321.
    [Google Scholar]
  49. Li M, Izpisua Belmonte JC. Ageing: Genetic rejuvenation of old muscle. Nature. 2014; 506::304305.
    [Google Scholar]
  50. Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H3, Chang NC, Wilson DH, Frenette J, Rudnicki MA. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat. Med. 2014; 20::11741181.
    [Google Scholar]
  51. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat. Med. 2014; 20::11821186.
    [Google Scholar]
  52. Doles JD, Olwin BB. The impact of JAK-STAT signaling on muscle regeneration. Nat. Med. 2014; 20::10941095.
    [Google Scholar]
  53. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014; 344::649652.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.12
Loading
/content/journals/10.5339/gcsp.2015.12
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error