1887
Volume 2014, Issue 3
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Treatment of cardiovascular diseases remains challenging considering the limited regeneration capacity of the heart muscle. Developments of reprogramming strategies to create and cardiomyocytes have been the focus point of a considerable amount of research in the past decades. The choice of cells to employ, the state-of-the-art methods for different reprogramming strategies, and their promises and future challenges before clinical entry, are all discussed here.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.44
2015-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/3/gcsp.2014.44.html?itemId=/content/journals/10.5339/gcsp.2014.44&mimeType=html&fmt=ahah

References

  1. [1]. Lancaster   MA., , Knoblich   JA. . Organogenesis in a dish: Modeling development and disease using organoid technologies. . Science . 2014; ;345: 6194 : 1247125 .
    [Google Scholar]
  2. [2]. Michael Fischberg   JBG., , Tom   R. . Elsdale nuclear transplantation in Xenopus laevis. . Nature . 1958; ;   181 : 424 .
    [Google Scholar]
  3. [3]. Takahashi   K., , Yamanaka   S. . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. . Cell . 2006; ;126: 4 : 663– 676 .
    [Google Scholar]
  4. [4]. Vierbuchen   T., , Ostermeier   A., , Pang   ZP., , Kokubu   Y., , Sudhof   TC., , Wernig   M. . Direct conversion of fibroblasts to functional neurons by defined factors. . Nature . 2010; ;463: 7284 : 1035– 1041 .
    [Google Scholar]
  5. [5]. Ieda   M., , Fu   JD., , Delgado-Olguin   P., , Vedantham   V., , Hayashi   Y., , Bruneau   BG., , Srivastava   D. . Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. . Cell . 2010; ;142: 3 : 375– 386 .
    [Google Scholar]
  6. [6]. Slack   JM. . Stem cells in epithelial tissues. . Science . 2000; ;287: 5457 : 1431– 1433 .
    [Google Scholar]
  7. [7]. Menasche   P., , Hagège   AA., , Scorsin   M., , Pouzet   B., , Desnos   M., , Duboc   D., , Schwartz   K., , Vilquin   JT., , Marolleau   JP. . Myoblast transplantation for heart failure. . Lancet . 2001; ;357: 9252 : 279– 280 .
    [Google Scholar]
  8. [8]. Alaiti   MA., , Ishikawa   M., , Costa   MA. . Bone marrow and circulating stem/progenitor cells for regenerative cardiovascular therapy. . Transl Res . 2010; ;156: 3 : 112– 129 .
    [Google Scholar]
  9. [9]. Jiang   M., , He   B., , Zhang   Q., , Ge   H., , Zang   MH., , Han   ZH., , Liu   JP., , Li   JH., , Zhang   Q., , Li   HB., , Jin   Y., , He   Q., , Gong   XR., , Yin   XY. . Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: Meta-analysis. . Expert Opin Biol Ther . 2010; ;10: 5 : 667– 680 .
    [Google Scholar]
  10. [10]. Abdel-Latif   A., , Bolli   R., , Tleyjeh   IM., , Montori   VM., , Perin   EC., , Hornung   CA., , Zuba-Surma   EK., , Al-Mallah   M., , Dawn   B. . Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. . Arch Intern Med . 2007; ;167: 10 : 989– 997 .
    [Google Scholar]
  11. [11]. Bai   X., , Alt   E. . Myocardial regeneration potential of adipose tissue-derived stem cells. . Biochem Biophys Res Commun . 2010; ;401: 3 : 321– 326 .
    [Google Scholar]
  12. [12]. Makino   S., , Fukuda   K., , Miyoshi   S., , Konishi   F., , Kodama   H., , Pan   J., , Sano   M., , Takahashi   T., , Hori   S., , Abe   H., , Hata   J., , Umezawa   A., , Ogawa   S. . Cardiomyocytes can be generated from marrow stromal cells in vitro. . J Clin Invest . 1999; ;103: 5 : 697– 705 .
    [Google Scholar]
  13. [13]. Raynaud   CM., , Yacoub   MH. . Clinical trials of bone marrow derived cells for ischemic heart failure. Time to move on? TIME, SWISS-AMI, CELLWAVE, POSEIDON and C-CURE. . Glob Cardiol Sci Pract . 2013; ;2013: 3 : 207– 211 .
    [Google Scholar]
  14. [14]. Xu   M., , Millard   RW., , Ashraf   M. . Role of GATA-4 in differentiation and survival of bone marrow mesenchymal stem cells. . Prog Mol Biol Transl Sci . 2012; ;111: : 217– 241 .
    [Google Scholar]
  15. [15]. Ravichandran   R., , Venugopal   JR., , Sundarrajan   S., , Mukherjee   S., , Ramakrishna   S. . Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. . World J Cardiol . 2013; ;5: 3 : 28– 41 .
    [Google Scholar]
  16. [16]. Burridge   PW., , Burridge   PW., , Thompson   S., , Millrod   MA., , Weinberg   S., , Yuan   X., , Peters   A., , Mahairaki   V., , Koliatsos   VE., , Tung   L., , Zambidis   ET. . A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. . PLoS One . 2011; ;6: 4 : e18293 .
    [Google Scholar]
  17. [17]. Kattman   SJ., , Witty   AD., , Gagliardi   M., , Dubois   NC., , Niapour   M., , Hotta   A., , Ellis   J., , Keller   G. . Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. . Cell Stem Cell . 2011; ;8: 2 : 228– 240 .
    [Google Scholar]
  18. [18]. Wei   H., , Tan   G., , Manasi   QS., , Kong   G., , Yong   P., , Koh   C., , Ooi   TH., , Lim   SY., , Wong   P., , Gan   SU., , Shim   W. . One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. . Stem Cell Res . 2012; ;9: 2 : 87– 100 .
    [Google Scholar]
  19. [19]. Tang   YL., , Wang   YJ., , Chen   LJ., , Pan   YH., , Zhang   L., , Weintraub   NL. . Cardiac-derived stem cell-based therapy for heart failure: Progress and clinical applications. . Exp Biol Med (Maywood) . 2013; ;238: 3 : 294– 300 .
    [Google Scholar]
  20. [20]. Barile   L., , Messina   E., , Giacomello   A., , Marbán   E. . Endogenous cardiac stem cells. . Prog Cardiovasc Dis . 2007; ;50: 1 : 31– 48 .
    [Google Scholar]
  21. [21]. van Berlo   JH., , Kanisicak   O., , Maillet   M., , Vagnozzi   RJ., , Karch   J., , Lin   SC., , Middleton   RC., , Marbán   E., , Molkentin   JD. . c-kit+ cells minimally contribute cardiomyocytes to the heart. . Nature . 2014; ;509: 7500 : 337– 341 .
    [Google Scholar]
  22. [22]. The Lancet   E. . Expression of concern: The SCIPIO trial. . Lancet . 2014; ;383: 9925 : 1279 .
    [Google Scholar]
  23. [23]. Notice of retraction. . Circulation . 2014; ;129: 16 : e466 .
    [Google Scholar]
  24. [24]. Burridge   PW., , Keller   G., , Gold   JD., , Wu   JC. . Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. . Cell Stem Cell . 2012; ;10: 1 : 16– 28 .
    [Google Scholar]
  25. [25]. Lian   X., , Hsiao   C., , Wilson   G., , Zhu   K., , Hazeltine   LB., , Azarin   SM., , Raval   KK., , Zhang   J., , Kamp   TJ., , Palecek   SP. . Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical WNT signaling. . Proc Natl Acad Sci U S A . 2012; ;109: 27 : E1848– E1857 .
    [Google Scholar]
  26. [26]. Makkar   RR., , Smith   RR., , Cheng   K., , Malliaras   K., , Thomson   LE., , Berman   D., , Czer   LS., , Marbán   L., , Mendizabal   A., , Johnston   PV., , Russell   SD., , Schuleri   KH., , Lardo   AC., , Gerstenblith   G., , Marbán   E. . Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. . Lancet . 2012; ;379: 9819 : 895– 904 .
    [Google Scholar]
  27. [27]. Bolli   R., , Chugh   AR., , D'Amario   D., , Loughran   JH., , Stoddard   MF., , Ikram   S., , Beache   GM., , Wagner   SG., , Leri   A., , Hosoda   T., , Sanada   F., , Elmore   JB., , Goichberg   P., , Cappetta   D., , Solankhi   NK., , Fahsah   I., , Rokosh   DG., , Slaughter   MS., , Kajstura   J., , Anversa   P. . Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. . Lancet . 2011; ;378: 9806 : 1847– 1857 .
    [Google Scholar]
  28. [28]. Takahashi   K., , Tanabe   K., , Ohnuki   M., , Narita   M., , Ichisaka   T., , Tomoda   K., , Yamanaka   S. . Induction of pluripotent stem cells from adult human fibroblasts by defined factors. . Cell . 2007; ;131: 5 : 861– 872 .
    [Google Scholar]
  29. [29]. Yu   J., , Vodyanik   MA., , Smuga-Otto   K., , Antosiewicz-Bourget   J., , Frane   JL., , Tian   S., , Nie   J., , Jonsdottir   GA., , Ruotti   V., , Stewart   R., , Slukvin   II., , Thomson   JA. . Induced pluripotent stem cell lines derived from human somatic cells. . Science . 2007; ;318: 5858 : 1917– 1920 .
    [Google Scholar]
  30. [30]. Nakagawa   M., , Koyanagi   M., , Tanabe   K., , Takahashi   K., , Ichisaka   T., , Aoi   T., , Okita   K., , Mochiduki   Y., , Takizawa   N., , Yamanaka   S. . Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. . Nat Biotechnol . 2008; ;26: 1 : 101– 106 .
    [Google Scholar]
  31. [31]. Hong   H., , Takahashi   K., , Ichisaka   T., , Aoi   T., , Kanagawa   O., , Nakagawa   M., , Okita   K., , Yamanaka   S. . Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. . Nature . 2009; ;460: 7259 : 1132– 1135 .
    [Google Scholar]
  32. [32]. Kawamura   T., , Suzuki   J., , Wang   YV., , Menendez   S., , Morera   LB., , Raya   A., , Wahl   GM., , Izpisúa Belmonte   JC. . Linking the p53 tumour suppressor pathway to somatic cell reprogramming. . Nature . 2009; ;460: 7259 : 1140– 1144 .
    [Google Scholar]
  33. [33]. Li   H., , Collado   M., , Villasante   A., , Strati   K., , Ortega   S., , Cañamero   M., , Blasco   MA., , Serrano   M. . The Ink4/Arf locus is a barrier for iPS cell reprogramming. . Nature . 2009; ;460: 7259 : 1136– 1139 .
    [Google Scholar]
  34. [34]. Marion   RM., , Strati   K., , Li   H., , Murga   M., , Blanco   R., , Ortega   S., , Fernandez-Capetillo   O., , Serrano   M., , Blasco   MA. . A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. . Nature . 2009; ;460: 7259 : 1149– 1153 .
    [Google Scholar]
  35. [35]. Utikal   J., , Polo   JM., , Stadtfeld   M., , Maherali   N., , Kulalert   W., , Walsh   RM., , Khalil   A., , Rheinwald   JG., , Hochedlinger   K. . Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. . Nature . 2009; ;460: 7259 : 1145– 1148 .
    [Google Scholar]
  36. [36]. Kim   D., , Kim   CH., , Moon   JI., , Chung   YG., , Chang   MY., , Han   BS., , Ko   S., , Yang   E., , Cha   KY., , Lanza   R., , Kim   KS. . Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. . Cell Stem Cell . 2009; ;4: 6 : 472– 476 .
    [Google Scholar]
  37. [37]. Cho   HJ., , Lee   CS., , Kwon   YW., , Paek   JS., , Lee   SH., , Hur   J., , Lee   EJ., , Roh   TY., , Chu   IS., , Leem   SH., , Kim   Y., , Kang   HJ., , Park   YB., , Kim   HS. . Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. . Blood . 2010; ;116: 3 : 386– 395 .
    [Google Scholar]
  38. [38]. Judson   RL., , Babiarz   JE., , Venere   M., , Blelloch   R. . Embryonic stem cell-specific microRNAs promote induced pluripotency. . Nat Biotechnol . 2009; ;27: 5 : 459– 461 .
    [Google Scholar]
  39. [39]. Huang   M., , Chen   Z., , Hu   S., , Jia   F., , Li   Z., , Hoyt   G., , Robbins   RC., , Kay   MA., , Wu   JC. . Novel minicircle vector for gene therapy in murine myocardial infarction. . Circulation . 2009; ;120: 11 Suppl : S230– S237 .
    [Google Scholar]
  40. [40]. Kay   MA., , C   Y., , He   ZY., , Chen   A. . A robust system for production of minicircle DNA vectors. . Nat Biotechnol . 2010; ;28: 12 : 1287– 1289 .
    [Google Scholar]
  41. [41]. He   E., , Yue   CY., , Simeon   F., , Zhou   LH., , Too   HP., , Tam   KC. . Polyplex formation between four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA in gene delivery. . J Biomed Mater Res A . 2009; ;91: 3 : 708– 718 .
    [Google Scholar]
  42. [42]. Okita   K., , Matsumura   Y., , Sato   Y., , Okada   A., , Morizane   A., , Okamoto   S., , Hong   H., , Nakagawa   M., , Tanabe   K., , Tezuka   K., , Shibata   T., , Kunisada   T., , Takahashi   M., , Takahashi   J., , Saji   H., , Yamanaka   S. . A more efficient method to generate integration-free human iPS cells. . Nat Methods . 2011; ;8: 5 : 409– 412 .
    [Google Scholar]
  43. [43]. Ambasudhan   R., , Talantova   M., , Coleman   R., , Yuan   X., , Zhu   S., , Lipton   SA., , Ding   S. . Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. . Cell Stem Cell . 2011; ;9: 2 : 113– 118 .
    [Google Scholar]
  44. [44]. Anokye-Danso   F., , Trivedi   CM., , Juhr   D., , Gupta   M., , Cui   Z., , Tian   Y., , Zhang   Y., , Yang   W., , Gruber   PJ., , Epstein   JA., , Morrisey   EE. . Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. . Cell Stem Cell . 2011; ;8: 4 : 376– 388 .
    [Google Scholar]
  45. [45]. Richards   M., , Fong   CY., , Chan   WK., , Wong   PC., , Bongso   A. . Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. . Nat Biotechnol . 2002; ;20: 9 : 933– 936 .
    [Google Scholar]
  46. [46]. Unger   C., , Felldin   U., , Nordenskjöld   A., , Dilber   MS., , Hovatta   O. . Derivation of human skin fibroblast lines for feeder cells of human embryonic stem cells. . Curr Protoc Stem Cell Biol . 2008; ;   Chapter 1: Unit 1C 7 .
    [Google Scholar]
  47. [47]. Ludwig   TE., , Bergendahl   V., , Levenstein   ME., , Yu   J., , Probasco   MD., , Thomson   JA. . Feeder-independent culture of human embryonic stem cells. . Nat Methods . 2006; ;3: 8 : 637– 646 .
    [Google Scholar]
  48. [48]. Goh   PA., , Caxaria   S., , Casper   C., , Rosales   C., , Warner   TT., , Coffey   PJ., , Nathwani   AC. . A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. . PLoS One . 2013; ;8: 11 : e81622 .
    [Google Scholar]
  49. [49]. Park   IH., , Zhao   R., , West   JA., , Yabuuchi   A., , Huo   H., , Ince   TA., , Lerou   PH., , Lensch   MW., , Daley   GQ. . Reprogramming of human somatic cells to pluripotency with defined factors. . Nature . 2008; ;451: 7175 : 141– 146 .
    [Google Scholar]
  50. [50]. Lowry   WE., , Richter   L., , Yachechko   R., , Pyle   AD., , Tchieu   J., , Sridharan   R., , Clark   AT., , Plath   K. . Generation of human induced pluripotent stem cells from dermal fibroblasts. . Proc Natl Acad Sci U S A . 2008; ;105: 8 : 2883– 2888 .
    [Google Scholar]
  51. [51]. Gai   H., , Leung   EL., , Costantino   PD., , Aguila   JR., , Nguyen   DM., , Fink   LM., , Ward   DC., , Ma   Y. . Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. . Cell Biol Int . 2009; ;33: 11 : 1184– 1193 .
    [Google Scholar]
  52. [52]. Aasen   T., , Aasen   T., , Raya   A., , Barrero   MJ., , Garreta   E., , Consiglio   A., , Gonzalez   F., , Vassena   R., , Bilić   J., , Pekarik   V., , Tiscornia   G., , Edel   M., , Boué   S., , Belmonte   JC. . Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. . Nat Biotechnol . 2008; ;26: 11 : 1276– 1284 .
    [Google Scholar]
  53. [53]. Kim   JB., , Greber   B., , Araúzo-Bravo   MJ., , Meyer   J., , Park   KI., , Zaehres   H., , Schöler   HR. . Direct reprogramming of human neural stem cells by OCT4. . Nature . 2009; ;461: 7264 : 649– 653 .
    [Google Scholar]
  54. [54]. Utikal   J., , Maherali   N., , Kulalert   W., , Hochedlinger   K. . Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. . J Cell Sci . 2009; ;122: Pt 19 : 3502– 3510 .
    [Google Scholar]
  55. [55]. Giorgetti   A., , Montserrat   N., , Aasen   T., , Gonzalez   F., , Rodríguez-Pizà   I., , Vassena   R., , Raya   A., , Boué   S., , Barrero   MJ., , Corbella   BA., , Torrabadella   M., , Veiga   A. . Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. . Cell Stem Cell . 2009; ;5: 4 : 353– 357 .
    [Google Scholar]
  56. [56]. Haase   A., , Olmer   R., , Schwanke   K., , Wunderlich   S., , Merkert   S., , Hess   C., , Zweigerdt   R., , Gruh   I., , Meyer   J., , Wagner   S., , Maier   LS., , Han   DW., , Glage   S., , Miller   K., , Fischer   P., , Schöler   HR., , Martin   U. . Generation of induced pluripotent stem cells from human cord blood. . Cell Stem Cell . 2009; ;5: 4 : 434– 441 .
    [Google Scholar]
  57. [57]. Loh   YH., , Agarwal   S., , Park   IH., , Urbach   A., , Huo   H., , Heffner   GC., , Kim   K., , Miller   JD., , Ng   K., , Daley   GQ. . Generation of induced pluripotent stem cells from human blood. . Blood . 2009; ;113: 22 : 5476– 5479 .
    [Google Scholar]
  58. [58]. Sun   N., , Panetta   NJ., , Gupta   DM., , Wilson   KD., , Lee   A., , Jia   F., , Hu   S., , Cherry   AM., , Robbins   RC., , Longaker   MT., , Wu   JC. . Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. . Proc Natl Acad Sci U S A . 2009; ;106: 37 : 15720– 15725 .
    [Google Scholar]
  59. [59]. Lee   J., , Sayed   N., , Hunter   A., , Au   KF., , Wong   WH., , Mocarski   ES., , Pera   RR., , Yakubov   E., , Cooke   JP. . Activation of innate immunity is required for efficient nuclear reprogramming. . Cell . 2012; ;151: 3 : 547– 558 .
    [Google Scholar]
  60. [60]. Yamada   M., , Johannesson   B., , Sagi   I., , Burnett   LC., , Kort   DH., , Prosser   RW., , Paull   D., , Nestor   MW., , Freeby   M., , Greenberg   E., , Goland   RS., , Leibel   RL., , Solomon   SL., , Benvenisty   N., , Sauer   MV., , Egli   D. . Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. . Nature . 2014; ;510: 7506 : 533– 536 .
    [Google Scholar]
  61. [61]. Krupalnik   V., , Hanna   JH. . Stem cells: The quest for the perfect reprogrammed cell. . Nature . 2014; ;511: 7508 : 160– 162 .
    [Google Scholar]
  62. [62]. Ma   H., , Morey   R., , O'Neil   RC., , He   Y., , Daughtry   B., , Schultz   MD., , Hariharan   M., , Nery   JR., , Castanon   R., , Sabatini   K., , Thiagarajan   RD., , Tachibana   M., , Kang   E., , Tippner-Hedges   R., , Ahmed   R., , Gutierrez   NM., , Van Dyken   C., , Polat   A., , Sugawara   A., , Sparman   M., , Gokhale   S., , Amato   P., , Wolf   DP., , Ecker   JR., , Laurent   LC., , Mitalipov   S. . Abnormalities in human pluripotent cells due to reprogramming mechanisms. . Nature . 2014; ;511: 7508 : 177– 183 .
    [Google Scholar]
  63. [63]. Rais   Y., , Zviran   A., , Geula   S., , Gafni   O., , Chomsky   E., , Viukov   S., , Mansour   AA., , Caspi   I., , Krupalnik   V., , Zerbib   M., , Maza   I., , Mor   N., , Baran   D., , Weinberger   L., , Jaitin   DA., , Lara-Astiaso   D., , Blecher-Gonen   R., , Shipony   Z., , Mukamel   Z., , Hagai   T., , Gilad   S., , Amann-Zalcenstein   D., , Tanay   A., , Amit   I., , Novershtern   N., , Hanna   JH. . Deterministic direct reprogramming of somatic cells to pluripotency. . Nature . 2013; ;502: 7469 : 65– 70 .
    [Google Scholar]
  64. [64]. Obokata   H., , Wakayama   T., , Sasai   Y., , Kojima   K., , Vacanti   MP., , Niwa   H., , Yamato   M., , Vacanti   CA. . Stimulus-triggered fate conversion of somatic cells into pluripotency. . Nature . 2014; ;505: 7485 : 641– 647 .
    [Google Scholar]
  65. [65]. Arnold   SJ., , Robertson   EJ. . Robertson, making a commitment: Cell lineage allocation and axis patterning in the early mouse embryo. . Nat Rev Mol Cell Biol . 2009; ;10: 2 : 91– 103 .
    [Google Scholar]
  66. [66]. Costello   I., , Pimeisl   IM., , Dräger   S., , Bikoff   EK., , Robertson   EJ., , Arnold   SJ. . The T-box transcription factor eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. . Nat Cell Biol . 2011; ;13: 9 : 1084– 1091 .
    [Google Scholar]
  67. [67]. David   R., , Jarsch   VB., , Schwarz   F., , Nathan   P., , Gegg   M., , Lickert   H., , Franz   WM. . Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. . Cardiovasc Res . 2011; ;92: 1 : 115– 122 .
    [Google Scholar]
  68. [68]. Lindsley   RC., , Gill   JG., , Murphy   TL., , Langer   EM., , Cai   M., , Mashayekhi   M., , Wang   W., , Niwa   N., , Nerbonne   JM., , Kyba   M., , Murphy   KM. . Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. . Cell Stem Cell . 2008; ;3: 1 : 55– 68 .
    [Google Scholar]
  69. [69]. Bondue   A., , Blanpain   C. . Mesp1: A key regulator of cardiovascular lineage commitment. . Circ Res . 2010; ;107: 12 : 1414– 1427 .
    [Google Scholar]
  70. [70]. Katoh   M., , Katoh   M. . CER1 is a common target of WNT and NODAL signaling pathways in human embryonic stem cells. . Int J Mol Med . 2006; ;17: 5 : 795– 799 .
    [Google Scholar]
  71. [71]. Gadue   P., , Huber   TL., , Paddison   PJ., , Keller   GM. . WNT and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. . Proc Natl Acad Sci U S A . 2006; ;103: 45 : 16806– 16811 .
    [Google Scholar]
  72. [72]. Laflamme   MA., , Chen   KY., , Naumova   AV., , Muskheli   V., , Fugate   JA., , Dupras   SK., , Reinecke   H., , Xu   C., , Hassanipour   M., , Police   S., , O'Sullivan   C., , Collins   L., , Chen   Y., , Minami   E., , Gill   EA., , Ueno   S., , Yuan   C., , Gold   J., , Murry   CE. . Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. . Nat Biotechnol . 2007; ;25: 9 : 1015– 1024 .
    [Google Scholar]
  73. [73]. Sumi   T., , Tsuneyoshi   N., , Nakatsuji   N., , Suemori   H. . Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical WNT/beta-catenin, Activin/Nodal and BMP signaling. . Development . 2008; ;135: 17 : 2969– 2979 .
    [Google Scholar]
  74. [74]. Yang   L., , Soonpaa   MH., , Adler   ED., , Roepke   TK., , Kattman   SJ., , Kennedy   M., , Henckaerts   E., , Bonham   K., , Abbott   GW., , Linden   RM., , Field   LJ., , Keller   GM. . Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. . Nature . 2008; ;453: 7194 : 524– 528 .
    [Google Scholar]
  75. [75]. Yuasa   S., , Itabashi   Y., , Koshimizu   U., , Tanaka   T., , Sugimura   K., , Kinoshita   M., , Hattori   F., , Fukami   S., , Shimazaki   T., , Ogawa   S., , Okano   H., , Fukuda   K. . Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. . Nat Biotechnol . 2005; ;23: 5 : 607– 611 .
    [Google Scholar]
  76. [76]. Ren   Y., , Lee   MY., , Schliffke   S., , Paavola   J., , Amos   PJ., , Ge   X., , Ye   M., , Zhu   S., , Senyei   G., , Lum   L., , Ehrlich   BE., , Qyang   Y. . Small molecule WNT inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. . J Mol Cell Cardiol . 2011; ;51: 3 : 280– 287 .
    [Google Scholar]
  77. [77]. Uosaki   H., , Fukushima   H., , Takeuchi   A., , Matsuoka   S., , Nakatsuji   N., , Yamanaka   S., , Yamashita   JK. . Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. . PLoS One . 2011; ;6: 8 : e23657 .
    [Google Scholar]
  78. [78]. Rao   C., , Prodromakis   T., , Kolker   L., , Chaudhry   UA., , Trantidou   T., , Sridhar   A., , Weekes   C., , Camelliti   P., , Harding   SE., , Darzi   A., , Yacoub   MH., , Athanasiou   T., , Terracciano   CM. . The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. . Biomaterials . 2013; ;34: 10 : 2399– 2411 .
    [Google Scholar]
  79. [79]. Mummery   CL., , Zhang   J., , Ng   ES., , Elliott   DA., , Elefanty   AG., , Kamp   TJ. . Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. . Circ Res . 2012; ;111: 3 : 344– 358 .
    [Google Scholar]
  80. [80]. Puente   BN., , Kimura   W., , Muralidhar   SA., , Moon   J., , Amatruda   JF., , Phelps   KL., , Grinsfelder   D., , Rothermel   BA., , Chen   R., , Garcia   JA., , Santos   CX., , Thet   S., , Mori   E., , Kinter   MT., , Rindler   PM., , Zacchigna   S., , Mukherjee   S., , Chen   DJ., , Mahmoud   AI., , Giacca   M., , Rabinovitch   PS., , Aroumougame   A., , Shah   AM., , Szweda   LI., , Sadek   HA. . The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. . Cell . 2014; ;157: 3 : 565– 579 .
    [Google Scholar]
  81. [81]. Yamanaka   S., , Zahanich   I., , Wersto   RP., , Boheler   KR. . Enhanced proliferation of monolayer cultures of embryonic stem (ES) cell-derived cardiomyocytes following acute loss of retinoblastoma. . PLoS One . 2008; ;3: 12 : e3896 .
    [Google Scholar]
  82. [82]. Burridge   PW., , Anderson   D., , Priddle   H., , Barbadillo Muñoz   MD., , Chamberlain   S., , Allegrucci   C., , Young   LE., , Denning   C. . Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. . Stem Cells . 2007; ;25: 4 : 929– 938 .
    [Google Scholar]
  83. [83]. Esteban   MA., , Wang   T., , Qin   B., , Yang   J., , Qin   D., , Cai   J., , Li   W., , Weng   Z., , Chen   J., , Ni   S., , Chen   K., , Li   Y., , Liu   X., , Xu   J., , Zhang   S., , Li   F., , He   W., , Labuda   K., , Song   Y., , Peterbauer   A., , Wolbank   S., , Redl   H., , Zhong   M., , Cai   D., , Zeng   L., , Pei   D. . Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. . Cell Stem Cell . 2010; ;6: 1 : 71– 79 .
    [Google Scholar]
  84. [84]. Fujiwara   M., , Yan   P., , Otsuji   TG., , Narazaki   G., , Uosaki   H., , Fukushima   H., , Kuwahara   K., , Harada   M., , Matsuda   H., , Matsuoka   S., , Okita   K., , Takahashi   K., , Nakagawa   M., , Ikeda   T., , Sakata   R., , Mummery   CL., , Nakatsuji   N., , Yamanaka   S., , Nakao   K., , Yamashita   JK. . Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. . PLoS One . 2011; ;6: 2 : e16734 .
    [Google Scholar]
  85. [85]. Lee   YK., , Ng   KM., , Chan   YC., , Lai   WH., , Au   KW., , Ho   CY., , Wong   LY., , Lau   CP., , Tse   HF., , Siu   CW. . Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. . Mol Endocrinol . 2010; ;24: 9 : 1728– 1736 .
    [Google Scholar]
  86. [86]. Ng   KM., , Lee   YK., , Lai   WH., , Chan   YC., , Fung   ML., , Tse   HF., , Siu   CW. . Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. . PLoS One . 1978; ;6: 5 : e19787 .
    [Google Scholar]
  87. [87]. Paige   SL., , Osugi   T., , Afanasiev   OK., , Pabon   L., , Reinecke   H., , Murry   CE. . Endogenous WNT/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. . PLoS One . 2010; ;5: 6 : e11134 .
    [Google Scholar]
  88. [88]. Xu   H., , Yi   BA., , Wu   H., , Bock   C., , Gu   H., , Lui   KO., , Park   JH., , Shao   Y., , Riley   AK., , Domian   IJ., , Hu   E., , Willette   R., , Lepore   J., , Meissner   A., , Wang   Z., , Chien   KR. . Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. . Cell Res . 2012; ;22: 1 : 142– 154 .
    [Google Scholar]
  89. [89]. Polo   JM., , Liu   S., , Figueroa   ME., , Kulalert   W., , Eminli   S., , Tan   KY., , Apostolou   E., , Stadtfeld   M., , Li   Y., , Shioda   T., , Natesan   S., , Wagers   AJ., , Melnick   A., , Evans   T., , Hochedlinger   K. . Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. . Nat Biotechnol . 2010; ;28: 8 : 848– 855 .
    [Google Scholar]
  90. [90]. Kim   K., , Doi   A., , Wen   B., , Ng   K., , Zhao   R., , Cahan   P., , Kim   J., , Aryee   MJ., , Ji   H., , Ehrlich   LI., , Yabuuchi   A., , Takeuchi   A., , Cunniff   KC., , Hongguang   H., , McKinney-Freeman   S., , Naveiras   O., , Yoon   TJ., , Irizarry   RA., , Jung   N., , Seita   J., , Hanna   J., , Murakami   P., , Jaenisch   R., , Weissleder   R., , Orkin   SH., , Weissman   IL., , Feinberg   AP., , Daley   GQ. . Epigenetic memory in induced pluripotent stem cells. . Nature . 2010; ;467: 7313 : 285– 290 .
    [Google Scholar]
  91. [91]. Kehat   I., , Kenyagin-Karsenti   D., , Snir   M., , Segev   H., , Amit   M., , Gepstein   A., , Livne   E., , Binah   O., , Itskovitz-Eldor   J., , Gepstein   L. . Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. . J Clin Invest . 2001; ;108: 3 : 407– 414 .
    [Google Scholar]
  92. [92]. Xu   C., , Police   S., , Hassanipour   M., , Gold   JD. . Cardiac bodies: A novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. . Stem Cells Dev . 2006; ;15: 5 : 631– 639 .
    [Google Scholar]
  93. [93]. Hattori   F., , Chen   H., , Yamashita   H., , Tohyama   S., , Satoh   YS., , Yuasa   S., , Li   W., , Yamakawa   H., , Tanaka   T., , Onitsuka   T., , Shimoji   K., , Ohno   Y., , Egashira   T., , Kaneda   R., , Murata   M., , Hidaka   K., , Morisaki   T., , Sasaki   E., , Suzuki   T., , Sano   M., , Makino   S., , Oikawa   S., , Fukuda   K. . Nongenetic method for purifying stem cell-derived cardiomyocytes. . Nat Methods . 2010; ;7: 1 : 61– 66 .
    [Google Scholar]
  94. [94]. Kahler   DJ., , Ahmad   FS., , Ritz   A., , Hua   H., , Moroziewicz   DN., , Sproul   AA., , Dusenberry   CR., , Shang   L., , Paull   D., , Zimmer   M., , Weiss   KA., , Egli   D., , Noggle   SA. . Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting. . PLoS One . 2013; ;8: 3 : e59867 .
    [Google Scholar]
  95. [95]. Rust   W., , Balakrishnan   T., , Zweigerdt   R. . Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. . Regen Med . 2009; ;4: 2 : 225– 237 .
    [Google Scholar]
  96. [96]. Van Hoof   D., , Dormeyer   W., , Braam   SR., , Passier   R., , Monshouwer-Kloots   J., , Ward-van Oostwaard   D., , Heck   AJ., , Krijgsveld   J., , Mummery   CL. . Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. . J Proteome Res . 2010; ;9: 3 : 1610– 1618 .
    [Google Scholar]
  97. [97]. Dubois   NC., , Craft   AM., , Sharma   P., , Elliott   DA., , Stanley   EG., , Elefanty   AG., , Gramolini   A., , Keller   G. . SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. . Nat Biotechnol . 2011; ;29: 11 : 1011– 1018 .
    [Google Scholar]
  98. [98]. Elliott   DA., , Braam   SR., , Koutsis   K., , Ng   ES., , Jenny   R., , Lagerqvist   EL., , Biben   C., , Hatzistavrou   T., , Hirst   CE., , Yu   QC., , Skelton   RJ., , Ward-van Oostwaard   D., , Lim   SM., , Khammy   O., , Li   X., , Hawes   SM., , Davis   RP., , Goulburn   AL., , Passier   R., , Prall   OW., , Haynes   JM., , Pouton   CW., , Kaye   DM., , Mummery   CL., , Elefanty   AG., , Stanley   EG. . NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. . Nat Methods . 2011; ;8: 12 : 1037– 1040 .
    [Google Scholar]
  99. [99]. Harding   SE., , Ali   NN., , Brito-Martins   M., , Gorelik   J. . The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. . Pharmacol Ther . 2007; ;113: 2 : 341– 353 .
    [Google Scholar]
  100. [100]. Anderson   D., , Self   T., , Mellor   IR., , Goh   G., , Hill   SJ., , Denning   C. . Transgenic enrichment of cardiomyocytes from human embryonic stem cells. . Mol Ther . 2007; ;15: 11 : 2027– 2036 .
    [Google Scholar]
  101. [101]. Huber   I., , Itzhaki   I., , Caspi   O., , Arbel   G., , Tzukerman   M., , Gepstein   A., , Habib   M., , Yankelson   L., , Kehat   I., , Gepstein   L. . Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. . FASEB J . 2007; ;21: 10 : 2551– 2563 .
    [Google Scholar]
  102. [102]. Bu   L., , Jiang   X., , Martin-Puig   S., , Caron   L., , Zhu   S., , Shao   Y., , Roberts   DJ., , Huang   PL., , Domian   IJ., , Chien   KR. . Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. . Nature . 2009; ;460: 7251 : 113– 117 .
    [Google Scholar]
  103. [103]. Ivashchenko   CY., , Pipes   GC., , Lozinskaya   IM., , Lin   Z., , Xiaoping   X., , Needle   S., , Grygielko   ET., , Hu   E., , Toomey   JR., , Lepore   JJ., , Willette   RN. . Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. . Am J Physiol Heart Circ Physiol . 2013; ;305: 6 : H913– H922 .
    [Google Scholar]
  104. [104]. Chong   JJ., , Yang   X., , Don   CW., , Minami   E., , Liu   YW., , Weyers   JJ., , Mahoney   WM., , Van Biber   B., , Cook   SM., , Palpant   NJ., , Gantz   JA., , Fugate   JA., , Muskheli   V., , Gough   GM., , Vogel   KW., , Astley   CA., , Hotchkiss   CE., , Baldessari   A., , Pabon   L., , Reinecke   H., , Gill   EA., , Nelson   V., , Kiem   HP., , Laflamme   MA., , Murry   CE. . Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. . Nature . 2014; ;510: 7504 : 273– 277 .
    [Google Scholar]
  105. [105]. Kamakura   T., , Makiyama   T., , Sasaki   K., , Yoshida   Y., , Wuriyanghai   Y., , Chen   J., , Hattori   T., , Ohno   S., , Kita   T., , Horie   M., , Yamanaka   S., , Kimura   T. . Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. . Circ J . 2013; ;77: 5 : 1307– 1314 .
    [Google Scholar]
  106. [106]. Zhang   D., , Shadrin   IY., , Lam   J., , Xian   HQ., , Snodgrass   HR., , Bursac   N. . Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. . Biomaterials . 2013; ;34: 23 : 5813– 5820 .
    [Google Scholar]
  107. [107]. Nunes   SS., , Miklas   JW., , Liu   J., , Aschar-Sobbi   R., , Xiao   Y., , Zhang   B., , Jiang   J., , Massé   S., , Gagliardi   M., , Hsieh   A., , Thavandiran   N., , Laflamme   MA., , Nanthakumar   K., , Gross   GJ., , Backx   PH., , Keller   G., , Radisic   M. . Biowire: A platform for maturation of human pluripotent stem cell-derived cardiomyocytes. . Nat Methods . 2013; ;10: 8 : 781– 787 .
    [Google Scholar]
  108. [108]. Martinelli   V., , Cellot   G., , Toma   FM., , Long   CS., , Caldwell   JH., , Zentilin   L., , Giacca   M., , Turco   A., , Prato   M., , Ballerini   L., , Mestroni   L. . Carbon nanotubes instruct physiological growth and functionally mature syncytia: Nongenetic engineering of cardiac myocytes. . ACS Nano . 2013; ;7: 7 : 5746– 5756 .
    [Google Scholar]
  109. [109]. Hockemeyer   D., , Wang   H., , Kiani   S., , Lai   CS., , Gao   Q., , Cassady   JP., , Cost   GJ., , Zhang   L., , Santiago   Y., , Miller   JC., , Zeitler   B., , Cherone   JM., , Meng   X., , Hinkley   SJ., , Rebar   EJ., , Gregory   PD., , Urnov   FD., , Jaenisch   R. . Genetic engineering of human pluripotent cells using TALE nucleases. . Nat Biotechnol . 2011; ;29: 8 : 731– 734 .
    [Google Scholar]
  110. [110]. Soldner   F., , Laganière   J., , Cheng   AW., , Hockemeyer   D., , Gao   Q., , Alagappan   R., , Khurana   V., , Golbe   LI., , Myers   RH., , Lindquist   S., , Zhang   L., , Guschin   D., , Fong   LK., , Vu   BJ., , Meng   X., , Urnov   FD., , Rebar   EJ., , Gregory   PD., , Zhang   HS., , Jaenisch   R. . Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. . Cell . 2011; ;146: 2 : 318– 331 .
    [Google Scholar]
  111. [111]. Park   CY., , Kim   J., , Kweon   J., , Son   JS., , Lee   JS., , Yoo   JE., , Cho   SR., , Kim   JH., , Kim   JS., , Kim   DW. . Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. . Proc Natl Acad Sci U S A . 2014; ;111: 25 : 9253– 9258 .
    [Google Scholar]
  112. [112]. Matsunaga   T., , Yamashita   JK. . Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9. . Biochem Biophys Res Commun . 2014; ;444: 2 : 158– 163 .
    [Google Scholar]
  113. [113]. Ma   N., , Liao   B., , Zhang   H., , Wang   L., , Shan   Y., , Xue   Y., , Huang   K., , Chen   S., , Zhou   X., , Chen   Y., , Pei   D., , Pan   G. . Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. . J Biol Chem . 2013; ;288: 48 : 34671– 34679 .
    [Google Scholar]
  114. [114]. Yoshimi   K., , Kaneko   T., , Voigt   B., , Mashimo   T. . Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-CAS platform. . Nat Commun . 2014; ;5: : 4240 .
    [Google Scholar]
  115. [115]. Jessup   M., , Greenberg   B., , Mancini   D., , Cappola   T., , Pauly   DF., , Jaski   B., , Yaroshinsky   A., , Zsebo   KM., , Dittrich   H., , Hajjar   RJ. . Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. . Circulation . 2011; ;124: 3 : 304– 313 .
    [Google Scholar]
  116. [116]. Jiang   J., , Wakimoto   H., , Seidman   JG., , Seidman   CE. . Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. . Science . 2013; ;342: 6154 : 111– 114 .
    [Google Scholar]
  117. [117]. Horii   T., , Tamura   D., , Morita   S., , Kimura   M., , Hatada   I. . Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. . Int J Mol Sci . 1977; ;14: 10 : 4– 81 .
    [Google Scholar]
  118. [118]. Tay   FC., , Tan   WK., , Goh   SL., , Ramachandra   CJ., , Lau   CH., , Zhu   H., , Chen   C., , Du   S., , Phang   RZ., , Shahbazi   M., , Fan   W., , Wang   S. . Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. . J Gene Med . 2013; ;15: 10 : 384– 395 .
    [Google Scholar]
  119. [119]. Gonzalez   F., , Zhu   Z., , Shi   ZD., , Lelli   K., , Verma   N., , Li   QV., , Huangfu   D. . An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. . Cell Stem Cell . 2014; ;15: 2 : 215– 226 .
    [Google Scholar]
  120. [120]. Sun   N., , Yazawa   M., , Liu   J., , Han   L., , Sanchez-Freire   V., , Abilez   OJ., , Navarrete   EG., , Hu   S., , Wang   L., , Lee   A., , Pavlovic   A., , Lin   S., , Chen   R., , Hajjar   RJ., , Snyder   MP., , Dolmetsch   RE., , Butte   MJ., , Ashley   EA., , Longaker   MT., , Robbins   RC., , Wu   JC. . Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. . Sci Transl Med . 2012; ;4: 130 : 130ra47 .
    [Google Scholar]
  121. [121]. Effie Apostolou   KH. . Hochedlinger_ips cells under attack.pdf .
  122. [122]. Lebkowski   J. . GRNOPC1: The world's first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. . Regen Med . 2011; ;6: 6 Suppl : 11– 13 .
    [Google Scholar]
  123. [123]. Schwartz   SD., , Hubschman   JP., , Heilwell   G., , Franco-Cardenas   V., , Pan   CK., , Ostrick   RM., , Mickunas   E., , Gay   R., , Klimanskaya   I., , Lanza   R. . Embryonic stem cell trials for macular degeneration: A preliminary report. . Lancet . 2012; ;379: 9817 : 713– 720 .
    [Google Scholar]
  124. [124]. Cai   J., , Yi   FF., , Yang   XC., , Lin   GS., , Jiang   H., , Wang   T., , Xia   Z. . Transplantation of embryonic stem cell-derived cardiomyocytes improves cardiac function in infarcted rat hearts. . Cytotherapy . 2007; ;9: 3 : 283– 291 .
    [Google Scholar]
  125. [125]. Caspi   O., , Huber   I., , Kehat   I., , Habib   M., , Arbel   G., , Gepstein   A., , Yankelson   L., , Aronson   D., , Beyar   R., , Gepstein   L. . Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. . J Am Coll Cardiol . 2007; ;50: 19 : 1884– 1893 .
    [Google Scholar]
  126. [126]. Zhao   T., , Zhang   ZN., , Rong   Z., , Xu   Y. . Immunogenicity of induced pluripotent stem cells. . Nature . 2011; ;474: 7350 : 212– 215 .
    [Google Scholar]
  127. [127]. Araki   R., , Uda   M., , Hoki   Y., , Sunayama   M., , Nakamura   M., , Ando   S., , Sugiura   M., , Ideno   H., , Shimada   A., , Nifuji   A., , Abe   M. . Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. . Nature . 2013; ;494: 7435 : 100– 104 .
    [Google Scholar]
  128. [128]. Guha   P., , Morgan   JW., , Mostoslavsky   G., , Rodrigues   NP., , Boyd   AS. . Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. . Cell Stem Cell . 2013; ;12: 4 : 407– 412 .
    [Google Scholar]
  129. [129]. de.Almeida   PE., , Meyer   EH., , Kooreman   NG., , Diecke   S., , Dey   D., , Sanchez-Freire   V., , Hu   S., , Ebert   A., , Odegaard   J., , Mordwinkin   NM., , Brouwer   TP., , Lo   D., , Montoro   DT., , Longaker   MT., , Negrin   RS., , Wu   JC. . Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. . Nat Commun . 2014; ;5: : 3903 .
    [Google Scholar]
  130. [130]. Gore   A., , Li   Z., , Fung   HL., , Young   JE., , Agarwal   S., , Antosiewicz-Bourget   J., , Canto   I., , Giorgetti   A., , Israel   MA., , Kiskinis   E., , Lee   JH., , Loh   YH., , Manos   PD., , Montserrat   N., , Panopoulos   AD., , Ruiz   S., , Wilbert   ML., , Yu   J., , Kirkness   EF., , Izpisua Belmonte   JC., , Rossi   DJ., , Thomson   JA., , Eggan   K., , Daley   GQ., , Goldstein   LS., , Zhang   K. . Somatic coding mutations in human induced pluripotent stem cells. . Nature . 2011; ;471: 7336 : 63– 67 .
    [Google Scholar]
  131. [131]. Stadtfeld   M., , Apostolou   E., , Akutsu   H., , Fukuda   A., , Follett   P., , Natesan   S., , Kono   T., , Shioda   T., , Hochedlinger   K. . Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. . Nature . 2010; ;465: 7295 : 175– 181 .
    [Google Scholar]
  132. [132]. Warren   L., , Manos   PD., , Ahfeldt   T., , Loh   YH., , Li   H., , Lau   F., , Ebina   W., , Mandal   PK., , Smith   ZD., , Meissner   A., , Daley   GQ., , Brack   AS., , Collins   JJ., , Cowan   C., , Schlaeger   TM., , Rossi   DJ. . Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. . Cell Stem Cell . 2010; ;7: 5 : 618– 630 .
    [Google Scholar]
  133. [133]. Ben-David   U., , Nudel   N., , Benvenisty   N. . Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. . Nat Commun . 2013; ;4: : 1992 .
    [Google Scholar]
  134. [134]. Lattanzi   L., , Salvatori   G., , Coletta   M., , Sonnino   C., , Cusella De Angelis   MG., , Gioglio   L., , Murry   CE., , Kelly   R., , Ferrari   G., , Molinaro   M., , Crescenzi   M., , Mavilio   F., , Cossu   G. . High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated Myod gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. . J Clin Invest . 1998; ;101: 10 : 2119– 2128 .
    [Google Scholar]
  135. [135]. Davis   RL., , Weintraub   H., , Lassar   AB. . Expression of a single transfected cDNA converts fibroblasts to myoblasts. . Cell . 1987; ;51: 6 : 987– 1000 .
    [Google Scholar]
  136. [136]. Yoshida   Y., , Yamanaka   S. . Labor pains of new technology: Direct cardiac reprogramming. . Circ Res . 2012; ;111: 1 : 3– 4 .
    [Google Scholar]
  137. [137]. Chen   JX., , Krane   M., , Deutsch   MA., , Wang   L., , Rav-Acha   M., , Gregoire   S., , Engels   MC., , Rajarajan   K., , Karra   R., , Abel   ED., , Wu   JC., , Milan   D., , Wu   SM. . Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. . Circ Res . 2012; ;111: 1 : 50– 55 .
    [Google Scholar]
  138. [138]. Song   K., , Nam   YJ., , Luo   X., , Qi   X., , Tan   W., , Huang   GN., , Acharya   A., , Smith   CL., , Tallquist   MD., , Neilson   EG., , Hill   JA., , Bassel-Duby   R., , Olson   EN. . Heart repair by reprogramming non-myocytes with cardiac transcription factors. . Nature . 2012; ;485: 7400 : 599– 604 .
    [Google Scholar]
  139. [139]. Addis   RC., , Ifkovits   JL., , Pinto   F., , Kellam   LD., , Esteso   P., , Rentschler   S., , Christoforou   N., , Epstein   JA., , Gearhart   JD. . Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. . J Mol Cell Cardiol . 2013; ;60: : 97– 106 .
    [Google Scholar]
  140. [140]. Christoforou   N., , Chellappan   M., , Adler   AF., , Kirkton   RD., , Wu   T., , Addis   RC., , Bursac   N., , Leong   KW. . Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. . PLoS One . 2013; ;8: 5 : e63577 .
    [Google Scholar]
  141. [141]. Protze   S., , Khattak   S., , Poulet   C., , Lindemann   D., , Tanaka   EM., , Ravens   U. . A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. . J Mol Cell Cardiol . 2012; ;53: 3 : 323– 332 .
    [Google Scholar]
  142. [142]. Jayawardena   TM., , Egemnazarov   B., , Finch   EA., , Zhang   L., , Payne   JA., , Pandya   K., , Zhang   Z., , Rosenberg   P., , Mirotsou   M., , Dzau   VJ. . MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. . Circ Res . 2012; ;110: 11 : 1465– 1473 .
    [Google Scholar]
  143. [143]. Ieda   M. . Heart regeneration using reprogramming technology. . Proc Jpn Acad Ser B Phys Biol Sci . 2013; ;89: 3 : 118– 128 .
    [Google Scholar]
  144. [144]. Murry   CE., , Pu   WT. . Reprogramming fibroblasts into cardiomyocytes. . N Engl J Med . 2011; ;364: 2 : 177– 178 .
    [Google Scholar]
  145. [145]. Addis   RC., , Epstein   JA. . Induced regeneration–the progress and promise of direct reprogramming for heart repair. . Nat Med . 2013; ;19: 7 : 829– 836 .
    [Google Scholar]
  146. [146]. Islas   JF., , Liu   Y., , Weng   KC., , Robertson   MJ., , Zhang   S., , Prejusa   A., , Harger   J., , Tikhomirova   D., , Chopra   M., , Iyer   D., , Mercola   M., , Oshima   RG., , Willerson   JT., , Potaman   VN., , Schwartz   RJ. . Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. . Proc Natl Acad Sci U S A . 2012; ;109: 32 : 13016– 13021 .
    [Google Scholar]
  147. [147]. Nam   YJ., , Song   K., , Luo   X., , Daniel   E., , Lambeth   K., , West   K., , Hill   JA., , DiMaio   JM., , Baker   LA., , Bassel-Duby   R., , Olson   EN. . Reprogramming of human fibroblasts toward a cardiac fate. . Proc Natl Acad Sci U S A . 2013; ;110: 14 : 5588– 5593 .
    [Google Scholar]
  148. [148]. Wada   R., , Muraoka   N., , Inagawa   K., , Yamakawa   H., , Miyamoto   K., , Sadahiro   T., , Umei   T., , Kaneda   R., , Suzuki   T., , Kamiya   K., , Tohyama   S., , Yuasa   S., , Kokaji   K., , Aeba   R., , Yozu   R., , Yamagishi   H., , Kitamura   T., , Fukuda   K., , Ieda   M. . Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. . Proc Natl Acad Sci U S A . 2013; ;110: 31 : 12667– 12672 .
    [Google Scholar]
  149. [149]. Fu   JD., , Stone   NR., , Liu   L., , Spencer   CI., , Qian   L., , Hayashi   Y., , Delgado-Olguin   P., , Ding   S., , Bruneau   BG., , Srivastava   D. . Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. . Stem Cell Reports . 2013; ;1: 3 : 235– 247 .
    [Google Scholar]
  150. [150]. Baudino   TA., , Carver   W., , Giles   W., , Borg   TK. . Cardiac fibroblasts: Friend or foe?.   Am J Physiol Heart Circ Physiol . 2006; ;291: 3 : H1015– H1026 .
    [Google Scholar]
  151. [151]. Souders   CA., , Bowers   SL., , Baudino   TA. . Cardiac fibroblast: The renaissance cell. . Circ Res . 2009; ;105: 12 : 1164– 1176 .
    [Google Scholar]
  152. [152]. Kanekar   S., , Borg   TK., , Terracio   L., , Carver   W. . Modulation of heart fibroblast migration and collagen gel contraction by IGF-I. . Cell Adhes Commun . 2000; ;7: 6 : 513– 523 .
    [Google Scholar]
  153. [153]. Hematti   P. . Mesenchymal stromal cells and fibroblasts: A case of mistaken identity?.   Cytotherapy . 2012; ;14: 5 : 516– 521 .
    [Google Scholar]
  154. [154]. Nag   AC. . Study of non-muscle cells of the adult mammalian heart: A fine structural analysis and distribution. . Cytobios . 1980; ;28: 109 : 41– 61 .
    [Google Scholar]
  155. [155]. Camelliti   P., , Green   CR., , LeGrice   I., , Kohl   P. . Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling. . Circ Res . 2004; ;94: 6 : 828– 835 .
    [Google Scholar]
  156. [156]. Gaudesius   G., , Miragoli   M., , Thomas   SP., , Rohr   S. . Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. . Circ Res . 2003; ;93: 5 : 421– 428 .
    [Google Scholar]
  157. [157]. Hirota   H., , Chen   J., , Betz   UA., , Rajewsky   K., , Gu   Y., , Ross   J Jr., , Müller   W., , Chien   KR. . Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. . Cell . 1999; ;97: 2 : 189– 198 .
    [Google Scholar]
  158. [158]. Qian   L., , Huang   Y., , Spencer   CI., , Foley   A., , Vedantham   V., , Liu   L., , Conway   SJ., , Fu   JD., , Srivastava   D. . In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. . Nature . 2012; ;485: 7400 : 593– 598 .
    [Google Scholar]
  159. [159]. Mathison   M., , Gersch   RP., , Nasser   A., , Lilo   S., , Korman   M., , Fourman   M., , Hackett   N., , Shroyer   K., , Yang   J., , Ma   Y., , Crystal   RG., , Rosengart   TK. . In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. . J Am Heart Assoc . 2012; ;1: 6 : e005652 .
    [Google Scholar]
  160. [160]. Inagawa   K., , Miyamoto   K., , Yamakawa   H., , Muraoka   N., , Sadahiro   T., , Umei   T., , Wada   R., , Katsumata   Y., , Kaneda   R., , Nakade   K., , Kurihara   C., , Obata   Y., , Miyake   K., , Fukuda   K., , Ieda   M. . Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. . Circ Res . 2012; ;111: 9 : 1147– 1156 .
    [Google Scholar]
  161. [161]. Kapoor   N., , Liang   W., , Marbán   E., , Cho   HC. . Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. . Nat Biotechnol . 2013; ;31: 1 : 54– 62 .
    [Google Scholar]
  162. [162]. Josowitz   R., , Lu   J., , Falce   C., , D'Souza   SL., , Wu   M., , Cohen   N., , Dubois   NC., , Zhao   Y., , Sobie   EA., , Fishman   GI., , Gelb   BD. . Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. . PLoS One . 2014; ;9: 7 : e101316 .
    [Google Scholar]
  163. [163]. Mohanty   S., , Bose   S., , Jain   KG., , Bhargava   B., , Airan   B. . TGFbeta1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. . Int J Cardiol . 2013; ;163: 1 : 93– 99 .
    [Google Scholar]
  164. [164]. Shinmura   D., , Togashi   I., , Miyoshi   S., , Nishiyama   N., , Hida   N., , Tsuji   H., , Tsuruta   H., , Segawa   K., , Tsukada   Y., , Ogawa   S., , Umezawa   A. . Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. . Stem Cells . 2011; ;29: 2 : 357– 366 .
    [Google Scholar]
  165. [165]. Raynaud   CM., , Halabi   N., , Elliott   DA., , Pasquier   J., , Elefanty   AG., , Stanley   EG., , Rafii   A. . Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. . PLoS One . 2013; ;8: 1 : e54524 .
    [Google Scholar]
  166. [166]. Wang   T., , Xu   Z., , Jiang   W., , Ma   A. . Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. . Int J Cardiol . 2006; ;109: 1 : 74– 81 .
    [Google Scholar]
  167. [167]. Koninckx   R., , Hensen   K., , Daniëls   A., , Moreels   M., , Lambrichts   I., , Jongen   H., , Clijsters   C., , Mees   U., , Steels   P., , Hendrikx   M., , Rummens   JL. . Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity. . Cytotherapy . 2009; ;11: 6 : 778– 792 .
    [Google Scholar]
  168. [168]. Xie   XJ., , Wang   JA., , Cao   J., , Zhang   X. . Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. . Acta Pharmacol Sin . 2006; ;27: 9 : 1153– 1158 .
    [Google Scholar]
  169. [169]. Ismail   S., , O'Brien   T., , Barry   F. . 188 the cardioprotective effect of MSC secreted protein in an in vitro model of myocardial injury: The mechanistic insight. . Heart . 2014; ;100: Suppl 3 : A105 .
    [Google Scholar]
  170. [170]. Galie   PA., , Stegemann   JP. . Injection of mesenchymal stromal cells into a mechanically stimulated in vitro model of cardiac fibrosis has paracrine effects on resident fibroblasts. . Cytotherapy . 2014; ;16: 7 : 906– 914 .
    [Google Scholar]
  171. [171]. Mao   Q., , Lin   CX., , Liang   XL., , Gao   JS., , Xu   B. . Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. . Mol Med Rep . 2013; ;7: 5 : 1617– 1623 .
    [Google Scholar]
  172. [172]. Xiang   MX., , He   AN., , Wang   JA., , Gui   C. . Protective paracrine effect of mesenchymal stem cells on cardiomyocytes. . J Zhejiang Univ Sci B . 2009; ;10: 8 : 619– 624 .
    [Google Scholar]
  173. [173]. Fioret   BA., , Heimfeld   JD., , Paik   DT., , Hatzopoulos   AK. . Endothelial cells contribute to generation of adult ventricular myocytes during cardiac homeostasis. . Cell Rep . 2014; ;8: 1 : 229– 241 .
    [Google Scholar]
  174. [174]. Mishra   PK., , Kuypers   NJ., , Singh   SR., , Leiberh   ND., , Chavali   V., , Tyagi   SC. . Cardiac stem cell niche, MMP9, and culture and differentiation of embryonic stem cells. . Methods Mol Biol . 2013; ;1035: : 153– 163 .
    [Google Scholar]
  175. [175]. Sandler   VM., , Lis   R., , Liu   Y., , Kedem   A., , James   D., , Elemento   O., , Butler   JM., , Scandura   JM., , Rafii   S. . Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. . Nature . 2014; ;511: 7509 : 312– 318 .
    [Google Scholar]
  176. [176]. Balmer   GM., , Riley   PR. . Harnessing the potential of adult cardiac stem cells: Lessons from haematopoiesis, the embryo and the niche. . J Cardiovasc Transl Res . 2012; ;5: 5 : 631– 640 .
    [Google Scholar]
  177. [177]. Japanese woman is first recipient of next-generation stem cells. .
    [Google Scholar]
  178. [178]. Pang   ZP., , Yang   N., , Vierbuchen   T., , Ostermeier   A., , Fuentes   DR., , Yang   TQ., , Citri   A., , Sebastiano   V., , Marro   S., , Südhof   TC., , Wernig   M. . Induction of human neuronal cells by defined transcription factors. . Nature . 2011; ;476: 7359 : 220– 223 .
    [Google Scholar]
  179. [179]. Qiang   L., , Fujita   R., , Yamashita   T., , Angulo   S., , Rhinn   H., , Rhee   D., , Doege   C., , Chau   L., , Aubry   L., , Vanti   WB., , Moreno   H., , Abeliovich   A. . Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. . Cell . 2011; ;146: 3 : 359– 371 .
    [Google Scholar]
  180. [180]. Abraham   I. . Stem cell potency. . 2011; .
    [Google Scholar]
  181. [181]. Apostolou   E., , Hochedlinger   K. . Stem cells: iPS cells under attack. . Nature . 2011; ;474: 7350 : 165– 166 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.44
Loading
/content/journals/10.5339/gcsp.2014.44
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error