1887
Volume 2014, Issue 3
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Phosphodiesterase inhibitors (PDE) can be used as therapeutic agents for various diseases such as dementia, depression, schizophrenia and erectile dysfunction in men, as well as congestive heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, other inflammatory diseases, diabetes and various other conditions. In this review we will concentrate on one type of PDE, mainly PDE5 and its role in pulmonary vascular diseases.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.42
2014-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/3/gcsp.2014.42.html?itemId=/content/journals/10.5339/gcsp.2014.42&mimeType=html&fmt=ahah

References

  1. [1]. Liras   S., , Bell   AS. . Phosphodiesterases and Their Inhibitors . John Wiley & Sons;   Weinheim, Germany:   2014; :p. 238 .
    [Google Scholar]
  2. [2]. Amsallem   E., , Kasparian   C., , Haddour   G., , Boissel   J-P., , Nony   P. . Phosphodiesterase III inhibitors for heart failure. . Cochrane Database Syst Rev . 2005; ;   1 : CD002230 . Available from: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002230.pub2/pdf/standard. .
    [Google Scholar]
  3. [3]. Doherty   AM. . Phosphodiesterase 4 inhibitors as novel anti-inflammatory agents. . Curr Opin Chem Biol . 1999; ;3: 4 : 466– 473 .
    [Google Scholar]
  4. [4]. Huang   Z., , Ducharme   Y., , Macdonald   D., , Robichaud   A. . The next generation of PDE4 inhibitors. . Curr Opin Chem Biol . 2001; ;5: 4 : 432– 438 .
    [Google Scholar]
  5. [5]. Milani   E., , Nikfar   S., , Khorasani   R., , Zamani   MJ., , Abdollahi   M. . Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. . Comp Biochem Physiol Part C Toxicol Pharmacol . 2005; ;140: 2 : 251– 255 .
    [Google Scholar]
  6. [6]. Conti   M., , Jin   S-LC. . The molecular biology of cyclic nucleotide phosphodiesterases. . Prog Nucleic Acid Res Mol Biol . 1999; ;63: : 1– 38 .
    [Google Scholar]
  7. [7]. Frumkin   LR. . The pharmacological treatment of pulmonary arterial hypertension. . Pharmacol Rev . 2012; ;64: 3 : 583– 620 .
    [Google Scholar]
  8. [8]. Rotella   DP. . Phosphodiesterase 5 inhibitors: Current status and potential applications. . Nat Rev Drug Discov . 2002; ;1: 9 : 674– 682 .
    [Google Scholar]
  9. [9]. Furchgott   RF., , Zawadzki   JV. . The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. . Nature . 1980; ;288: 5789 : 373– 376 .
    [Google Scholar]
  10. [10]. Ignarro   LJ., , Buga   GM., , Wood   KS., , Byrns   RE., , Chaudhuri   G. . Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. . Proc Natl Acad Sci . 1987; ;84: 24 : 9265– 9269 .
    [Google Scholar]
  11. [11]. Kuhn   M. . Endothelial actions of atrial and B-type natriuretic peptides. . Br J Pharmacol . 2012; ;166: 2 : 522– 531 .
    [Google Scholar]
  12. [12]. Tsai   EJ., , Kass   DA. . Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. . Pharmacol Ther . 2009; ;122: 3 : 216– 238 .
    [Google Scholar]
  13. [13]. Francis   SH., , Busch   JL., , Corbin   JD. . cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. . Pharmacol Rev . 2010; ;62: 3 : 525– 563 .
    [Google Scholar]
  14. [14]. Budhiraja   R., , Tuder   RM., , Hassoun   PM. . Endothelial dysfunction in pulmonary hypertension. . Circulation . 2004; ;109: 2 : 159– 165 .
    [Google Scholar]
  15. [15]. Tuder   R. . Pathology of pulmonary arterial hypertension. . Semin Respir Crit Care Med . 2009; ;30: 04 : 376– 385 .
    [Google Scholar]
  16. [16]. Gao   Y., , Raj   JU. . Regulation of the pulmonary circulation in the fetus and newborn. . Physiol Rev . 2010; ;90: 4 : 1291– 1335 .
    [Google Scholar]
  17. [17]. Murad   F. . Nitric oxide and cyclic GMP in cell signaling and drug development. . N Engl J Med . 2006; ;355: 19 : 2003– 2011 .
    [Google Scholar]
  18. [18]. Chen   C., , Watson   G., , Zhao   L. . Cyclic guanosine monophosphate signalling pathway in pulmonary arterial hypertension. . Vascul Pharmacol . 2013; ;58: 3 : 211– 218 .
    [Google Scholar]
  19. [19]. Jeon   YH., , Heo   YS., , Kim   CM., , Hyun   YL., , Lee   TG., , Ro   S., , Cho   JM. . Phosphodiesterase: Overview of protein structures, potential therapeutic applications and recent progress in drug development. . Cell Mol Life Sci . 2005; ;62: 11 : 1198– 1220 .
    [Google Scholar]
  20. [20]. Strada   SJ., , Uzunov   P., , Weiss   B. . Ontogenetic development of a phosphodiesterase activator and the multiple forms of cyclic amp phosphodiesterase of rat brain. . J Neurochem . 1974; ;23: 6 : 1097– 1103 .
    [Google Scholar]
  21. [21]. Beavo   J., , Houslay   MD. . Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action . John Wiley & Sons; San Francisco, CA USA;   1990; .
    [Google Scholar]
  22. [22]. Appleman   MM., , Thompson   WJ., , Russell   TR. . Cyclic nucleotide phosphodiesterases. . Adv Cyclic Nucleotide Res . 1973; ;3: : 65– 98 .
    [Google Scholar]
  23. [23]. Wells   JN., , Hardman   JG. . Cyclic nucleotide phosphodiesterases. . Adv Cyclic Nucleotide Res . 1976; ;8: : 119– 143 .
    [Google Scholar]
  24. [24]. Appleman   MM., , Thompson   WJ. . Multiple cyclic nucleotide phosphodiesterase activities from rat brain. . Biochemistry (Mosc) . 1971; ;10: 2 : 311– 316 .
    [Google Scholar]
  25. [25]. Beavo   JA. . Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. . Physiol Rev . 1995; ;75: 4 : 725– 748 .
    [Google Scholar]
  26. [26]. Conti   M. . Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. . Mol Endocrinol . 2000; ;14: 9 : 1317– 1327 .
    [Google Scholar]
  27. [27]. Manganiello   VC., , Degerman   E. . Cyclic nucleotide phosphodiesterases (PDEs): Diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents. . Thromb Haemost . 1999; ;82: 2 : 407– 411 .
    [Google Scholar]
  28. [28]. Soderling   SH., , Bayuga   SJ., , Beavo   JA. . Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. . J Biol Chem . 1998; ;273: 25 : 15553– 15558 .
    [Google Scholar]
  29. [29]. Surapisitchat   J., , Beavo   JA. . Chapter 173 – phosphodiesterase families. . In: Bradshaw   RA., Dennis   EA. , eds. Handbook of Cell Signaling . , 2nd ed..   San Diego: : Available from: http://www.sciencedirect.com/science/article/pii/B978012374145500173X   Academic Press;   2010; ; : 1409– 1414 .
    [Google Scholar]
  30. [30]. Francis   SH., , Colbran   JL., , McAllister-Lucas   LM., , Corbin   JD. . Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. . J Biol Chem . 1994; ;269: 36 : 22477– 22480 .
    [Google Scholar]
  31. [31]. Sung   BJ., , Hwang   KY., , Jeon   YH., , Lee   JI., , Heo   YS., , Kim   JH., , Moon   J., , Yoon   JM., , Hyun   YL., , Kim   E., , Eum   SJ., , Park   SY., , Lee   JO., , Lee   TG., , Ro   S., , Cho   JM. . Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. . Nature . 2003; ;425: 6953 : 98– 102 .
    [Google Scholar]
  32. [32]. Zhang   KY., , Card   GL., , Suzuki   Y., , Artis   DR., , Fong   D., , Gillette   S., , Hsieh   D., , Neiman   J., , West   BL., , Zhang   C., , Milburn   MV., , Kim   SH., , Schlessinger   J., , Bollag   G. . Glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. . Mol Cell . 2004; ;15: 2 : 279– 286 .
    [Google Scholar]
  33. [33]. Corbin   JD., , Blount   MA., , Weeks   JL 2nd., , Beasley   A., , Kuhn   KP., , Ho   YS., , Saidi   LF., , Hurley   JH., , Kotera   J., , Francis   SH. . [3H]Sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. . Mol Pharmacol . 2003; ;63: 6 : 1364– 1372 .
    [Google Scholar]
  34. [34]. Francis   SH., , Blount   MA., , Corbin   JD. . Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. . Physiol Rev . 2011; ;91: 2 : 651– 690 .
    [Google Scholar]
  35. [35]. Zoraghi   R., , Corbin   JD., , Francis   SH. . Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. . Mol Pharmacol . 2004; ;65: 2 : 267– 278 .
    [Google Scholar]
  36. [36]. Rybalkin   SD., , Rybalkina   IG., , Shimizu-Albergine   M., , Tang   X-B., , Beavo   JA. . PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. . EMBO J . 2003; ;22: 3 : 469– 478 .
    [Google Scholar]
  37. [37]. Corbin   JD., , Turko   Be IV., , asley   A., , Francis   SH. . Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. . Eur J Biochem . 2000; ;267: 9 : 2760– 2767 .
    [Google Scholar]
  38. [38]. Yanaka   N., , Kotera   J., , Ohtsuka   A., , Akatsuka   H., , Imai   Y., , Michibata   H., , Fujishige   K., , Kawai   E., , Takebayashi   S., , Okumura   K., , Omori   K. . Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. . Eur J Biochem . 1998; ;255: 2 : 391– 399 .
    [Google Scholar]
  39. [39]. Lin   C-S., , Lau   A., , Tu   R., , Lue   TF. . Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. . Biochem Biophys Res Commun . 2000; ;268: 2 : 628– 635 .
    [Google Scholar]
  40. [40]. Loughney   K., , Hill   TR., , Florio   VA., , Uher   L., , Rosman   GJ., , Wolda   SL., , Jones   BA., , Howard   ML., , McAllister-Lucas   LM., , Sonnenburg   WK., , Francis   SH., , Corbin   JD., , Beavo   JA., , Ferguson   K. . Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. . Gene . 1998; ;216: 1 : 139– 147 .
    [Google Scholar]
  41. [41]. Lin   C-S. . Tissue expression, distribution, and regulation of PDE5. . Int J Impot Res . 2004; ;16: S1 : S8– 10 .
    [Google Scholar]
  42. [42]. Lin   C-S., , Lau   A., , Tu   R., , Lue   TF. . Identification of three alternative first exons and an intronic promoter of human PDE5A gene. . Biochem Biophys Res Commun . 2000; ;268: 2 : 596– 602 .
    [Google Scholar]
  43. [43]. Wallis   RM., , Corbin   JD., , Francis   SH., , Ellis   P. . Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. . Am J Cardiol . 1999; ;83: 5, Suppl 1 : 3– 12 .
    [Google Scholar]
  44. [44]. Sly   MK., , Eberhart   RC., , Prager   MD. . Anti-platelet action of nitric oxide and selective phosphodiesterase inhibitors. . Shock . 1997; ;8: : 115– 118 .
    [Google Scholar]
  45. [45]. Berkels   R., , Klotz   T., , Sticht   G., , Englemann   U., , Klaus   W. . Modulation of human platelet aggregation by the phosphodiesterase type 5 inhibitor sildenafil. . J Cardiovasc Pharmacol . 2001; ;37: 4 : 413– 421 .
    [Google Scholar]
  46. [46]. Pannbacker   RG., , Fleischman   DE., , Reed   DW. . Cyclic nucleotide phosphodiesterase: High activity in a mammalian photoreceptor. . Science . 1972; ;175: 4023 : 757– 758 .
    [Google Scholar]
  47. [47]. Baehr   W., , Devlin   MJ., , Applebury   ML. . Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. . J Biol Chem . 1979; ;254: 22 : 11669– 11677 .
    [Google Scholar]
  48. [48]. Lincoln   TM., , Hall   CL., , Park   CR., , Corbin   JD. . Guanosine 3′: 5′-cyclic monophosphate binding proteins in rat tissues. . Proc Natl Acad Sci . 1976; ;73: 8 : 2559– 2563 .
    [Google Scholar]
  49. [49]. Coquil   JF., , Franks   DJ., , Wells   JN., , Dupuis   M., , Hamet   P. . Characteristics of a new binding protein distinct from the kinase for guanosine 3′:5′-monophosphate in rat platelets. . Biochim Biophys Acta . 1980; ;631: 1 : 148– 165 .
    [Google Scholar]
  50. [50]. Beavo   JA., , Hansen   RS., , Harrison   SA., , Hurwitz   RL., , Martins   TJ., , Mumby   MC. . Identification and properties of cyclic nucleotide phosphodiesterases. . Mol Cell Endocrinol . 1982; ;28: 3 : 387– 410 .
    [Google Scholar]
  51. [51]. Manganiello   VC., , Murata   T., , Taira   M., , Belfrage   P., , Degerman   E. . Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. . Arch Biochem Biophys . 1995; ;322: 1 : 1– 13 .
    [Google Scholar]
  52. [52]. Lin   C-S., , Lin   G., , Xin   Z-C., , Lue   TF. . Expression, distribution and regulation of phosphodiesterase 5. . Curr Pharm Des . 2006; ;12: 27 : 3439– 3457 .
    [Google Scholar]
  53. [53]. Corbin   JD., , Beasley   A., , Blount   MA., , Francis   SH. . High lung PDE5: A strong basis for treating pulmonary hypertension with PDE5 inhibitors. . Biochem Biophys Res Commun . 2005; ;334: 3 : 930– 938 .
    [Google Scholar]
  54. [54]. Wharton   J., , Strange   JW., , Møller   GM., , Growcott   EJ., , Ren   X., , Franklyn   AP., , Phillips   SC., , Wilkins   MR. . Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. . Am J Respir Crit Care Med . 2005; ;172: 1 : 105– 113 .
    [Google Scholar]
  55. [55]. Nagendran   J., , Archer   SL., , Soliman   D., , Gurtu   V., , Moudgil   R., , Haromy   A., , St Aubin   C., , Webster   L., , Rebeyka   IM., , Ross   DB., , Light   PE., , Dyck   JR., , Michelakis   ED. . Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. . Circulation . 2007; ;116: 3 : 238– 248 .
    [Google Scholar]
  56. [56]. Pokreisz   P., , Vandenwijngaert   S., , Bito   V., , Van den Bergh   A., , Lenaerts   I., , Busch   C., , Marsboom   G., , Gheysens   O., , Vermeersch   P., , Biesmans   L., , Liu   X., , Gillijns   H., , Pellens   M., , Van Lommel   A., , Buys   E., , Schoonjans   L., , Vanhaecke   J., , Verbeken   E., , Sipido   K., , Herijgers   P., , Bloch   KD., , Janssens   SP. . Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. . Circulation . 2009; ;119: 3 : 408– 416 .
    [Google Scholar]
  57. [57]. Shan   X., , Quaile   MP., , Monk   JK., , French   B., , Cappola   TP., , Margulies   KB. . Differential expression of PDE5 in failing and nonfailing human myocardium. . Circ Heart Fail . 2012; ;5: 1 : 79– 86 .
    [Google Scholar]
  58. [58]. Lu   Z., , Xu   X., , Hu   X., , Lee   S., , Traverse   JH., , Zhu   G., , Fassett   J., , Tao   Y., , Zhang   P., , dos Remedios   C., , Pritzker   M., , Hall   JL., , Garry   DJ., , Chen   Y. . Oxidative stress regulates left ventricular PDE5 expression in the failing heart. . Circulation . 2010; ;121: 13 : 1474– 1483 .
    [Google Scholar]
  59. [59]. Gebska   MA., , Stevenson   BK., , Hemnes   AR., , Bivalacqua   TJ., , Haile   A., , Hesketh   GG., , Murray   CI., , Zaiman   AL., , Halushka   MK., , Krongkaew   N., , Strong   TD., , Cooke   CA., , El-Haddad   H., , Tuder   RM., , Berkowitz   DE., , Champion   HC. . Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity. . Cardiovasc Res . 2011; ;90: 2 : 353– 363 .
    [Google Scholar]
  60. [60]. Takimoto   E., , Champion   HC., , Belardi   D., , Moslehi   J., , Mongillo   M., , Mergia   E., , Montrose   DC., , Isoda   T., , Aufiero   K., , Zaccolo   M., , Dostmann   WR., , Smith   CJ., , Kass   DA. . cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. . Circ Res . 2005; ;96: 1 : 100– 109 .
    [Google Scholar]
  61. [61]. Takimoto   E., , Belardi   D., , Tocchetti   CG., , Vahebi   S., , Cormaci   G., , Ketner   EA., , Moens   AL., , Champion   HC., , Kass   DA. . Compartmentalization of cardiac β-adrenergic inotropy modulation by phosphodiesterase type 5. . Circulation . 2007; ;115: 16 : 2159– 2167 .
    [Google Scholar]
  62. [62]. Mullershausen   F., , Friebe   A., , Feil   R., , Thompson   WJ., , Hofmann   F., , Koesling   D. . Direct activation of PDE5 by cGMP long-term effects within NO/cGMP signaling. . J Cell Biol . 2003; ;160: 5 : 719– 727 .
    [Google Scholar]
  63. [63]. Biswas   KH., , Visweswariah   SS. . Distinct allostery induced in the cyclic GMP-binding, cyclic GMP-specific phosphodiesterase (PDE5) by cyclic gmp, sildenafil, and metal ions. . J Biol Chem . 2011; ;286: 10 : 8545– 8554 .
    [Google Scholar]
  64. [64]. Rybalkina   IG., , Tang   X-B., , Rybalkin   SD. . Multiple affinity states of cGMP-specific phosphodiesterase for sildenafil inhibition defined by cGMP-dependent and cGMP-independent mechanisms. . Mol Pharmacol . 2010; ;77: 4 : 670– 677 .
    [Google Scholar]
  65. [65]. Corbin   JD., , Zoraghi   R., , Francis   SH. . Allosteric-site and catalytic-site ligand effects on PDE5 functions are associated with distinct changes in physical form of the enzyme. . Cell Signal . 2009; ;21: 12 : 1768– 1774 .
    [Google Scholar]
  66. [66]. Bessay   EP., , Zoraghi   R., , Blount   MA., , Grimes   KA., , Beasley   A., , Francis   SH., , Corbin   JD. . Phosphorylation of phosphodiesterase-5 is promoted by a conformational change induced by sildenafil, vardenafil, or tadalafil. . Front Biosci . 2007; ;12: : 1899– 1910 .
    [Google Scholar]
  67. [67]. Wang   H., , Liu   Y., , Huai   Q., , Cai   J., , Zoraghi   R., , Francis   SH., , Corbin   JD., , Robinson   H., , Xin   Z., , Lin   G., , Ke   H. . Multiple conformations of phosphodiesterase-5: Implications for enzyme function and drug development. . J Biol Chem . 2006; ;281: 30 : 21469– 21479 .
    [Google Scholar]
  68. [68]. Francis   SH., , Zoraghi   R., , Kotera   J., , Ke   H., , Bessay   EP., , Blount   MA. . Phosphodiesterase 5: Molecular characteristics relating to structure function and regulation. . In: Beavo   JA., Francis   SH., Houslay   MD. , eds. Cyclic Nucleotide Phosphodiesterases in Health and Disease . Boca Raton, FL: : CRC Press;   2006; .
    [Google Scholar]
  69. [69]. Rybalkin   SD., , Rybalkina   IG., , Feil   R., , Hofmann   F., , Beavo   JA. . Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. . J Biol Chem . 2002; ;277: 5 : 3310– 3317 .
    [Google Scholar]
  70. [70]. Chaumais   M-C., , Perrin   S., , Sitbon   O., , Simonneau   G., , Humbert   M., , Montani   D. . Pharmacokinetic evaluation of sildenafil as a pulmonary hypertension treatment. . Expert Opin Drug Metab Toxicol . 2013; ;9: 9 : 1193– 1205 .
    [Google Scholar]
  71. [71]. Broughton   BJ., , Chaplen   P., , Knowles   P., , Lunt   E., , Pain   DL., , Wooldridge   KRH., , Ford   R., , Marshall   S., , Walker   JL., , Maxwell   DR. . New inhibitor of reagin-mediated anaphylaxis. . Nature . 1974; ;251: : 650– 652 , doi:10.1038/251650a0 .
    [Google Scholar]
  72. [72]. Kukovetz   WR., , Holzmann   S., , Wurm   A., , Pöch   G. . Evidence for cyclic GMP-mediated relaxant effects of nitro-compounds in coronary smooth muscle. . Naunyn Schmiedebergs Arch Pharmacol . 1979; ;310: 2 : 129– 138 .
    [Google Scholar]
  73. [73]. Gibson   A. . Phosphodiesterase 5 inhibitors and nitrergic transmission—from zaprinast to sildenafil. . Eur J Pharmacol . 2001; ;411: 1-2 : 1– 10 .
    [Google Scholar]
  74. [74]. Bruzziches   R., , Francomano   D., , Gareri   P., , Lenzi   A., , Aversa   A. . An update on pharmacological treatment of erectile dysfunction with phosphodiesterase type 5 inhibitors. . Expert Opin Pharmacother . 2013; ;14: 10 : 1333– 1344 .
    [Google Scholar]
  75. [75]. Bell   AS., , Brown   D., , Terrett   NK. . Pyrazolopyrimidinone antianginal agents. . 1993; ; , US5250534 A .
    [Google Scholar]
  76. [76]. Campbell   S. . Science, art and drug discovery: A personal perspective. . Clin Sci . 2000; ;99: : 255– 260 .
    [Google Scholar]
  77. [77]. Naylor   AM. . Endogenous neurotransmitters mediating penile erection. . Br J Urol . 1998; ;81: 3 : 424– 431 .
    [Google Scholar]
  78. [78]. Rotella   DP. . Tadalafil lilly ICOS. . Curr Opin Investig Drugs Lond Engl . 2003; ;4: 1 : 60– 65 .
    [Google Scholar]
  79. [79]. Coleman   CI., , Carabino   JM., , Vergara   CM. . Fei Wang.Vardenafil. . Formulary . 2003; ;38: 3 : 131 .
    [Google Scholar]
  80. [80]. Salem   EA., , Kendirci   M., , Hellstrom   WJG. . Udenafil, a long-acting PDE5 inhibitor for erectile dysfunction. . Curr Opin Investig Drugs Lond Engl . 2006; ;7: 7 : 661– 669 .
    [Google Scholar]
  81. [81]. Burke   RM., , Evans   JD. . Avanafil for treatment of erectile dysfunction: Review of its potential. . Vasc Health Risk Manag . 2012; ;8: : 517– 523 .
    [Google Scholar]
  82. [82]. Paick   JS., , Ahn   TY., , Choi   HK., , Chung   WS., , Kim   JJ., , Kim   SC., , Kim   SW., , Lee   SW., , Min   KS., , Moon   KH., , Park   JK., , Park   K., , Park   NC., , Suh   JK., , Yang   DY., , Jung   HG. . Efficacy and safety of mirodenafil, a new oral phosphodiesterase type 5 inhibitor, for treatment of erectile dysfunction. . J Sex Med . 2008; ;5: 11 : 2672– 2680 .
    [Google Scholar]
  83. [83]. Boolell   M., , Allen   MJ., , Ballard   SA., , Gepi-Attee   S., , Muirhead   GJ., , Naylor   AM., , Osterloh   IH., , Gingell   C. . Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. . Int J Impot Res . 1996; ;8: 2 : 47– 52 .
    [Google Scholar]
  84. [84]. Jeremy   JY., , Ballard   SA., , Naylor   AM., , Miller   MAW., , Angelini   GD. . Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro. . Br J Urol . 1997; ;79: 6 : 958– 963 .
    [Google Scholar]
  85. [85]. Shamloul   R., , Ghanem   H. . Erectile dysfunction. . The Lancet . 2013; ;381: 9861 : 153– 165 .
    [Google Scholar]
  86. [86]. Blount   MA., , Beasley   A., , Zoraghi   R., , Sekhar   KR., , Bessay   EP., , Francis   SH., , Corbin   JD. . Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. . Mol Pharmacol . 2004; ;66: 1 : 144– 152 .
    [Google Scholar]
  87. [87]. Gresser   U., , Gleiter   CH. . Erectile dysfunction: Comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil–review of the literature. . Eur J Med Res . 2002; ;7: 10 : 435– 446 .
    [Google Scholar]
  88. [88]. Saenz de Tejada   I., , Angulo   J., , Cuevas   P., , Fernández   A., , Moncada   I., , Allona   A., , Lledó   E., , Körschen   HG., , Niewöhner   U., , Haning   H., , Pages   E., , Bischoff   E. . The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil. . Int J Impot Res . 2001; ;13: 5 : 282– 290 .
    [Google Scholar]
  89. [89]. Schwartz   BG., , Kloner   RA. . Drug interactions with phosphodiesterase-5 inhibitors used for the treatment of erectile dysfunction or pulmonary hypertension. . Circulation . 2010; ;122: 1 : 88– 95 .
    [Google Scholar]
  90. [90]. Burgess   G., , Hoogkamer   H., , Collings   L., , Dingemanse   J. . Mutual pharmacokinetic interactions between steady-state bosentan and sildenafil. . Eur J Clin Pharmacol . 2008; ;64: 1 : 43– 50 .
    [Google Scholar]
  91. [91]. Wrishko   RE., , Dingemanse   J., , Yu   A., , Darstein   C., , Phillips   DL., , Mitchell   MI. . Pharmacokinetic interaction between tadalafil and bosentan in healthy male subjects. . J Clin Pharmacol . 2008; ;48: 5 : 610– 618 .
    [Google Scholar]
  92. [92]. Muirhead   GJ., , Wulff   MB., , Fielding   A., , Kleinermans   D., , Buss   N. . Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. . Br J Clin Pharmacol . 2000; ;50: 2 : 99– 107 .
    [Google Scholar]
  93. [93]. Garraffo   R., , Lavrut   T., , Ferrando   S., , Durant   J., , Rouyrre   N., , MacGregor   TR., , Sabo   JP., , Dellamonica   P. . Effect of tipranavir/ritonavir combination on the pharmacokinetics of tadalafil in healthy volunteers. . J Clin Pharmacol . 2011; ;51: 7 : 1071– 1078 .
    [Google Scholar]
  94. [94]. Loulergue   P., , Gaillard   R., , Mir   O. . Interaction involving tadalafil and CYP3A4 inhibition by ritonavir. . Scand J Infect Dis . 2011; ;43: 3 : 239– 240 .
    [Google Scholar]
  95. [95]. LEVITRA [Internet]. Available from: http://www.levitra.com/. .
  96. [96]. CIALIS [Internet]. Available from: http://pi.lilly.com/us/cialis-pi.pdf. .
  97. [97]. Chinello   P., , Cicalini   S., , Pichini   S., , Pacifici   R., , Tempestilli   M., , Petrosillo   N. . Sildenafil plasma concentrations in two HIV patients with pulmonary hypertension treated with ritonavir-boosted protease inhibitors. . Curr HIV Res . 2012; ;10: 2 : 162– 164 .
    [Google Scholar]
  98. [98]. Prickaerts   J., , Steinbusch   HWM., , Smits   JFM., , de Vente   J. . Possible role of nitric oxide-cyclic GMP pathway in object recognition memory: Effects of 7-nitroindazole and zaprinast. . Eur J Pharmacol . 1997; ;337: 2-3 : 125– 136 .
    [Google Scholar]
  99. [99]. Evgenov   OV., , Ichinose   F., , Evgenov   NV., , Gnoth   MJ., , Falkowski   GE., , Chang   Y., , Bloch   KD., , Zapol   WM. . Soluble guanylate cyclase activator reverses acute pulmonary hypertension and augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs. . Circulation . 2004; ;110: 15 : 2253– 2259 .
    [Google Scholar]
  100. [100]. Ichinose   F., , Adrie   C., , Hurford   WE., , Zapol   WM. . Prolonged pulmonary vasodilator action of inhaled nitric oxide by zaprinast in awake lambs. . J Appl Physiol . 1995; ;78: 4 : 1288– 1295 .
    [Google Scholar]
  101. [101]. Thusu   KG., , Morin   FC 3rd., , Russell   JA., , Steinhorn   RH. . The cGMP phosphodiesterase inhibitor zaprinast enhances the effect of nitric oxide. . Am J Respir Crit Care Med . 1995; ;152: 5 Pt 1 : 1605– 1610 .
    [Google Scholar]
  102. [102]. Ziegler   JW., , Ivy   DD., , Wiggins   JW., , Kinsella   JP., , Clarke   WR., , Abman   SH. . Effects of dipyridamole and inhaled nitric oxide in pediatric patients with pulmonary hypertension. . Am J Respir Crit Care Med . 1998; ;158: 5 Pt 1 : 1388– 1395 .
    [Google Scholar]
  103. [103]. Zhao   L., , Mason   NA., , Morrell   NW., , Kojonazarov   B., , Sadykov   A., , Maripov   A., , Mirrakhimov   MM., , Aldashev   A., , Wilkins   MR. . Sildenafil inhibits hypoxia-induced pulmonary hypertension. . Circulation . 2001; ;104: 4 : 424– 428 .
    [Google Scholar]
  104. [104]. Sylvester   JT., , Shimoda   LA., , Aaronson   PI., , Ward   JPT. . Hypoxic pulmonary vasoconstriction. . Physiol Rev . 2012; ;92: 1 : 367– 520 .
    [Google Scholar]
  105. [105]. Euler   USv., , Liljestrand   G. . Observations on the pulmonary arterial blood pressure in the cat. . Acta Physiol Scand . 1946; ;12: 4 : 301– 320 .
    [Google Scholar]
  106. [106]. Rabinovitch   M., , Gamble   W., , Nadas   AS., , Miettinen   OS., , Reid   L. . Rat pulmonary circulation after chronic hypoxia: Hemodynamic and structural features. . Am J Physiol . 1979; ;236: 6 : H818– H827 .
    [Google Scholar]
  107. [107]. Alexander   AF. . The bovine lung: Normal vascular histology and vascular lesions in high mountain disease. . Respiration . 1962; ;19: 6 : 528– 542 .
    [Google Scholar]
  108. [108]. Sebkhi   A., , Strange   JW., , Phillips   SC., , Wharton   J., , Wilkins   MR. . Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. . Circulation . 2003; ;107: 25 : 3230– 3235 .
    [Google Scholar]
  109. [109]. Maclean   MR., , Johnston   ED., , Mcculloch   KM., , Pooley   L., , Houslay   MD., , Sweeney   G. . Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: Changes in pulmonary hypertension. . J Pharmacol Exp Ther . 1997; ;283: 2 : 619– 624 .
    [Google Scholar]
  110. [110]. Hanasato   N., , Oka   M., , Muramatsu   M., , Nishino   M., , Adachi   H., , Fukuchi   Y. . E-4010, a selective phosphodiesterase 5 inhibitor, attenuates hypoxic pulmonary hypertension in rats. . Am J Physiol-Lung Cell Mol Physiol . 1999; ;277: 2 : L225– L232 .
    [Google Scholar]
  111. [111]. Weimann   J., , Ullrich   R., , Hromi   J., , Fujino   Y., , Clark   MW., , Bloch   KD., , Zapol   WM. . Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. . Anesthesiology . 2000; ;92: 6 : 1702– 1712 .
    [Google Scholar]
  112. [112]. Ichinose   F., , Adrie   C., , Hurford   WE., , Bloch   KD., , Zapol   WM. . Selective pulmonary vasodilation induced by aerosolized zaprinast. . Anesthesiology . 1998; ;88: 2 : 410– 416 .
    [Google Scholar]
  113. [113]. McMAHON   TJ., , Ignarro   LJ., , Kadowitz   PJ. . Influence of zaprinast on vascular tone and vasodilator responses in the cat pulmonary vascular bed. . J Appl Physiol . 1993; ;74: : 1704– 1711 .
    [Google Scholar]
  114. [114]. Kouyoumdjian   C., , Adnot   S., , Levame   M., , Eddahibi   S., , Bousbaa   H., , Raffestin   B. . Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats. . J Clin Invest . 1994; ;94: 2 : 578 .
    [Google Scholar]
  115. [115]. Kirsch   M., , Kemp-Harper   B., , Weissmann   N., , Grimminger   F., , Schmidt   HHHW. . Sildenafil in hypoxic pulmonary hypertension potentiates a compensatory up-regulation of NO-cGMP signaling. . FASEB J . 2008; ;22: 1 : 30– 40 .
    [Google Scholar]
  116. [116]. Sauzeau   V., , Rolli-Derkinderen   M., , Lehoux   S., , Loirand   G., , Pacaud   P. . Sildenafil prevents change in RhoA expression induced by chronic hypoxia in rat pulmonary artery. . Circ Res . 2003; ;93: 7 : 630– 637 .
    [Google Scholar]
  117. [117]. Guilluy   C., , Sauzeau   V., , Rolli-Derkinderen   M., , Guérin   P., , Sagan   C., , Pacaud   P., , Loirand   G. . Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. . Br J Pharmacol . 2005; ;146: 7 : 1010– 1018 .
    [Google Scholar]
  118. [118]. Pauvert   O., , Bonnet   S., , Rousseau   E., , Marthan   R., , Savineau   JP. . Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats. . Am J Physiol – Lung Cell Mol Physiol . 2004; ;287: 3 : L577– L583 .
    [Google Scholar]
  119. [119]. Schermuly   RT., , Kreisselmeier   KP., , Ghofrani   HA., , Yilmaz   H., , Butrous   G., , Ermert   L., , Ermert   M., , Weissmann   N., , Rose   F., , Guenther   A., , Walmrath   D., , Seeger   W., , Grimminger   F. . Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. . Am J Respir Crit Care Med . 2004; ;169: 1 : 39– 45 .
    [Google Scholar]
  120. [120]. Liu   H., , Liu   Z., , Guan   Q. . Oral sildenafil prevents and reverses the development of pulmonary hypertension in monocrotaline-treated rats. . Interact Cardiovasc Thorac Surg . 2007; ;6: 5 : 608– 613 .
    [Google Scholar]
  121. [121]. Sawamura   F., , Kato   M., , Fujita   K., , Nakazawa   T., , Beardsworth   A. . Tadalafil, a long-acting inhibitor of PDE5, improves pulmonary hemodynamics and survival rate of monocrotaline-induced pulmonary artery hypertension in rats. . J Pharmacol Sci . 2009; ;111: 3 : 235– 243 .
    [Google Scholar]
  122. [122]. Fan   YF., , Zhang   R., , Jiang   X., , Wen   L., , Wu   DC., , Liu   D., , Yuan   P., , Wang   YL., , Jing   ZC. . The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. . Cardiovasc Res . 2013; ;99: 3 : 395– 403 .
    [Google Scholar]
  123. [123]. Yen   CH., , Leu   S., , Lin   YC., , Kao   YH., , Chang   LT., , Chua   S., , Fu   M., , Wu   CJ., , Sun   CK., , Yip   HK. . Sildenafil limits monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. . J Cardiovasc Pharmacol . 2010; ;55: 6 : 574– 584 .
    [Google Scholar]
  124. [124]. Bogdan   S., , Seferian   A., , Totoescu   A., , Dumitrache-Rujinski   S., , Ceausu   M., , Coman   C., , Ardelean   CM., , Dorobantu   M., , Bogdan   M. . Sildenafil reduces inflammation and prevents pulmonary arterial remodeling of the monocrotaline – induced disease in the wistar rats. . Maedica (Buchar) . 2012; ;7: 2 : 109– 116 .
    [Google Scholar]
  125. [125]. Ghofrani   HA., , Osterloh   IH., , Grimminger   F. . Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. . Nat Rev Drug Discov . 2006; ;5: 8 : 689– 702 .
    [Google Scholar]
  126. [126]. Prasad   S., , Wilkinson   J., , Gatzoulis   MA. . Sildenafil in primary pulmonary hypertension. . N Engl J Med . 2000; ;343: 18 : 1342 .
    [Google Scholar]
  127. [127]. Wilkens   H., , Guth   A., , König   J., , Forestier   N., , Cremers   B., , Hennen   B., , Böhm   M., , Sybrecht   GW. . Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. . Circulation . 2001; ;104: 11 : 1218– 1222 .
    [Google Scholar]
  128. [128]. Ghofrani   HA., , Wiedemann   R., , Rose   F., , Olschewski   H., , Schermuly   RT., , Weissmann   N., , Seeger   W., , Grimminger   F. . Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. . Ann Intern Med . 2002; ;136: 7 : 515– 522 .
    [Google Scholar]
  129. [129]. Ss   K., , B   D. . Chronic oral sildenafil therapy in severe pulmonary artery hypertension. . Indian Heart J . 2001; ;54: 4 : 404– 409 .
    [Google Scholar]
  130. [130]. Sastry   BK., , Narasimhan   C., , Reddy   NK., , Anand   B., , Prakash   GS., , Raju   PR., , Kumar   DN. . A study of clinical efficacy of sildenafil in patients with primary pulmonary hypertension. . Indian Heart J . 2001; ;54: 4 : 410– 414 .
    [Google Scholar]
  131. [131]. Sastry   BKS., , Narasimhan   C., , Reddy   NK., , Raju   BS. . Clinical efficacy of sildenafil in primary pulmonary hypertension: A randomized, placebo-controlled, double-blind, crossover study. . J Am Coll Cardiol . 2004; ;43: 7 : 1149– 1153 .
    [Google Scholar]
  132. [132]. Michelakis   E., , Tymchak   W., , Lien   D., , Webster   L., , Hashimoto   K., , Archer   S. . Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension comparison with inhaled nitric oxide. . Circulation . 2002; ;105: 20 : 2398– 2403 .
    [Google Scholar]
  133. [133]. Michelakis   ED., , Tymchak   W., , Noga   M., , Webster   L., , Wu   XC., , Lien   D., , Wang   SH., , Modry   D., , Archer   SL. . Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. . Circulation . 2003; ;108: 17 : 2066– 2069 .
    [Google Scholar]
  134. [134]. Lepore   JJ., , Maroo   A., , Pereira   NL., , Ginns   LC., , Dec   GW., , Zapol   WM., , Bloch   KD., , Semigran   MJ. . Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. . Am J Cardiol . 2002; ;90: 6 : 677– 680 .
    [Google Scholar]
  135. [135]. Singh   B., , Gupta   R., , Punj   V., , Ghose   T., , Sapra   R., , Grover   DN., , Kaul   U. . Sildenafil in the management of primary pulmonary hypertension. . Indian Heart J . 2002; ;54: 3 : 297– 300 .
    [Google Scholar]
  136. [136]. Zimmermann   GS., , von Wulffen   W., , Huppmann   P., , Meis   T., , Ihle   F., , Geiseler   J., , Leuchte   HH., , Tufman   A., , Behr   J., , Neurohr   C. . Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inhibitors. . Respirology . 2014; ;19: 5 : 700– 706 .
    [Google Scholar]
  137. [137]. Watanabe   H., , Ohashi   K., , Takeuchi   K., , Yamashita   K., , Yokoyama   T., , Tran   QK., , Satoh   H., , Terada   H., , Ohashi   H., , Hayashi   H. . Sildenafil for primary and secondary pulmonary hypertension. . Clin Pharmacol Ther . 2002; ;71: 5 : 398– 402 .
    [Google Scholar]
  138. [138]. Galiè   N., , Ghofrani   HA., , Torbicki   A., , Barst   RJ., , Rubin   LJ., , Badesch   D., , Fleming   T., , Parpia   T., , Burgess   G., , Branzi   A., , Grimminger   F., , Kurzyna   M., , Simonneau   G., , Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group. . Sildenafil citrate therapy for pulmonary arterial hypertension. . N Engl J Med . 2005; ;353: 20 : 2148– 2157 .
    [Google Scholar]
  139. [139]. Moncada   I., , Jara   J., , Subirá   D., , Castaño   I., , Hernández   C. . Efficacy of sildenafil citrate at 12 hours after dosing: Re-exploring the therapeutic window. . Eur Urol . 2004; ;46: 3 : 357– 361 .
    [Google Scholar]
  140. [140]. Rubin   LJ., , Badesch   DB., , Fleming   TR., , Galiè   N., , Simonneau   G., , Ghofrani   HA., , Oakes   M., , Layton   G., , Serdarevic-Pehar   M., , McLaughlin   VV., , Barst   RJ. . SUPER-2 Study Group Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: The SUPER-2 study. . Chest . 2011; ;140: 5 : 1274– 1283 .
    [Google Scholar]
  141. [141]. Affuso   F., , Palmieri   EA., , Di Conza   P., , Guardasole   V., , Fazio   S. . Tadalafil improves quality of life and exercise tolerance in idiopathic pulmonary arterial hypertension. . Int J Cardiol . 2006; ;108: 3 : 429– 431 .
    [Google Scholar]
  142. [142]. Galiè   N., , Brundage   BH., , Ghofrani   HA., , Oudiz   RJ., , Simonneau   G., , Safdar   Z., , Shapiro   S., , White   RJ., , Chan   M., , Beardsworth   A., , Frumkin   L., , Barst   RJ., , Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. . Tadalafil therapy for pulmonary arterial hypertension. . Circulation . 2009; ;119: 22 : 2894– 2903 .
    [Google Scholar]
  143. [143]. Oudiz   RJ., , Brundage   BH., , Galiè   N., , Ghofrani   HA., , Simonneau   G., , Botros   FT., , Chan   M., , Beardsworth   A., , Barst   RJ., , PHIRST Study Group. . Tadalafil for the treatment of pulmonary arterial hypertension: A double-blind 52-week uncontrolled extension study. . J Am Coll Cardiol . 2012; ;60: 8 : 768– 774 .
    [Google Scholar]
  144. [144]. Frantz   RP., , Durst   L., , Burger   CD., , Oudiz   RJ., , Bourge   RC., , Franco   V., , Waxman   AB., , McDevitt   S., , Walker   S. . Conversion from sildenafil to tadalafil: Results from the sildenafil to tadalafil in pulmonary arterial hypertension (SITAR) study. . J Cardiovasc Pharmacol Ther . 2014; ;19: 6 : 550– 557 .
    [Google Scholar]
  145. [145]. Archer   SL., , Michelakis   ED. . An evidence-based approach to the management of pulmonary arterial hypertension. . Curr Opin Cardiol . 2006; ;21: 4 : 385– 392 .
    [Google Scholar]
  146. [146]. O'Callaghan   D., , Gaine   SP. . Combination therapy and new types of agents for pulmonary arterial hypertension. . Clin Chest Med . 2007; ;28: 1 : 169– 185 .
    [Google Scholar]
  147. [147]. Kawut   SM., , Horn   EM., , Berekashvili   KK., , Garofano   RP., , Goldsmith   RL., , Widlitz   AC., , Rosenzweig   EB., , Kerstein   D., , Barst   RJ. . New predictors of outcome in idiopathic pulmonary arterial hypertension. . Am J Cardiol . 2005; ;95: 2 : 199– 203 .
    [Google Scholar]
  148. [148]. Badesch   DB., , Abman   SH., , Simonneau   G., , Rubin   LJ., , McLaughlin   VV. . Medical therapy for pulmonary arterial hypertension: Updated accp evidence-based clinical practice guidelines. . Chest . 2007; ;131: 6 : 1917– 1928 .
    [Google Scholar]
  149. [149]. McLaughlin   VV., , Archer   SL., , Badesch   DB., , Barst   RJ., , Farber   HW., , Lindner   JR., , Mathier   MA., , McGoon   MD., , Park   MH., , Rosenson   RS., , Rubin   LJ., , Tapson   VF., , Varga   J., , American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. . ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. . J Am Coll Cardiol . 2009; ;53: 17 : 1573– 1619 .
    [Google Scholar]
  150. [150]. Galiè   N., , Hoeper   MM., , Humbert   M., , Torbicki   A., , Vachiery   JL., , Barbera   JA., , Beghetti   M., , Corris   P., , Gaine   S., , Gibbs   JS., , Gomez-Sanchez   MA., , Jondeau   G., , Klepetko   W., , Opitz   C., , Peacock   A., , Rubin   L., , Zellweger   M., , Simonneau   G. . ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). . Eur Heart J . 2009; ;30: 20 : 2493– 2537 .
    [Google Scholar]
  151. [151]. Galiè   N., , Negro   L., , Simonneau   G. . The use of combination therapy in pulmonary arterial hypertension: New developments. . Eur Respir Rev . 2009; ;18: 113 : 148– 153 .
    [Google Scholar]
  152. [152]. McGoon   MD., , Miller   DP. . REVEAL: A contemporary US pulmonary arterial hypertension registry. . Eur Respir Rev . 2012; ;21: 123 : 8– 18 .
    [Google Scholar]
  153. [153]. Stiebellehner   L., , Petkov   V., , Vonbank   K., , Funk   G., , Schenk   P., , Ziesche   R., , Block   LH. . Long-term treatment with oral sildenafil in addition to continuous IV epoprostenol in patients with pulmonary arterial hypertension. . Chest . 2003; ;123: 4 : 1293– 1295 .
    [Google Scholar]
  154. [154]. Hoeper   M., , Faulenbach   C., , Golpon   H., , Winkler   J., , Welte   T., , Niedermeyer   J. . Combination therapy with bosentan and sildenafil in idiopathic pulmonary arterial hypertension. . Eur Respir J . 2004; ;24: 6 : 1007– 1010 .
    [Google Scholar]
  155. [155]. Mathai   SC., , Girgis   RE., , Fisher   MR., , Champion   HC., , Housten-Harris   T., , Zaiman   A., , Hassoun   PM. . Addition of sildenafil to bosentan monotherapy in pulmonary arterial hypertension. . Eur Respir J . 2007; ;29: 3 : 469– 475 .
    [Google Scholar]
  156. [156]. Porhownik   NR., , Al-Sharif   H., , Bshouty   Z. . Addition of sildenafil in patients with pulmonary arterial hypertension with inadequate response to bosentan monotherapy. . Can Respir J J Can Thorac Soc . 2008; ;15: 8 : 427– 430 .
    [Google Scholar]
  157. [157]. Gruenig   E., , Michelakis   E., , Vachiéry   JL., , Vizza   CD., , Meyer   FJ., , Doelberg   M., , Bach   D., , Dingemanse   J., , Galiè   N. . Acute hemodynamic effects of single-dose sildenafil when added to established bosentan therapy in patients with pulmonary arterial hypertension: Results of the COMPASS-1 study. . J Clin Pharmacol . 2009; ;49: 11 : 1343– 1352 .
    [Google Scholar]
  158. [158]. Bendayan   D., , Shitrit   D., , Kramer   MR. . Combination therapy with prostacyclin and tadalafil for severe pulmonary arterial hypertension: A pilot study. . Respirology . 2008; ;13: 6 : 916– 918 .
    [Google Scholar]
  159. [159]. Zhuang   Y., , Jiang   B., , Gao   H., , Zhao   W. . Randomized study of adding tadalafil to existing ambrisentan in pulmonary arterial hypertension. . Hypertens Res . 2014; ;37: 6 : 507– 512 .
    [Google Scholar]
  160. [160]. Hirashiki   A., , Kondo   T., , Murohara   T. . Combination therapy adding tadalafil to existing ambrisentan in patients with pulmonary arterial hypertension. . Hypertens Res . 2014; ;37: 6 : 488– 489 .
    [Google Scholar]
  161. [161]. Barst   RJ., , Oudiz   RJ., , Beardsworth   A., , Brundage   BH., , Simonneau   G., , Ghofrani   HA., , Sundin   DP., , Galiè   N., , Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. . Tadalafil monotherapy and as add-on to background bosentan in patients with pulmonary arterial hypertension. . J Heart Lung Transplant . 2011; ;30: 6 : 632– 643 .
    [Google Scholar]
  162. [162]. McLaughlin   VV., , Oudiz   RJ., , Frost   A., , Tapson   VF., , Murali   S., , Channick   RN., , Badesch   DB., , Barst   RJ., , Hsu   HH., , Rubin   LJ. . Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. . Am J Respir Crit Care Med . 2006; ;174: 11 : 1257– 1263 .
    [Google Scholar]
  163. [163]. Humbert   M., , Barst   RJ., , Robbins   IM., , Channick   RN., , Galiè   N., , Boonstra   A., , Rubin   LJ., , Horn   EM., , Manes   A., , Simonneau   G. . Combination of bosentan with epoprostenol in pulmonary arterial hypertension: BREATHE-2. . Eur Respir J . 2004; ;24: 3 : 353– 359 .
    [Google Scholar]
  164. [164]. Simonneau   G., , Rubin   LJ., , Galiè   N., , Barst   RJ., , Fleming   TR., , Frost   AE., , Engel   PJ., , Kramer   MR., , Burgess   G., , Collings   L., , Cossons   N., , Sitbon   O., , Badesch   DB., , PACES Study Group. . Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: A randomized trial. . Ann Intern Med . 2008; ;149: 8 : 521– 530 .
    [Google Scholar]
  165. [165]. Simonneau   G., , Rubin   LJ., , Galiè   N., , Barst   RJ., , Fleming   TR., , Frost   A., , Engel   P., , Kramer   MR., , Serdarevic-Pehar   M., , Layton   GR., , Sitbon   O., , Badesch   DB., , PACES Study Group. . Long-term sildenafil added to intravenous epoprostenol in patients with pulmonary arterial hypertension. . J Heart Lung Transplant . 2014; ;33: 7 : 689– 697 . Available from: http://www.sciencedirect.com/science/article/pii/S1053249814009978. .
    [Google Scholar]
  166. [166]. Barst   R. . How has epoprostenol changed the outcome for patients with pulmonary arterial hypertension?.   Int J Clin Pract . 2010; ;64: : 23– 32 .
    [Google Scholar]
  167. [167]. Gomberg-Maitland   M., , McLaughlin   V., , Gulati   M., , Rich   S. . Efficacy and safety of sildenafil added to treprostinil in pulmonary hypertension. . Am J Cardiol . 2005; ;96: 9 : 1334– 1336 .
    [Google Scholar]
  168. [168]. Buckley   MS., , Staib   RL., , Wicks   LM. . Combination therapy in the management of pulmonary arterial hypertension. . Int J Clin Pract . 2013; ;67: : 13– 23 .
    [Google Scholar]
  169. [169]. Lunze   K., , Gilbert   N., , Mebus   S., , Miera   O., , Fehske   W., , Uhlemann   F., , Mühler   EG., , Ewert   P., , Lange   PE., , Berger   F., , Schulze-Neick   I. . First experience with an oral combination therapy using bosentan and sildenafil for pulmonary arterial hypertension. . Eur J Clin Invest . 2006; ;36: : 32– 38 .
    [Google Scholar]
  170. [170]. Torres   F., , Gupta   H., , Soto   F., , Park   M., , Frey   N., , Murali   S., , Benza   R. . Safety and efficacy of bosentan in combination with sildenafil in pulmonary arterial hypertension: The COMPASS-3 study. . Eur Respir J . 2011; ;38: Suppl 55 : 409 .
    [Google Scholar]
  171. [171]. COMPASS-2 press release [Internet]. Available from: http://www1.actelion.com/en/our-company/news-and-events/index.page?newsId = 1769001. .
  172. [172]. Spence   R., , Mandagere   A., , Harrison   B., , Dufton   C., , Boinpally   R. . No clinically relevant pharmacokinetic and safety interactions of ambrisentan in combination with tadalafil in healthy volunteers. . J Pharm Sci . 2009; ;98: 12 : 4962– 4974 .
    [Google Scholar]
  173. [173]. NIH. Study of ambrisentan and phosphodiesterase type-5 Inhibitor (PDE-5i) to treat pulmonary arterial hypertension [Internet]. Available from: www.clinicaltrials.gov/ct2/show/NCT00617305. .
  174. [175]. AMBITION [Internet]. Available from: www.clinicaltrials.gov/ct2/show/NCT01178073. .
  175. [176]. Kylhammar   D., , Persson   L., , Hesselstrand   R., , Rådegran   G. . Prognosis and response to first-line single and combination therapy in pulmonary arterial hypertension. . Scand Cardiovasc J . 2014; ;48: 4 : 223– 233 .
    [Google Scholar]
  176. [177]. Collins   FS., , Orringer   EP. . Pulmonary hypertension and cor pulmonale in the sickle hemoglobinopathies. . Am J Med . 1982; ;73: 6 : 814– 821 .
    [Google Scholar]
  177. [178]. Castro   O., , Hoque   M., , Brown   BD. . Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. . Blood . 2003; ;101: 4 : 1257– 1261 .
    [Google Scholar]
  178. [179]. Fonseca   GH., , Souza   R., , Salemi   VM., , Jardim   CV., , Gualandro   SF. . Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. . Eur Respir J . 2012; ;39: 1 : 112– 118 .
    [Google Scholar]
  179. [180]. Simonneau   G., , Parent   F. . Pulmonary hypertension in patients with sickle cell disease: not so frequent but so different. . Eur Respir J . 2012; ;39: 1 : 3– 4 .
    [Google Scholar]
  180. [181]. Aliyu   ZY., , Kato   GJ., , Taylor   J 6th., , Babadoko   A., , Mamman   AI., , Gordeuk   VR., , Gladwin   MT. . Sickle cell disease and pulmonary hypertension in Africa: A global perspective and review of epidemiology, pathophysiology, and management. . Am J Hematol . 2008; ;83: 1 : 63– 70 .
    [Google Scholar]
  181. [182]. Gladwin   MT., , Kato   GJ. . Cardiopulmonary complications of sickle cell disease: Role of nitric oxide and hemolytic anemia. . Hematology Am Soc Hematol Educ Program . 2005; ; 51– 57 .
    [Google Scholar]
  182. [183]. Gladwin   MT., , Sachdev   V., , Jison   ML., , Shizukuda   Y., , Plehn   JF., , Minter   K., , Brown   B., , Coles   WA., , Nichols   JS., , Ernst   I., , Hunter   LA., , Blackwelder   WC., , Schechter   AN., , Rodgers   GP., , Castro   O., , Ognibene   FP. . Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. . N Engl J Med . 2004; ;350: 9 : 886– 895 .
    [Google Scholar]
  183. [184]. Machado   RF., , Gladwin   MT. . Pulmonary hypertension in hemolytic disorders: Pulmonary vascular disease: The global perspective. . Chest . 2010; ;137: 6_suppl : 30S– 38S .
    [Google Scholar]
  184. [185]. Schnog   JJ., , Jager   EH., , van der Dijs   FP., , Duits   AJ., , Moshage   H., , Muskiet   FD., , Muskiet   FA. . Evidence for a metabolic shift of arginine metabolism in sickle cell disease. . Ann Hematol . 2004; ;83: 6 : 371– 375 .
    [Google Scholar]
  185. [186]. Reiter   CD., , Wang   X., , Tanus-Santos   JE., , Hogg   N., , Cannon   RO 3rd., , Schechter   AN., , Gladwin   MT. . Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. . Nat Med . 2002; ;8: 12 : 1383– 1389 .
    [Google Scholar]
  186. [187]. Morris   CR., , Kato   GJ., , Poljakovic   M., , Wang   X., , Blackwelder   WC., , Sachdev   V., , Hazen   SL., , Vichinsky   EP., , Morris   SM Jr., , Gladwin   MT. . Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. . JAMA . 2005; ;294: 1 : 81– 90 .
    [Google Scholar]
  187. [188]. Bunn   HF., , Nathan   DG., , Dover   GJ., , Hebbel   RP., , Platt   OS., , Rosse   WF., , Ware   RE. . Pulmonary hypertension and nitric oxide depletion in sickle cell disease. . Blood . 2010; ;116: 5 : 687– 692 .
    [Google Scholar]
  188. [189]. Machado   RF., , Martyr   S., , Kato   GJ., , Barst   RJ., , Anthi   A., , Robinson   MR., , Hunter   L., , Coles   W., , Nichols   J., , Hunter   C., , Sachdev   V., , Castro   O., , Gladwin   MT. . Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. . Br J Haematol . 2005; ;130: 3 : 445– 453 .
    [Google Scholar]
  189. [190]. Derchi   G., , Forni   GL., , Formisano   F., , Cappellini   MD., , Galanello   R., , D'Ascola   G., , Bina   P., , Magnano   C., , Lamagna   M. . Efficacy and safety of sildenafil in the treatment of severe pulmonary hypertension in patients with hemoglobinopathies. . Haematologica . 2005; ;90: 4 : 452– 458 .
    [Google Scholar]
  190. [191]. Mehari   A., , Gladwin   MT., , Tian   X., , Machado   RF., , Kato   GJ. . Mortality in adults with sickle cell disease and pulmonary hypertension. . JAMA . 2012; ;307: 12 : 1254– 1256 .
    [Google Scholar]
  191. [192]. Mehari   A., , Alam   S., , Tian   X., , Cuttica   MJ., , Barnett   CF., , Miles   G., , Xu   D., , Seamon   C., , Adams-Graves   P., , Castro   OL., , Minniti   CP., , Sachdev   V., , Taylor   JG 6th., , Kato   GJ., , Machado   RF. . Hemodynamic predictors of mortality in adults with sickle cell disease. . Am J Respir Crit Care Med . 2013; ;187: 8 : 840– 847 .
    [Google Scholar]
  192. [193]. Simonneau   G., , Gatzoulis   MA., , Adatia   I., , Celermajer   D., , Denton   C., , Ghofrani   A., , Gomez Sanchez   MA., , Krishna Kumar   R., , Landzberg   M., , Machado   RF., , Olschewski   H., , Robbins   IM., , Souza   R. . Updated clinical classification of pulmonary hypertension. . J Am Coll Cardiol . 2013; ;62: 25 : D34– D41 .
    [Google Scholar]
  193. [194]. Gladwin   MT., , Barst   RJ., , Gibbs   JS., , Hildesheim   M., , Sachdev   V., , Nouraie   M., , Hassell   KL., , Little   JA., , Schraufnagel   DE., , Krishnamurti   L., , Novelli   E., , Girgis   RE., , Morris   CR., , Berman Rosenzweig   E., , Badesch   DB., , Lanzkron   S., , Castro   OL., , Taylor   JG 6th., , Goldsmith   JC., , Kato   GJ., , Gordeuk   VR., , Machado   RF., , walk-PHaSST Investigators and Patients. . Risk factors for death in 632 patients with sickle cell disease in the United States and United Kingdom. . PloS One . 2014; ;9: 7 : e99489 .
    [Google Scholar]
  194. [195]. Machado   RF., , Barst   RJ., , Yovetich   NA., , Hassell   KL., , Goldsmith   JC., , Woolson   R., , Gordeuk   VR., , Gibbs   S., , Little   JA., , Kato   GJ., , Schraufnagel   DE., , Krishnamurti   L., , Girgis   R., , Morris   CR., , Berman-Rosenzweig   E., , Badesch   DB., , Waclawiw   MA., , Gladwin   MT. . Evaluation of sildenafil therapy for patients with sickle cell disease and increased tricuspid regurgitant velocity: Preliminary results of the Walk-PHaSST trial. . B16. Pulmonary Arterial Hypertension: From Assessing Risk to Therapeutic Results . 2010; ; A2514 . doi:10.1164/ajrccm-conference.2010.181.1_MeetingAbstracts.A2514. .
    [Google Scholar]
  195. [196]. Machado   RF., , Barst   RJ., , Yovetich   NA., , Hassell   KL., , Kato   GJ., , Gordeuk   VR., , Gibbs   JS., , Little   JA., , Schraufnagel   DE., , Krishnamurti   L., , Girgis   RE., , Morris   CR., , Rosenzweig   EB., , Badesch   DB., , Lanzkron   S., , Onyekwere   O., , Castro   OL., , Sachdev   V., , Waclawiw   MA., , Woolson   R., , Goldsmith   JC., , Gladwin   MT., , walk-PHaSST Investigators and Patients. . Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. . Blood . 2011; ;118: 4 : 855– 864 .
    [Google Scholar]
  196. [197]. Zuber   JP., , Calmy   A., , Evison   JM., , Hasse   B., , Schiffer   V., , Wagels   T., , Nuesch   R., , Magenta   L., , Ledergerber   B., , Jenni   R., , Speich   R., , Opravil   M., , Swiss HIV Cohort Study Group. . Pulmonary arterial hypertension related to HIV infection: Improved hemodynamics and survival associated with antiretroviral therapy. . Clin Infect Dis . 2004; ;38: 8 : 1178– 1185 .
    [Google Scholar]
  197. [198]. Wong   AR., , Rasool   AHG., , Abidin   NZ., , Noor   AR., , Quah   BS. . Sildenafil as treatment for human immunodeficiency virus-related pulmonary hypertension in a child. . J Paediatr Child Health . 2006; ;42: 3 : 147– 148 .
    [Google Scholar]
  198. [199]. Degano   B., , Guillaume   M., , Savale   L., , Montani   D., , Jaïs   X., , Yaici   A., , Le Pavec   J., , Humbert   M., , Simonneau   G., , Sitbon   O. . HIV-associated pulmonary arterial hypertension: Survival and prognostic factors in the modern therapeutic era. . AIDS . 2010; ;24: 1 : 67– 75 .
    [Google Scholar]
  199. [200]. Degano   B., , Valmary   S., , Sitbon   O., , Humbert   M. . Pulmonary arterial hypertension and HIV and other viral infections. . In: Humbert   M., Souza   R., Simonneau   G. , eds. Pulmonary Vascular Disorders. Prog Respir Res . Vol 41 . Basel: : Karger;   2012; ; : 105– 112 Available from: http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowAbstractBuch&ArtikelNr=334362&ProduktNr=255594.
    [Google Scholar]
  200. [201]. Sitbon   O., , Lascoux-Combe   C., , Delfraissy   JF., , Yeni   PG., , Raffi   F., , De Zuttere   D., , Gressin   V., , Clerson   P., , Sereni   D., , Simonneau   G. . Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. . Am J Respir Crit Care Med . 2008; ;177: 1 : 108– 113 .
    [Google Scholar]
  201. [202]. Ghofrani   HA., , Distler   O., , Gerhardt   F., , Gorenflo   M., , Grünig   E., , Haefeli   WE., , Held   M., , Hoeper   MM., , Kähler   CM., , Kaemmerer   H., , Klose   H., , Köllner   V., , Kopp   B., , Mebus   S., , Meyer   A., , Miera   O., , Pittrow   D., , Riemekasten   G., , Rosenkranz   S., , Schranz   D., , Voswinckel   R., , Olschewski   H. . Treatment of pulmonary arterial hypertension (PAH): Updated recommendations of the cologne consensus conference 2011. . Int J Cardiol . 2011; ;154: Suppl 1 : S20– S33 .
    [Google Scholar]
  202. [203]. Schumacher   YO., , Zdebik   A., , Huonker   M., , Kreisel   W. . Sildenafil in HIV-related pulmonary hypertension. . AIDS . 2001; ;15: 13 : 1747– 1748 .
    [Google Scholar]
  203. [204]. D'Alto   M., , Romeo   E., , Argiento   P., , Sarubbi   B., , Santoro   G., , Grimaldi   N., , Correra   A., , Scognamiglio   G., , Russo   MG., , Calabrò   R. . Bosentan-sildenafil association in patients with congenital heart disease-related pulmonary arterial hypertension and Eisenmenger physiology. . Int J Cardiol . 2012; ;155: 3 : 378– 382 .
    [Google Scholar]
  204. [205]. Singh   TP., , Rohit   M., , Grover   A., , Malhotra   S., , Vijayvergiya   R. . A randomized, placebo-controlled, double-blind, crossover study to evaluate the efficacy of oral sildenafil therapy in severe pulmonary artery hypertension. . Am Heart J . 2006; ;151: 4 : 851e1– 851e5 .
    [Google Scholar]
  205. [206]. Mukhopadhyay   S., , Sharma   M., , Ramakrishnan   S., , Yusuf   J., , Gupta   MD., , Bhamri   N., , Trehan   V., , Tyagi   S. . Phosphodiesterase-5 inhibitor in eisenmenger syndrome: A preliminary observational study. . Circulation . 2006; ;114: 17 : 1807– 1810 .
    [Google Scholar]
  206. [207]. Chau   EMC., , Fan   KYY., , Chow   WH. . Effects of chronic sildenafil in patients with Eisenmenger syndrome versus idiopathic pulmonary arterial hypertension. . Int J Cardiol . 2007; ;120: 3 : 301– 305 .
    [Google Scholar]
  207. [208]. Lu   XL., , Xiong   CM., , Shan   GL., , Zhu   XY., , Wu   BX., , Wu   GH., , Liu   ZH., , Ni   XH., , Cheng   XS., , Gu   Q., , Zhao   ZH., , Zhang   DZ., , Li   WM., , Zhang   C., , Tian   HY., , Guo   YJ., , Guo   T., , Liu   HM., , Zhang   WJ., , Gu   H., , Huang   SA., , Chen   JY., , Wu   WF., , Huang   K., , Li   JJ., , He   JG. . Impact of sildenafil therapy on pulmonary arterial hypertension in adults with congenital heart disease. . Cardiovasc Ther . 2010; ;28: 6 : 350– 355 .
    [Google Scholar]
  208. [209]. Sun   YJ., , Yang   T., , Zeng   WJ., , Gu   Q., , Ni   XH., , Zhao   ZH., , Liu   ZH., , Xiong   CM., , He   JG. . Impact of sildenafil on survival of patients with Eisenmenger syndrome. . J Clin Pharmacol . 2013; ;53: 6 : 611– 618 .
    [Google Scholar]
  209. [210]. Mukhopadhyay   S., , Nathani   S., , Yusuf   J., , Shrimal   D., , Tyagi   S. . Clinical efficacy of phosphodiesterase-5 inhibitor tadalafil in Eisenmenger syndrome-a randomized, placebo-controlled, double-blind crossover study. . Congenit Heart Dis . 2011; ;6: 5 : 424– 431 .
    [Google Scholar]
  210. [211]. Goldberg   DJ., , French   B., , McBride   MG., , Marino   BS., , Mirarchi   N., , Hanna   BD., , Wernovsky   G., , Paridon   SM., , Rychik   J. . Impact of oral sildenafil on exercise performance in children and young adults after the fontan operation: A randomized, double-blind, placebo-controlled, crossover trial. . Circulation . 2011; ;123: 11 : 1185– 1193 .
    [Google Scholar]
  211. [212]. Manes   A., , Palazzini   M., , Leci   E., , Reggiani   MLB., , Branzi   A., , Galiè   N. . Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: A comparison between clinical subgroups. . Eur Heart J . 2014; ;35: 11 : 716– 724 .
    [Google Scholar]
  212. [213]. Okyay   K., , Cemri   M., , Boyac   B., , Yalcn   R., , Cengel   A. . Use of long-term combined therapy with inhaled iloprost and oral sildenafil in an adult patient with Eisenmenger syndrome. . Cardiol Rev . 2005; ;13: 6 : 312– 314 .
    [Google Scholar]
  213. [214]. Iversen   K., , Jensen   AS., , Jensen   TV., , Vejlstrup   NG., , Søndergaard   L. . Combination therapy with bosentan and sildenafil in Eisenmenger syndrome: A randomized, placebo-controlled, double-blinded trial. . Eur Heart J . 2010; ;31: 9 : 1124– 1131 .
    [Google Scholar]
  214. [215]. Fedullo   P., , Kerr   KM., , Kim   NH., , Auger   WR. . Chronic thromboembolic pulmonary hypertension. . Am J Respir Crit Care Med . 2011; ;183: 12 : 1605– 1613 .
    [Google Scholar]
  215. [216]. Fedullo   PF., , Auger   WR., , Kerr   KM., , Rubin   LJ. . Chronic thromboembolic pulmonary hypertension. . N Engl J Med . 2001; ;345: 20 : 1465– 1472 .
    [Google Scholar]
  216. [217]. De Jesus Perez   VA., , Zamanian   RT., , Jais   X., , D'Armini   AM., , Jansa   P. . Chronic thromboembolic pulmonary hypertension. . N Engl J Med . 2011; ;2011: 364 : 1677– 1678 .
    [Google Scholar]
  217. [218]. Hoeper   MM., , Mayer   E., , Simonneau   G., , Rubin   LJ. . Chronic thromboembolic pulmonary hypertension. . Circulation . 2006; ;113: 16 : 2011– 2020 .
    [Google Scholar]
  218. [219]. Ghofrani   HA., , Schermuly   RT., , Rose   F., , Wiedemann   R., , Kohstall   MG., , Kreckel   A., , Olschewski   H., , Weissmann   N., , Enke   B., , Ghofrani   S., , Seeger   W., , Grimminger   F. . Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. . Am J Respir Crit Care Med . 2003; ;167: 8 : 1139– 1141 .
    [Google Scholar]
  219. [220]. Reichenberger   F., , Voswinckel   R., , Enke   B., , Rutsch   M., , El Fechtali   E., , Schmehl   T., , Olschewski   H., , Schermuly   R., , Weissmann   N., , Ghofrani   HA., , Grimminger   F., , Mayer   E., , Seeger   W. . Long-term treatment with sildenafil in chronic thromboembolic pulmonary hypertension. . Eur Respir J . 2007; ;30: 5 : 922– 927 .
    [Google Scholar]
  220. [221]. Suntharalingam   J., , Treacy   CM., , Doughty   NJ., , Goldsmith   K., , Soon   E., , Toshner   MR., , Sheares   KK., , Hughes   R., , Morrell   NW., , Pepke-Zaba   J. . Long-term use of sildenafil in inoperable chronic thromboembolic pulmonary hypertension. . Chest . 2008; ;134: 2 : 229– 236 .
    [Google Scholar]
  221. [222]. Ghofrani   HA., , D'Armini   AM., , Grimminger   F., , Hoeper   MM., , Jansa   P., , Kim   NH., , Mayer   E., , Simonneau   G., , Wilkins   MR., , Fritsch   A., , Neuser   D., , Weimann   G., , Wang   C., , CHEST-1 Study Group. . Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. . N Engl J Med . 2013; ;369: 4 : 319– 329 .
    [Google Scholar]
  222. [223]. Hsu   AR., , Barnholt   KE., , Grundmann   NK., , Lin   JH., , McCallum   SW., , Friedlander   AL. . Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. . J Appl Physiol . 2006; ;100: 6 : 2031– 2040 .
    [Google Scholar]
  223. [224]. Richalet   JP., , Gratadour   P., , Robach   P., , Pham   I., , Déchaux   M., , Joncquiert-Latarjet   A., , Mollard   P., , Brugniaux   J., , Cornolo   J. . Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. . Am J Respir Crit Care Med . 2005; ;171: 3 : 275– 281 .
    [Google Scholar]
  224. [225]. Aldashev   AA., , Kojonazarov   BK., , Amatov   TA., , Sooronbaev   TM., , Mirrakhimov   MM., , Morrell   NW., , Wharton   J., , Wilkins   MR. . Phosphodiesterase type 5 and high altitude pulmonary hypertension. . Thorax . 2005; ;60: 8 : 683– 687 .
    [Google Scholar]
  225. [226]. Ghofrani   HA., , Reichenberger   F., , Kohstall   MG., , Mrosek   EH., , Seeger   T., , Olschewski   H., , Seeger   W., , Grimminger   F. . Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: A randomized, double-blind, placebo-controlled crossover trial. . Ann Intern Med . 2004; ;141: 3 : 169– 177 .
    [Google Scholar]
  226. [227]. Reichenberger   F., , Kohstall   MG., , Seeger   T., , Olschewski   H., , Grimminger   F., , Seeger   W., , Ghofrani   HA. . Effect of sildenafil on hypoxia-induced changes in pulmonary circulation and right ventricular function. . Respir Physiol Neurobiol . 2007; ;159: 2 : 196– 201 .
    [Google Scholar]
  227. [228]. Bates   MG., , Thompson   AA., , Baillie   JK., , Sutherland   AI., , Irving   JB., , Hirani   N., , Webb   DJ. . Sildenafil citrate for the prevention of high altitude hypoxic pulmonary hypertension: Double blind, randomized, placebo-controlled trial. . High Alt Med Biol . 2011; ;12: 3 : 207– 214 .
    [Google Scholar]
  228. [229]. Faoro   V., , Lamotte   M., , Deboeck   G., , Pavelescu   A., , Huez   S., , Guenard   H., , Martinot   JB., , Naeije   R. . Effects of sildenafil on exercise capacity in hypoxic normal subjects. . High Alt Med Biol . 2007; ;8: 2 : 155– 163 .
    [Google Scholar]
  229. [230]. Maggiorini   M., , Brunner-La Rocca   HP., , Peth   S., , Fischler   M., , Böhm   T., , Bernheim   A., , Kiencke   S., , Bloch   KE., , Dehnert   C., , Naeije   R., , Lehmann   T., , Bärtsch   P., , Mairbäurl   H. . Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: A randomized trial. . Ann Intern Med . 2006; ;145: 7 : 497– 506 .
    [Google Scholar]
  230. [231]. Xu   Y., , Liu   Y., , Liu   J., , Qian   G. . Meta-analysis of clinical efficacy of sildenafil, a phosphodiesterase type-5 inhibitor on high altitude hypoxia and its complications. . High Alt Med Biol . 2014; ;15: 1 : 46– 51 .
    [Google Scholar]
  231. [232]. Travadi   JN., , Patole   SK. . Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: A review. . Pediatr Pulmonol . 2003; ;36: 6 : 529– 535 .
    [Google Scholar]
  232. [233]. Scipioni   A., , Giorgi   M., , Nuccetelli   V., , Stefanini   S. . Immunohistochemical localisation of PDE5 in rat lung during pre- and postnatal development. . J Biomed Biotechnol . 2009; ;2009: : 1– 7 .
    [Google Scholar]
  233. [234]. Jaillard   S., , Larrue   B., , Deruelle   P., , Delelis   A., , Rakza   T., , Butrous   G., , Storme   L. . Effects of phosphodiesterase 5 inhibitor on pulmonary vascular reactivity in the fetal lamb. . Ann Thorac Surg . 2006; ;81: 3 : 935– 942 .
    [Google Scholar]
  234. [235]. Larrue   B., , Jaillard   S., , Lorthioir   M., , Roubliova   X., , Butrous   G., , Rakza   T., , Warembourg   H., , Storme   L. . Pulmonary vascular effects of sildenafil on the development of chronic pulmonary hypertension in the ovine fetus. . Am J Physiol Lung Cell Mol Physiol . 2005; ;288: 6 : L1193– L1200 .
    [Google Scholar]
  235. [236]. Atz   AM., , Wessel   DL. . Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. . Anesthesiology . 1999; ;91: 1 : 307– 310 .
    [Google Scholar]
  236. [237]. Bigatello   LM., , Hess   D., , Dennehy   KC., , Medoff   BD., , Hurford   WE. . Sildenafil can increase the response to inhaled nitric oxide. . Anesthesiology . 2000; ;92: 6 : 1827 .
    [Google Scholar]
  237. [238]. Miller   OI., , Tang   SF., , Keech   A., , Pigott   NB., , Beller   E., , Celermajer   DS. . Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: A randomised double-blind study. . Lancet . 2000; ;356: 9240 : 1464– 1469 .
    [Google Scholar]
  238. [239]. Abrams   D., , Schulze-Neick   I., , Magee   AG. . Sildenafil as a selective pulmonary vasodilator in childhood primary pulmonary hypertension. . Heart . 2000; ;84: 2 : e4 .
    [Google Scholar]
  239. [240]. Baquero   H., , Soliz   A., , Neira   F., , Venegas   ME., , Sola   A. . Oral Sildenafil in infants with persistent pulmonary hypertension of the newborn: A pilot randomized blinded study. . Pediatrics . 2006; ;117: 4 : 1077– 1083 .
    [Google Scholar]
  240. [241]. Steinhorn   RH., , Kinsella   JP., , Pierce   C., , Butrous   G., , Dilleen   M., , Oakes   M., , Wessel   DL. . Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. . J Pediatr . 2009; ;155: 6 : 841– 847 .
    [Google Scholar]
  241. [242]. Steinhorn   RH., , Kinsella   JP., , Butrous   G., , Dilleen   M., , Oakes   M., , Wessel   DL. . Abstract 2768: Open-Label, Multicentre, Pharmacokinetic Study of IV Sildenafil in the Treatment of Neonates With Persistent Pulmonary Hypertension of the Newborn (PPHN). . Circulation . 2007; ;116: 16 Suppl : II_614 .
    [Google Scholar]
  242. [243]. Schulze-Neick   I., , Hartenstein   P., , Li   J., , Stiller   B., , Nagdyman   N., , Hübler   M., , Butrous   G., , Petros   A., , Lange   P., , Redington   AN. . Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. . Circulation . 2003; ;108: 10 suppl 1 : II167– II173 .
    [Google Scholar]
  243. [244]. Fraisse   A., , Butrous   G., , Taylor   M., , Oakes   M., , Dilleen   M., , Wessel   D. . Intravenous sildenafil for postoperative pulmonary hypertension in children with congenital heart disease. . Intensive Care Med . 2011; ;37: 3 : 502– 509 .
    [Google Scholar]
  244. [245]. Tunks   RD., , Barker   PCA., , Benjamin   DK., , Cohen-Wolkowiez   M., , Fleming   GA., , Laughon   M., , Li   JS., , Hill   KD. . Sildenafil exposure and hemodynamic effect after fontan surgery. . Pediatr Crit Care Med . 2014; ;15: 1 : 28– 34 .
    [Google Scholar]
  245. [246]. Douwes   JM., , Roofthooft   MTR., , Loon   RLEV., , Ploegstra   M-J., , Bartelds   B., , Hillege   HL., , Berger   RM. . Sildenafil add-on therapy in paediatric pulmonary arterial hypertension, experiences of a national referral centre. . Heart . 2014; ;100: 3 : 224– 230 .
    [Google Scholar]
  246. [247]. van Loon   RL., , Roofthooft   MT., , van Osch-Gevers   M., , Delhaas   T., , Strengers   JL., , Blom   NA., , Backx   A., , Berger   RM. . Clinical characterization of pediatric pulmonary hypertension: Complex presentation and diagnosis. . J Pediatr . 2009; ;155: 2 : 176– 82e1 .
    [Google Scholar]
  247. [248]. Cerro   MJ., , Abman   S., , Diaz   G., , Freudenthal   AH., , Freudenthal   F., , Harikrishnan   S., , Haworth   SG., , Ivy   D., , Lopes   AA., , Raj   JU., , Sandoval   J., , Stenmark   K., , Adatia   I. . A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: Report from the PVRI pediatric taskforce. . Panama Pulm Circ . 2011; ;1: 2 : 286– 298 .
    [Google Scholar]
  248. [249]. Lammers   AE., , Adatia   I., , Cerro   MJ., , Diaz   G., , Freudenthal   AH., , Freudenthal   F., , Harikrishnan   S., , Ivy   D., , Lopes   AA., , Raj   JU., , Sandoval   J., , Stenmark   K., , Haworth   SG. . Functional classification of pulmonary hypertension in children: Report from the PVRI pediatric taskforce. . Panama Pulm Circ . 2011; ;1: 2 : 280– 285 .
    [Google Scholar]
  249. [250]. Barst   RJ., , Ertel   SI., , Beghetti   M., , Ivy   DD. . Pulmonary arterial hypertension: A comparison between children and adults. . Eur Respir J . 2011; ;37: 3 : 665– 677 .
    [Google Scholar]
  250. [251]. Humpl   T., , Reyes   JT., , Holtby   H., , Stephens   D., , Adatia   I. . Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension twelve-month clinical trial of a single-drug, open-label, pilot study. . Circulation . 2005; ;111: 24 : 3274– 3280 .
    [Google Scholar]
  251. [252]. Barst   RJ., , Ivy   DD., , Gaitan   G., , Szatmari   A., , Rudzinski   A., , Garcia   AE., , Sastry   BK., , Pulido   T., , Layton   GR., , Serdarevic-Pehar   M., , Wessel   DL. . A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. . Circulation . 2012; ;125: 2 : 324– 334 .
    [Google Scholar]
  252. [253]. Barst   RJ., , Beghetti   M., , Pulido   T., , Layton   G., , Konourina   I., , Zhang   M., , Ivy   DD., , STARTS-2 Investigators. . STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. . Circulation . 2014; ;129: 19 : 1914– 1923 .
    [Google Scholar]
  253. [254]. Abman   SH., , Kinsella   JP., , Rosenzweig   EB., , Krishnan   U., , Kulik   T., , Mullen   M., , Wessel   DL., , Steinhorn   R., , Adatia   I., , Hanna   B., , Feinstein   J., , Fineman   J., , Raj   U., , Humpl   T., , Pediatric Pulmonary Hypertension Network (PPHNet). . Implications of the U.S. food and drug administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension. . Am J Respir Crit Care Med . 2013; ;187: 6 : 572– 575 .
    [Google Scholar]
  254. [255]. US Food and Drug Administration. FDA Drug Safety Communication: FDA recommends against use of Revatio (sildenafil) in children with pulmonary hypertension [Internet]. Available from: http://www.fda.gov/Drugs/DrugSafety/ucm317123.htm .
  255. [256]. McElhinney   DB. . A new START for sildenafil in pediatric pulmonary hypertension: Reframing the dose-survival relationship in the STARTS-2 trial. . Circulation . 2014; ;129: 19 : 1905– 1908 .
    [Google Scholar]
  256. [257]. Barst   RJ., , Beghetti   M., , Pulido   T., , Layton   G., , Konourina   I., , Zhang   M., , Ivy   DD., , STARTS-2 Investigators. . STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. . Circulation . 2014; ;129: 19 : 1914– 1923 .
    [Google Scholar]
  257. [258]. Kang   KK., , Ahn   GJ., , Sohn   YS., , Ahn   BO., , Kim   WB. . DA-8159, a new PDE5 inhibitor, attenuates the development of compensatory right ventricular hypertrophy in a rat model of pulmonary hypertension. . J Int Med Res . 2003; ;31: 6 : 517– 528 .
    [Google Scholar]
  258. [259]. Nagendran   J., , Sutendra   G., , Paterson   I., , Champion   HC., , Webster   L., , Chiu   B., , Haromy   A., , Rebeyka   IM., , Ross   DB., , Michelakis   ED. . Endothelin axis is upregulated in human and rat right ventricular hypertrophy. . Circ Res . 2013; ;112: 2 : 347– 354 .
    [Google Scholar]
  259. [260]. Xie   Y-P., , Chen   B., , Sanders   P., , Guo   A., , Li   Y., , Zimmerman   K., , Wang   LC., , Weiss   RM., , Grumbach   IM., , Anderson   ME., , Song   LS. . Sildenafil prevents and reverses transverse-tubule remodeling and Ca2+ handling dysfunction in right ventricle failure induced by pulmonary artery hypertension. . Hypertension . 2012; ;59: 2 : 355– 362 .
    [Google Scholar]
  260. [261]. Friedberg   MK., , Redington   AN. . Right versus left ventricular failure differences, similarities, and interactions. . Circulation . 2014; ;129: 9 : 1033– 1044 .
    [Google Scholar]
  261. [262]. Senzaki   H., , Smith   CJ., , Juang   GJ., , Isoda   T., , Mayer   SP., , Ohler   A., , Paolocci   N., , Tomaselli   GF., , Hare   JM., , Kass   DA. . Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. . FASEB J . 2001; ;15: 10 : 1718– 1726 .
    [Google Scholar]
  262. [263]. Takimoto   E., , Champion   HC., , Li   M., , Belardi   D., , Ren   S., , Rodriguez   ER., , Bedja   D., , Gabrielson   KL., , Wang   Y., , Kass   DA. . Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. . Nat Med . 2005; ;11: 2 : 214– 222 .
    [Google Scholar]
  263. [264]. Kukreja   RC., , Salloum   F., , Das   A., , Ockaili   R., , Yin   C., , Bremer   YA., , Fisher   PW., , Wittkamp   M., , Hawkins   J., , Chou   E., , Kukreja   AK., , Wang   X., , Marwaha   VR., , Xi   L. . Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. . Vascul Pharmacol . 2005; ;42: 5-6 : 219– 232 .
    [Google Scholar]
  264. [265]. Salloum   F., , Yin   C., , Xi   L., , Kukreja   RC. . Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. . Circ Res . 2003; ;92: 6 : 595– 597 .
    [Google Scholar]
  265. [266]. Das   A., , Xi   L., , Kukreja   RC. . Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. . J Biol Chem . 2005; ;280: 13 : 12944– 12955 .
    [Google Scholar]
  266. [267]. Sahara   M., , Sata   M., , Morita   T., , Nakajima   T., , Hirata   Y., , Nagai   R. . A phosphodiesterase-5 inhibitor vardenafil enhances angiogenesis through a protein kinase G-dependent hypoxia-inducible factor-1/vascular endothelial growth factor pathway. . Arterioscler Thromb Vasc Biol . 2010; ;30: 7 : 1315– 1324 .
    [Google Scholar]
  267. [268]. Lewis   GD., , Lachmann   J., , Camuso   J., , Lepore   JJ., , Shin   J., , Martinovic   ME., , Systrom   DM., , Bloch   KD., , Semigran   MJ. . Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. . Circulation . 2007; ;115: 1 : 59– 66 .
    [Google Scholar]
  268. [269]. Lewis   GD., , Shah   R., , Shahzad   K., , Camuso   JM., , Pappagianopoulos   PP., , Hung   J., , Tawakol   A., , Gerszten   RE., , Systrom   DM., , Bloch   KD., , Semigran   MJ. . Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. . Circulation . 2007; ;116: 14 : 1555– 1562 .
    [Google Scholar]
  269. [270]. Guazzi   M., , Vicenzi   M., , Arena   R., , Guazzi   MD. . PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure results of a 1-year, prospective, randomized, placebo-controlled study. . Circ Heart Fail . 2011; ;4: 1 : 8– 17 .
    [Google Scholar]
  270. [271]. Redfield   MM., , Borlaug   BA., , Lewis   GD., , Mohammed   SF., , Semigran   MJ., , Lewinter   MM., , Deswal   A., , Hernandez   AF., , Lee   KL., , Braunwald   E., , Heart Failure Clinical Research Network. . PhosphdiesteRasE-5 inhibition to improve clinical status and exercise capacity in diastolic heart failure (RELAX) trial: Rationale and design. . Circ Heart Fail . 2012; ;5: 5 : 653– 659 .
    [Google Scholar]
  271. [272]. Borlaug   B., , Lewis   G., , McNulty   S., , Semigran   M., , LeWinter   M., , Chen   H., , Lin   G., , Anstrom   K., , Velazquez   E., , Shah   M., , Margulies   K., , Redfield   M. . Diverging effects of sildenafil on ventricular-vascular function in HFPEF. . J Am Coll Cardiol . 2014; ;63: 12_S , Available from: http://dx.doi.org/10.1016/S0735-1097(14)60759-2. .
    [Google Scholar]
  272. [273]. Sharma   K., , Kass   DA. . Heart failure with preserved ejection fraction mechanisms, clinical features, and therapies. . Circ Res . 2014; ;115: 1 : 79– 96 .
    [Google Scholar]
  273. [274]. Melenovsky   V., , Hwang   S-J., , Lin   G., , Redfield   MM., , Borlaug   BA. . Right heart dysfunction in heart failure with preserved ejection fraction. . Eur Heart J . pii: ehu193. [Epub ahead of print]   2014; .
    [Google Scholar]
  274. [275]. Mohammed   SF., , Borlaug   BA., , McNulty   S., , Lewis   GD., , Lin   G., , Zakeri   R., , Semigran   MJ., , LeWinter   M., , Hernandez   AF., , Braunwald   E., , Redfield   MM. . Resting ventricular-vascular function and exercise capacity in heart failure with preserved ejection fraction: A RELAX trial ancillary study. . Circ Heart Fail . 2014; ;7: 4 : 580– 589 .
    [Google Scholar]
  275. [276]. Zakeri   R., , Borlaug   BA., , McNulty   SE., , Mohammed   SF., , Lewis   GD., , Semigran   MJ., , Deswal   A., , LeWinter   M., , Hernandez   AF., , Braunwald   E., , Redfield   MM. . Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction A RELAX trial ancillary study. . Circ Heart Fail . 2014; ;7: 1 : 123– 130 .
    [Google Scholar]
  276. [277]. Minai   OA., , Chaouat   A., , Adnot   S. . Pulmonary hypertension in COPD: Epidemiology, significance, and management pulmonary vascular disease: The global perspective. . Chest . 2010; ;137: 6_suppl : 39S– 51S .
    [Google Scholar]
  277. [278]. Voelkel   NF., , Cool   CD. . Pulmonary vascular involvement in chronic obstructive pulmonary disease. . Eur Respir J . 2003; ;22: 46 suppl : 28s– 32s .
    [Google Scholar]
  278. [279]. Barberà   JA. . Chronic obstructive pulmonary disease: A Disease of the endothelium?.   Am J Respir Crit Care Med . 2013; ;188: 1 : 5– 7 .
    [Google Scholar]
  279. [280]. Goudie   A., , Hopkinson   P., , Anderson   W., , Lipworth   B., , Struthers   A. . The effects of sildenafil on lung function in COPD. . Eur Respir J . 2012; ;40: Suppl 56 : P2188 .
    [Google Scholar]
  280. [281]. Wang   T., , Liu   Y., , Chen   L., , Wang   X., , Hu   XR., , Feng   YL., , Liu   DS., , Xu   D., , Duan   YP., , Lin   J., , Ou   XM., , Wen   FQ. . Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats. . Eur Respir J . 2009; ;33: 5 : 1122– 1132 .
    [Google Scholar]
  281. [282]. Ghofrani   HA., , Wiedemann   R., , Rose   F., , Schermuly   RT., , Olschewski   H., , Weissmann   N., , Gunther   A., , Walmrath   D., , Seeger   W., , Grimminger   F. . Sildenafil for treatment of lung fibrosis and pulmonary hypertension: A randomised controlled trial. . Lancet . 2002; ;360: 9337 : 895– 900 .
    [Google Scholar]
  282. [283]. Amen   EM., , Becker   E-M., , Truebel   H. . Analysis of V/Q-matching—a safety biomarker in pulmonary drug development?.   Biomarkers . 2011; ;16: S1 : S5– 10 .
    [Google Scholar]
  283. [284]. Alp   S., , Skrygan   M., , Schmidt   WE., , Bastian   A. . Sildenafil improves hemodynamic parameters in COPD—an investigation of six patients. . Pulm Pharmacol Ther . 2006; ;19: 6 : 386– 390 .
    [Google Scholar]
  284. [285]. Madden   BP., , Allenby   M., , Loke   T-K., , Sheth   A. . A potential role for sildenafil in the management of pulmonary hypertension in patients with parenchymal lung disease. . Vascul Pharmacol . 2006; ;44: 5 : 372– 376 .
    [Google Scholar]
  285. [286]. Naeije   R., , Boerrigter   BG. . Pulmonary hypertension at exercise in COPD: Does it matter?.   Eur Respir J . 2013; ;41: 5 : 1002– 1004 .
    [Google Scholar]
  286. [287]. Naeije   R. . Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. . Proc Am Thorac Soc . 2005; ;2: 1 : 20– 22 .
    [Google Scholar]
  287. [288]. Blanco   I., , Santos   S., , Gea   J., , Güell   R., , Torres   F., , Gimeno-Santos   E., , Rodriguez   DA., , Vilaró   J., , Gómez   B., , Roca   J., , Barberà   JA. . Sildenafil to improve respiratory rehabilitation outcomes in COPD: A controlled trial. . Eur Respir J . 2013; ;42: 4 : 982– 992 .
    [Google Scholar]
  288. [289]. Goudie   AR., , Lipworth   BJ., , Hopkinson   PJ., , Wei   L., , Struthers   AD. . Tadalafil in patients with chronic obstructive pulmonary disease: A randomised, double-blind, parallel-group, placebo-controlled trial. . Lancet Respir Med . 2014; ;2: 4 : 293– 300 .
    [Google Scholar]
  289. [290]. Holverda   S., , Rietema   H., , Bogaard   HJ., , Westerhof   N., , Postmus   PE., , Boonstra   A., , Vonk-Noordegraaf   A. . Acute effects of sildenafil on exercise pulmonary hemodynamics and capacity in patients with COPD. . Pulm Pharmacol Ther . 2008; ;21: 3 : 558– 564 .
    [Google Scholar]
  290. [291]. Lederer   DJ., , Bartels   MN., , Schluger   NW., , Brogan   F., , Jellen   P., , Thomashow   BM., , Kawut   SM. . Sildenafil for chronic obstructive pulmonary disease: A randomized crossover trial. . COPD . 2012; ;9: 3 : 268– 275 .
    [Google Scholar]
  291. [292]. Maron   BA., , Goldstein   RH., , Rounds   SI., , Shapiro   S., , Jankowich   M., , Garshick   E., , Moy   ML., , Gagnon   D., , Choudhary   G. . Study design and rationale for investigating phosphodiesterase type 5 inhibition for the treatment of pulmonary hypertension due to chronic obstructive lung disease: The TADA-PHiLD (TADAlafil for pulmonary hypertension associated with chronic obstructive lung disease) trial. . Pulm Circ . 2013; ;3: 4 : 889– 897 .
    [Google Scholar]
  292. [293]. Hurdman   J., , Condliffe   R., , Elliot   CA., , Swift   A., , Rajaram   S., , Davies   C., , Hill   C., , Hamilton   N., , Armstrong   IJ., , Billings   C., , Pollard   L., , Wild   JM., , Lawrie   A., , Lawson   R., , Sabroe   I., , Kiely   DG. . Pulmonary hypertension in COPD: Results from the ASPIRE registry. . Eur Respir J . 2013; ;41: 6 : 1292– 1301 .
    [Google Scholar]
  293. [294]. Collard   HR., , Anstrom   KJ., , Schwarz   MI., , Zisman   DA. . SIldenafil improves walk distance in idiopathic pulmonary fibrosis. . Chest . 2007; ;131: 3 : 897– 899 .
    [Google Scholar]
  294. [295]. Zisman   DA., , Schwarz   M., , Anstrom   KJ., , Collard   HR., , Flaherty   KR., , Hunninghake   GW. . A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. . N Engl J Med . 2010; ;363: 7 : 620– 628 .
    [Google Scholar]
  295. [296]. Nathan   SD., , King   CS. . Treatment of pulmonary hypertension in idiopathic pulmonary fibrosis: Shortfall in efficacy or trial design?.   Drug Des Devel Ther . 2014; ;8: : 875– 885 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.42
Loading
/content/journals/10.5339/gcsp.2014.42
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error