1887
Volume 2014, Issue 3
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

Phosphodiesterase inhibitors (PDE) can be used as therapeutic agents for various diseases such as dementia, depression, schizophrenia and erectile dysfunction in men, as well as congestive heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, other inflammatory diseases, diabetes and various other conditions. In this review we will concentrate on one type of PDE, mainly PDE5 and its role in pulmonary vascular diseases.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.42
2014-11-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/3/gcsp.2014.42.html?itemId=/content/journals/10.5339/gcsp.2014.42&mimeType=html&fmt=ahah

References

  1. Liras S, Bell AS. Phosphodiesterases and Their Inhibitors. John Wiley & Sons Weinheim, Germany 2014:p.238.
    [Google Scholar]
  2. Amsallem E, Kasparian C, Haddour G, Boissel J-P, Nony P. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst Rev. 2005; 1:CD002230. Available from: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002230.pub2/pdf/standard..
    [Google Scholar]
  3. Doherty AM. Phosphodiesterase 4 inhibitors as novel anti-inflammatory agents. Curr Opin Chem Biol. 1999; 3:4:466473.
    [Google Scholar]
  4. Huang Z, Ducharme Y, Macdonald D, Robichaud A. The next generation of PDE4 inhibitors. Curr Opin Chem Biol. 2001; 5:4:432438.
    [Google Scholar]
  5. Milani E, Nikfar S, Khorasani R, Zamani MJ, Abdollahi M. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp Biochem Physiol Part C Toxicol Pharmacol. 2005; 140:2:251255.
    [Google Scholar]
  6. Conti M, Jin S-LC. The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 1999; 63::138.
    [Google Scholar]
  7. Frumkin LR. The pharmacological treatment of pulmonary arterial hypertension. Pharmacol Rev. 2012; 64:3:583620.
    [Google Scholar]
  8. Rotella DP. Phosphodiesterase 5 inhibitors: Current status and potential applications. Nat Rev Drug Discov. 2002; 1:9:674682.
    [Google Scholar]
  9. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288:5789:373376.
    [Google Scholar]
  10. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci. 1987; 84:24:92659269.
    [Google Scholar]
  11. Kuhn M. Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol. 2012; 166:2:522531.
    [Google Scholar]
  12. Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther. 2009; 122:3:216238.
    [Google Scholar]
  13. Francis SH, Busch JL, Corbin JD. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010; 62:3:525563.
    [Google Scholar]
  14. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation. 2004; 109:2:159165.
    [Google Scholar]
  15. Tuder R. Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med. 2009; 30:04:376385.
    [Google Scholar]
  16. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010; 90:4:12911335.
    [Google Scholar]
  17. Murad F. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006; 355:19:20032011.
    [Google Scholar]
  18. Chen C, Watson G, Zhao L. Cyclic guanosine monophosphate signalling pathway in pulmonary arterial hypertension. Vascul Pharmacol. 2013; 58:3:211218.
    [Google Scholar]
  19. Jeon YH, Heo YS, Kim CM, Hyun YL, Lee TG, Ro S, Cho JM. Phosphodiesterase: Overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci. 2005; 62:11:11981220.
    [Google Scholar]
  20. Strada SJ, Uzunov P, Weiss B. Ontogenetic development of a phosphodiesterase activator and the multiple forms of cyclic amp phosphodiesterase of rat brain. J Neurochem. 1974; 23:6:10971103.
    [Google Scholar]
  21. Beavo J, Houslay MD. Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action. John Wiley & Sons; San Francisco, CA USA 1990.
    [Google Scholar]
  22. Appleman MM, Thompson WJ, Russell TR. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1973; 3::6598.
    [Google Scholar]
  23. Wells JN, Hardman JG. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1976; 8::119143.
    [Google Scholar]
  24. Appleman MM, Thompson WJ. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry (Mosc). 1971; 10:2:311316.
    [Google Scholar]
  25. Beavo JA. Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol Rev. 1995; 75:4:725748.
    [Google Scholar]
  26. Conti M. Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol Endocrinol. 2000; 14:9:13171327.
    [Google Scholar]
  27. Manganiello VC, Degerman E. Cyclic nucleotide phosphodiesterases (PDEs): Diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents. Thromb Haemost. 1999; 82:2:407411.
    [Google Scholar]
  28. Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem. 1998; 273:25:1555315558.
    [Google Scholar]
  29. Surapisitchat J, Beavo JA. Chapter 173 – phosphodiesterase families. In: Bradshaw RADennis EA, eds. Handbook of Cell Signaling. 2nd ed. San Diego: Available from: http://www.sciencedirect.com/science/article/pii/B978012374145500173X  Academic Press 2010;:14091414.
    [Google Scholar]
  30. Francis SH, Colbran JL, McAllister-Lucas LM, Corbin JD. Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. J Biol Chem. 1994; 269:36:2247722480.
    [Google Scholar]
  31. Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature. 2003; 425:6953:98102.
    [Google Scholar]
  32. Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. Glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004; 15:2:279286.
    [Google Scholar]
  33. Corbin JD, Blount MA, Weeks JL 2nd, Beasley A, Kuhn KP, Ho YS, Saidi LF, Hurley JH, Kotera J, Francis SH. [3H]Sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol. 2003; 63:6:13641372.
    [Google Scholar]
  34. Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol Rev. 2011; 91:2:651690.
    [Google Scholar]
  35. Zoraghi R, Corbin JD, Francis SH. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol. 2004; 65:2:267278.
    [Google Scholar]
  36. Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang X-B, Beavo JA. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J. 2003; 22:3:469478.
    [Google Scholar]
  37. Corbin JD, Turko Be IV, asley A, Francis SH. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem. 2000; 267:9:27602767.
    [Google Scholar]
  38. Yanaka N, Kotera J, Ohtsuka A, Akatsuka H, Imai Y, Michibata H, Fujishige K, Kawai E, Takebayashi S, Okumura K, Omori K. Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. Eur J Biochem. 1998; 255:2:391399.
    [Google Scholar]
  39. Lin C-S, Lau A, Tu R, Lue TF. Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem Biophys Res Commun. 2000; 268:2:628635.
    [Google Scholar]
  40. Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, Wolda SL, Jones BA, Howard ML, McAllister-Lucas LM, Sonnenburg WK, Francis SH, Corbin JD, Beavo JA, Ferguson K. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene. 1998; 216:1:139147.
    [Google Scholar]
  41. Lin C-S. Tissue expression, distribution, and regulation of PDE5. Int J Impot Res. 2004; 16:S1:S810.
    [Google Scholar]
  42. Lin C-S, Lau A, Tu R, Lue TF. Identification of three alternative first exons and an intronic promoter of human PDE5A gene. Biochem Biophys Res Commun. 2000; 268:2:596602.
    [Google Scholar]
  43. Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol. 1999; 83:5, Suppl 1:312.
    [Google Scholar]
  44. Sly MK, Eberhart RC, Prager MD. Anti-platelet action of nitric oxide and selective phosphodiesterase inhibitors. Shock. 1997; 8::115118.
    [Google Scholar]
  45. Berkels R, Klotz T, Sticht G, Englemann U, Klaus W. Modulation of human platelet aggregation by the phosphodiesterase type 5 inhibitor sildenafil. J Cardiovasc Pharmacol. 2001; 37:4:413421.
    [Google Scholar]
  46. Pannbacker RG, Fleischman DE, Reed DW. Cyclic nucleotide phosphodiesterase: High activity in a mammalian photoreceptor. Science. 1972; 175:4023:757758.
    [Google Scholar]
  47. Baehr W, Devlin MJ, Applebury ML. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem. 1979; 254:22:1166911677.
    [Google Scholar]
  48. Lincoln TM, Hall CL, Park CR, Corbin JD. Guanosine 3′: 5′-cyclic monophosphate binding proteins in rat tissues. Proc Natl Acad Sci. 1976; 73:8:25592563.
    [Google Scholar]
  49. Coquil JF, Franks DJ, Wells JN, Dupuis M, Hamet P. Characteristics of a new binding protein distinct from the kinase for guanosine 3′:5′-monophosphate in rat platelets. Biochim Biophys Acta. 1980; 631:1:148165.
    [Google Scholar]
  50. Beavo JA, Hansen RS, Harrison SA, Hurwitz RL, Martins TJ, Mumby MC. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982; 28:3:387410.
    [Google Scholar]
  51. Manganiello VC, Murata T, Taira M, Belfrage P, Degerman E. Diversity in cyclic nucleotide phosphodiesterase isoenzyme families. Arch Biochem Biophys. 1995; 322:1:113.
    [Google Scholar]
  52. Lin C-S, Lin G, Xin Z-C, Lue TF. Expression, distribution and regulation of phosphodiesterase 5. Curr Pharm Des. 2006; 12:27:34393457.
    [Google Scholar]
  53. Corbin JD, Beasley A, Blount MA, Francis SH. High lung PDE5: A strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun. 2005; 334:3:930938.
    [Google Scholar]
  54. Wharton J, Strange JW, Møller GM, Growcott EJ, Ren X, Franklyn AP, Phillips SC, Wilkins MR. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med. 2005; 172:1:105113.
    [Google Scholar]
  55. Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007; 116:3:238248.
    [Google Scholar]
  56. Pokreisz P, Vandenwijngaert S, Bito V, Van den Bergh A, Lenaerts I, Busch C, Marsboom G, Gheysens O, Vermeersch P, Biesmans L, Liu X, Gillijns H, Pellens M, Van Lommel A, Buys E, Schoonjans L, Vanhaecke J, Verbeken E, Sipido K, Herijgers P, Bloch KD, Janssens SP. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation. 2009; 119:3:408416.
    [Google Scholar]
  57. Shan X, Quaile MP, Monk JK, French B, Cappola TP, Margulies KB. Differential expression of PDE5 in failing and nonfailing human myocardium. Circ Heart Fail. 2012; 5:1:7986.
    [Google Scholar]
  58. Lu Z, Xu X, Hu X, Lee S, Traverse JH, Zhu G, Fassett J, Tao Y, Zhang P, dos Remedios C, Pritzker M, Hall JL, Garry DJ, Chen Y. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation. 2010; 121:13:14741483.
    [Google Scholar]
  59. Gebska MA, Stevenson BK, Hemnes AR, Bivalacqua TJ, Haile A, Hesketh GG, Murray CI, Zaiman AL, Halushka MK, Krongkaew N, Strong TD, Cooke CA, El-Haddad H, Tuder RM, Berkowitz DE, Champion HC. Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity. Cardiovasc Res. 2011; 90:2:353363.
    [Google Scholar]
  60. Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res. 2005; 96:1:100109.
    [Google Scholar]
  61. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, Moens AL, Champion HC, Kass DA. Compartmentalization of cardiac β-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation. 2007; 115:16:21592167.
    [Google Scholar]
  62. Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D. Direct activation of PDE5 by cGMP long-term effects within NO/cGMP signaling. J Cell Biol. 2003; 160:5:719727.
    [Google Scholar]
  63. Biswas KH, Visweswariah SS. Distinct allostery induced in the cyclic GMP-binding, cyclic GMP-specific phosphodiesterase (PDE5) by cyclic gmp, sildenafil, and metal ions. J Biol Chem. 2011; 286:10:85458554.
    [Google Scholar]
  64. Rybalkina IG, Tang X-B, Rybalkin SD. Multiple affinity states of cGMP-specific phosphodiesterase for sildenafil inhibition defined by cGMP-dependent and cGMP-independent mechanisms. Mol Pharmacol. 2010; 77:4:670677.
    [Google Scholar]
  65. Corbin JD, Zoraghi R, Francis SH. Allosteric-site and catalytic-site ligand effects on PDE5 functions are associated with distinct changes in physical form of the enzyme. Cell Signal. 2009; 21:12:17681774.
    [Google Scholar]
  66. Bessay EP, Zoraghi R, Blount MA, Grimes KA, Beasley A, Francis SH, Corbin JD. Phosphorylation of phosphodiesterase-5 is promoted by a conformational change induced by sildenafil, vardenafil, or tadalafil. Front Biosci. 2007; 12::18991910.
    [Google Scholar]
  67. Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H. Multiple conformations of phosphodiesterase-5: Implications for enzyme function and drug development. J Biol Chem. 2006; 281:30:2146921479.
    [Google Scholar]
  68. Francis SH, Zoraghi R, Kotera J, Ke H, Bessay EP, Blount MA. Phosphodiesterase 5: Molecular characteristics relating to structure function and regulation. In: Beavo JAFrancis SHHouslay MD, eds. Cyclic Nucleotide Phosphodiesterases in Health and Disease. Boca Raton, FL: CRC Press 2006.
    [Google Scholar]
  69. Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA. Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem. 2002; 277:5:33103317.
    [Google Scholar]
  70. Chaumais M-C, Perrin S, Sitbon O, Simonneau G, Humbert M, Montani D. Pharmacokinetic evaluation of sildenafil as a pulmonary hypertension treatment. Expert Opin Drug Metab Toxicol. 2013; 9:9:11931205.
    [Google Scholar]
  71. Broughton BJ, Chaplen P, Knowles P, Lunt E, Pain DL, Wooldridge KRH, Ford R, Marshall S, Walker JL, Maxwell DR. New inhibitor of reagin-mediated anaphylaxis. Nature. 1974; 251::650652, doi:10.1038/251650a0 .
    [Google Scholar]
  72. Kukovetz WR, Holzmann S, Wurm A, Pöch G. Evidence for cyclic GMP-mediated relaxant effects of nitro-compounds in coronary smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1979; 310:2:129138.
    [Google Scholar]
  73. Gibson A. Phosphodiesterase 5 inhibitors and nitrergic transmission—from zaprinast to sildenafil. Eur J Pharmacol. 2001; 411:1-2:110.
    [Google Scholar]
  74. Bruzziches R, Francomano D, Gareri P, Lenzi A, Aversa A. An update on pharmacological treatment of erectile dysfunction with phosphodiesterase type 5 inhibitors. Expert Opin Pharmacother. 2013; 14:10:13331344.
    [Google Scholar]
  75. Bell AS, Brown D, Terrett NK. Pyrazolopyrimidinone antianginal agents. 1993;, US5250534 A.
    [Google Scholar]
  76. Campbell S. Science, art and drug discovery: A personal perspective. Clin Sci. 2000; 99::255260.
    [Google Scholar]
  77. Naylor AM. Endogenous neurotransmitters mediating penile erection. Br J Urol. 1998; 81:3:424431.
    [Google Scholar]
  78. Rotella DP. Tadalafil lilly ICOS. Curr Opin Investig Drugs Lond Engl. 2003; 4:1:6065.
    [Google Scholar]
  79. Coleman CI, Carabino JM, Vergara CM. Fei Wang.Vardenafil. Formulary. 2003; 38:3:131.
    [Google Scholar]
  80. Salem EA, Kendirci M, Hellstrom WJG. Udenafil, a long-acting PDE5 inhibitor for erectile dysfunction. Curr Opin Investig Drugs Lond Engl. 2006; 7:7:661669.
    [Google Scholar]
  81. Burke RM, Evans JD. Avanafil for treatment of erectile dysfunction: Review of its potential. Vasc Health Risk Manag. 2012; 8::517523.
    [Google Scholar]
  82. Paick JS, Ahn TY, Choi HK, Chung WS, Kim JJ, Kim SC, Kim SW, Lee SW, Min KS, Moon KH, Park JK, Park K, Park NC, Suh JK, Yang DY, Jung HG. Efficacy and safety of mirodenafil, a new oral phosphodiesterase type 5 inhibitor, for treatment of erectile dysfunction. J Sex Med. 2008; 5:11:26722680.
    [Google Scholar]
  83. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996; 8:2:4752.
    [Google Scholar]
  84. Jeremy JY, Ballard SA, Naylor AM, Miller MAW, Angelini GD. Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro. Br J Urol. 1997; 79:6:958963.
    [Google Scholar]
  85. Shamloul R, Ghanem H. Erectile dysfunction. The Lancet. 2013; 381:9861:153165.
    [Google Scholar]
  86. Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH, Corbin JD. Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol. 2004; 66:1:144152.
    [Google Scholar]
  87. Gresser U, Gleiter CH. Erectile dysfunction: Comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil–review of the literature. Eur J Med Res. 2002; 7:10:435446.
    [Google Scholar]
  88. Saenz de Tejada I, Angulo J, Cuevas P, Fernández A, Moncada I, Allona A, Lledó E, Körschen HG, Niewöhner U, Haning H, Pages E, Bischoff E. The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil. Int J Impot Res. 2001; 13:5:282290.
    [Google Scholar]
  89. Schwartz BG, Kloner RA. Drug interactions with phosphodiesterase-5 inhibitors used for the treatment of erectile dysfunction or pulmonary hypertension. Circulation. 2010; 122:1:8895.
    [Google Scholar]
  90. Burgess G, Hoogkamer H, Collings L, Dingemanse J. Mutual pharmacokinetic interactions between steady-state bosentan and sildenafil. Eur J Clin Pharmacol. 2008; 64:1:4350.
    [Google Scholar]
  91. Wrishko RE, Dingemanse J, Yu A, Darstein C, Phillips DL, Mitchell MI. Pharmacokinetic interaction between tadalafil and bosentan in healthy male subjects. J Clin Pharmacol. 2008; 48:5:610618.
    [Google Scholar]
  92. Muirhead GJ, Wulff MB, Fielding A, Kleinermans D, Buss N. Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. Br J Clin Pharmacol. 2000; 50:2:99107.
    [Google Scholar]
  93. Garraffo R, Lavrut T, Ferrando S, Durant J, Rouyrre N, MacGregor TR, Sabo JP, Dellamonica P. Effect of tipranavir/ritonavir combination on the pharmacokinetics of tadalafil in healthy volunteers. J Clin Pharmacol. 2011; 51:7:10711078.
    [Google Scholar]
  94. Loulergue P, Gaillard R, Mir O. Interaction involving tadalafil and CYP3A4 inhibition by ritonavir. Scand J Infect Dis. 2011; 43:3:239240.
    [Google Scholar]
  95. LEVITRA [Internet]. Available from: http://www.levitra.com/..
  96. CIALIS [Internet]. Available from: http://pi.lilly.com/us/cialis-pi.pdf..
  97. Chinello P, Cicalini S, Pichini S, Pacifici R, Tempestilli M, Petrosillo N. Sildenafil plasma concentrations in two HIV patients with pulmonary hypertension treated with ritonavir-boosted protease inhibitors. Curr HIV Res. 2012; 10:2:162164.
    [Google Scholar]
  98. Prickaerts J, Steinbusch HWM, Smits JFM, de Vente J. Possible role of nitric oxide-cyclic GMP pathway in object recognition memory: Effects of 7-nitroindazole and zaprinast. Eur J Pharmacol. 1997; 337:2-3:125136.
    [Google Scholar]
  99. Evgenov OV, Ichinose F, Evgenov NV, Gnoth MJ, Falkowski GE, Chang Y, Bloch KD, Zapol WM. Soluble guanylate cyclase activator reverses acute pulmonary hypertension and augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs. Circulation. 2004; 110:15:22532259.
    [Google Scholar]
  100. Ichinose F, Adrie C, Hurford WE, Zapol WM. Prolonged pulmonary vasodilator action of inhaled nitric oxide by zaprinast in awake lambs. J Appl Physiol. 1995; 78:4:12881295.
    [Google Scholar]
  101. Thusu KG, Morin FC 3rd, Russell JA, Steinhorn RH. The cGMP phosphodiesterase inhibitor zaprinast enhances the effect of nitric oxide. Am J Respir Crit Care Med. 1995; 152:5 Pt 1:16051610.
    [Google Scholar]
  102. Ziegler JW, Ivy DD, Wiggins JW, Kinsella JP, Clarke WR, Abman SH. Effects of dipyridamole and inhaled nitric oxide in pediatric patients with pulmonary hypertension. Am J Respir Crit Care Med. 1998; 158:5 Pt 1:13881395.
    [Google Scholar]
  103. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A, Wilkins MR. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation. 2001; 104:4:424428.
    [Google Scholar]
  104. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012; 92:1:367520.
    [Google Scholar]
  105. Euler USv, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand. 1946; 12:4:301320.
    [Google Scholar]
  106. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L. Rat pulmonary circulation after chronic hypoxia: Hemodynamic and structural features. Am J Physiol. 1979; 236:6:H818H827.
    [Google Scholar]
  107. Alexander AF. The bovine lung: Normal vascular histology and vascular lesions in high mountain disease. Respiration. 1962; 19:6:528542.
    [Google Scholar]
  108. Sebkhi A, Strange JW, Phillips SC, Wharton J, Wilkins MR. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation. 2003; 107:25:32303235.
    [Google Scholar]
  109. Maclean MR, Johnston ED, Mcculloch KM, Pooley L, Houslay MD, Sweeney G. Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: Changes in pulmonary hypertension. J Pharmacol Exp Ther. 1997; 283:2:619624.
    [Google Scholar]
  110. Hanasato N, Oka M, Muramatsu M, Nishino M, Adachi H, Fukuchi Y. E-4010, a selective phosphodiesterase 5 inhibitor, attenuates hypoxic pulmonary hypertension in rats. Am J Physiol-Lung Cell Mol Physiol. 1999; 277:2:L225L232.
    [Google Scholar]
  111. Weimann J, Ullrich R, Hromi J, Fujino Y, Clark MW, Bloch KD, Zapol WM. Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology. 2000; 92:6:17021712.
    [Google Scholar]
  112. Ichinose F, Adrie C, Hurford WE, Bloch KD, Zapol WM. Selective pulmonary vasodilation induced by aerosolized zaprinast. Anesthesiology. 1998; 88:2:410416.
    [Google Scholar]
  113. McMAHON TJ, Ignarro LJ, Kadowitz PJ. Influence of zaprinast on vascular tone and vasodilator responses in the cat pulmonary vascular bed. J Appl Physiol. 1993; 74::17041711.
    [Google Scholar]
  114. Kouyoumdjian C, Adnot S, Levame M, Eddahibi S, Bousbaa H, Raffestin B. Continuous inhalation of nitric oxide protects against development of pulmonary hypertension in chronically hypoxic rats. J Clin Invest. 1994; 94:2:578.
    [Google Scholar]
  115. Kirsch M, Kemp-Harper B, Weissmann N, Grimminger F, Schmidt HHHW. Sildenafil in hypoxic pulmonary hypertension potentiates a compensatory up-regulation of NO-cGMP signaling. FASEB J. 2008; 22:1:3040.
    [Google Scholar]
  116. Sauzeau V, Rolli-Derkinderen M, Lehoux S, Loirand G, Pacaud P. Sildenafil prevents change in RhoA expression induced by chronic hypoxia in rat pulmonary artery. Circ Res. 2003; 93:7:630637.
    [Google Scholar]
  117. Guilluy C, Sauzeau V, Rolli-Derkinderen M, Guérin P, Sagan C, Pacaud P, Loirand G. Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol. 2005; 146:7:10101018.
    [Google Scholar]
  118. Pauvert O, Bonnet S, Rousseau E, Marthan R, Savineau JP. Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats. Am J Physiol – Lung Cell Mol Physiol. 2004; 287:3:L577L583.
    [Google Scholar]
  119. Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, Ermert M, Weissmann N, Rose F, Guenther A, Walmrath D, Seeger W, Grimminger F. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004; 169:1:3945.
    [Google Scholar]
  120. Liu H, Liu Z, Guan Q. Oral sildenafil prevents and reverses the development of pulmonary hypertension in monocrotaline-treated rats. Interact Cardiovasc Thorac Surg. 2007; 6:5:608613.
    [Google Scholar]
  121. Sawamura F, Kato M, Fujita K, Nakazawa T, Beardsworth A. Tadalafil, a long-acting inhibitor of PDE5, improves pulmonary hemodynamics and survival rate of monocrotaline-induced pulmonary artery hypertension in rats. J Pharmacol Sci. 2009; 111:3:235243.
    [Google Scholar]
  122. Fan YF, Zhang R, Jiang X, Wen L, Wu DC, Liu D, Yuan P, Wang YL, Jing ZC. The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res. 2013; 99:3:395403.
    [Google Scholar]
  123. Yen CH, Leu S, Lin YC, Kao YH, Chang LT, Chua S, Fu M, Wu CJ, Sun CK, Yip HK. Sildenafil limits monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. J Cardiovasc Pharmacol. 2010; 55:6:574584.
    [Google Scholar]
  124. Bogdan S, Seferian A, Totoescu A, Dumitrache-Rujinski S, Ceausu M, Coman C, Ardelean CM, Dorobantu M, Bogdan M. Sildenafil reduces inflammation and prevents pulmonary arterial remodeling of the monocrotaline – induced disease in the wistar rats. Maedica (Buchar). 2012; 7:2:109116.
    [Google Scholar]
  125. Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov. 2006; 5:8:689702.
    [Google Scholar]
  126. Prasad S, Wilkinson J, Gatzoulis MA. Sildenafil in primary pulmonary hypertension. N Engl J Med. 2000; 343:18:1342.
    [Google Scholar]
  127. Wilkens H, Guth A, König J, Forestier N, Cremers B, Hennen B, Böhm M, Sybrecht GW. Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation. 2001; 104:11:12181222.
    [Google Scholar]
  128. Ghofrani HA, Wiedemann R, Rose F, Olschewski H, Schermuly RT, Weissmann N, Seeger W, Grimminger F. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med. 2002; 136:7:515522.
    [Google Scholar]
  129. Ss K, B D. Chronic oral sildenafil therapy in severe pulmonary artery hypertension. Indian Heart J. 2001; 54:4:404409.
    [Google Scholar]
  130. Sastry BK, Narasimhan C, Reddy NK, Anand B, Prakash GS, Raju PR, Kumar DN. A study of clinical efficacy of sildenafil in patients with primary pulmonary hypertension. Indian Heart J. 2001; 54:4:410414.
    [Google Scholar]
  131. Sastry BKS, Narasimhan C, Reddy NK, Raju BS. Clinical efficacy of sildenafil in primary pulmonary hypertension: A randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol. 2004; 43:7:11491153.
    [Google Scholar]
  132. Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension comparison with inhaled nitric oxide. Circulation. 2002; 105:20:23982403.
    [Google Scholar]
  133. Michelakis ED, Tymchak W, Noga M, Webster L, Wu XC, Lien D, Wang SH, Modry D, Archer SL. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation. 2003; 108:17:20662069.
    [Google Scholar]
  134. Lepore JJ, Maroo A, Pereira NL, Ginns LC, Dec GW, Zapol WM, Bloch KD, Semigran MJ. Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. Am J Cardiol. 2002; 90:6:677680.
    [Google Scholar]
  135. Singh B, Gupta R, Punj V, Ghose T, Sapra R, Grover DN, Kaul U. Sildenafil in the management of primary pulmonary hypertension. Indian Heart J. 2002; 54:3:297300.
    [Google Scholar]
  136. Zimmermann GS, von Wulffen W, Huppmann P, Meis T, Ihle F, Geiseler J, Leuchte HH, Tufman A, Behr J, Neurohr C. Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inhibitors. Respirology. 2014; 19:5:700706.
    [Google Scholar]
  137. Watanabe H, Ohashi K, Takeuchi K, Yamashita K, Yokoyama T, Tran QK, Satoh H, Terada H, Ohashi H, Hayashi H. Sildenafil for primary and secondary pulmonary hypertension. Clin Pharmacol Ther. 2002; 71:5:398402.
    [Google Scholar]
  138. Galiè N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G, Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group . Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005; 353:20:21482157.
    [Google Scholar]
  139. Moncada I, Jara J, Subirá D, Castaño I, Hernández C. Efficacy of sildenafil citrate at 12 hours after dosing: Re-exploring the therapeutic window. Eur Urol. 2004; 46:3:357361.
    [Google Scholar]
  140. Rubin LJ, Badesch DB, Fleming TR, Galiè N, Simonneau G, Ghofrani HA, Oakes M, Layton G, Serdarevic-Pehar M, McLaughlin VV, Barst RJ. SUPER-2 Study Group Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: The SUPER-2 study. Chest. 2011; 140:5:12741283.
    [Google Scholar]
  141. Affuso F, Palmieri EA, Di Conza P, Guardasole V, Fazio S. Tadalafil improves quality of life and exercise tolerance in idiopathic pulmonary arterial hypertension. Int J Cardiol. 2006; 108:3:429431.
    [Google Scholar]
  142. Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, Shapiro S, White RJ, Chan M, Beardsworth A, Frumkin L, Barst RJ, Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group . Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009; 119:22:28942903.
    [Google Scholar]
  143. Oudiz RJ, Brundage BH, Galiè N, Ghofrani HA, Simonneau G, Botros FT, Chan M, Beardsworth A, Barst RJ, PHIRST Study Group . Tadalafil for the treatment of pulmonary arterial hypertension: A double-blind 52-week uncontrolled extension study. J Am Coll Cardiol. 2012; 60:8:768774.
    [Google Scholar]
  144. Frantz RP, Durst L, Burger CD, Oudiz RJ, Bourge RC, Franco V, Waxman AB, McDevitt S, Walker S. Conversion from sildenafil to tadalafil: Results from the sildenafil to tadalafil in pulmonary arterial hypertension (SITAR) study. J Cardiovasc Pharmacol Ther. 2014; 19:6:550557.
    [Google Scholar]
  145. Archer SL, Michelakis ED. An evidence-based approach to the management of pulmonary arterial hypertension. Curr Opin Cardiol. 2006; 21:4:385392.
    [Google Scholar]
  146. O'Callaghan D, Gaine SP. Combination therapy and new types of agents for pulmonary arterial hypertension. Clin Chest Med. 2007; 28:1:169185.
    [Google Scholar]
  147. Kawut SM, Horn EM, Berekashvili KK, Garofano RP, Goldsmith RL, Widlitz AC, Rosenzweig EB, Kerstein D, Barst RJ. New predictors of outcome in idiopathic pulmonary arterial hypertension. Am J Cardiol. 2005; 95:2:199203.
    [Google Scholar]
  148. Badesch DB, Abman SH, Simonneau G, Rubin LJ, McLaughlin VV. Medical therapy for pulmonary arterial hypertension: Updated accp evidence-based clinical practice guidelines. Chest. 2007; 131:6:19171928.
    [Google Scholar]
  149. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association . ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009; 53:17:15731619.
    [Google Scholar]
  150. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G. ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009; 30:20:24932537.
    [Google Scholar]
  151. Galiè N, Negro L, Simonneau G. The use of combination therapy in pulmonary arterial hypertension: New developments. Eur Respir Rev. 2009; 18:113:148153.
    [Google Scholar]
  152. McGoon MD, Miller DP. REVEAL: A contemporary US pulmonary arterial hypertension registry. Eur Respir Rev. 2012; 21:123:818.
    [Google Scholar]
  153. Stiebellehner L, Petkov V, Vonbank K, Funk G, Schenk P, Ziesche R, Block LH. Long-term treatment with oral sildenafil in addition to continuous IV epoprostenol in patients with pulmonary arterial hypertension. Chest. 2003; 123:4:12931295.
    [Google Scholar]
  154. Hoeper M, Faulenbach C, Golpon H, Winkler J, Welte T, Niedermeyer J. Combination therapy with bosentan and sildenafil in idiopathic pulmonary arterial hypertension. Eur Respir J. 2004; 24:6:10071010.
    [Google Scholar]
  155. Mathai SC, Girgis RE, Fisher MR, Champion HC, Housten-Harris T, Zaiman A, Hassoun PM. Addition of sildenafil to bosentan monotherapy in pulmonary arterial hypertension. Eur Respir J. 2007; 29:3:469475.
    [Google Scholar]
  156. Porhownik NR, Al-Sharif H, Bshouty Z. Addition of sildenafil in patients with pulmonary arterial hypertension with inadequate response to bosentan monotherapy. Can Respir J J Can Thorac Soc. 2008; 15:8:427430.
    [Google Scholar]
  157. Gruenig E, Michelakis E, Vachiéry JL, Vizza CD, Meyer FJ, Doelberg M, Bach D, Dingemanse J, Galiè N. Acute hemodynamic effects of single-dose sildenafil when added to established bosentan therapy in patients with pulmonary arterial hypertension: Results of the COMPASS-1 study. J Clin Pharmacol. 2009; 49:11:13431352.
    [Google Scholar]
  158. Bendayan D, Shitrit D, Kramer MR. Combination therapy with prostacyclin and tadalafil for severe pulmonary arterial hypertension: A pilot study. Respirology. 2008; 13:6:916918.
    [Google Scholar]
  159. Zhuang Y, Jiang B, Gao H, Zhao W. Randomized study of adding tadalafil to existing ambrisentan in pulmonary arterial hypertension. Hypertens Res. 2014; 37:6:507512.
    [Google Scholar]
  160. Hirashiki A, Kondo T, Murohara T. Combination therapy adding tadalafil to existing ambrisentan in patients with pulmonary arterial hypertension. Hypertens Res. 2014; 37:6:488489.
    [Google Scholar]
  161. Barst RJ, Oudiz RJ, Beardsworth A, Brundage BH, Simonneau G, Ghofrani HA, Sundin DP, Galiè N, Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group . Tadalafil monotherapy and as add-on to background bosentan in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2011; 30:6:632643.
    [Google Scholar]
  162. McLaughlin VV, Oudiz RJ, Frost A, Tapson VF, Murali S, Channick RN, Badesch DB, Barst RJ, Hsu HH, Rubin LJ. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006; 174:11:12571263.
    [Google Scholar]
  163. Humbert M, Barst RJ, Robbins IM, Channick RN, Galiè N, Boonstra A, Rubin LJ, Horn EM, Manes A, Simonneau G. Combination of bosentan with epoprostenol in pulmonary arterial hypertension: BREATHE-2. Eur Respir J. 2004; 24:3:353359.
    [Google Scholar]
  164. Simonneau G, Rubin LJ, Galiè N, Barst RJ, Fleming TR, Frost AE, Engel PJ, Kramer MR, Burgess G, Collings L, Cossons N, Sitbon O, Badesch DB, PACES Study Group . Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: A randomized trial. Ann Intern Med. 2008; 149:8:521530.
    [Google Scholar]
  165. Simonneau G, Rubin LJ, Galiè N, Barst RJ, Fleming TR, Frost A, Engel P, Kramer MR, Serdarevic-Pehar M, Layton GR, Sitbon O, Badesch DB, PACES Study Group . Long-term sildenafil added to intravenous epoprostenol in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2014; 33:7:689697. Available from: http://www.sciencedirect.com/science/article/pii/S1053249814009978..
    [Google Scholar]
  166. Barst R. How has epoprostenol changed the outcome for patients with pulmonary arterial hypertension? Int J Clin Pract. 2010; 64::2332.
    [Google Scholar]
  167. Gomberg-Maitland M, McLaughlin V, Gulati M, Rich S. Efficacy and safety of sildenafil added to treprostinil in pulmonary hypertension. Am J Cardiol. 2005; 96:9:13341336.
    [Google Scholar]
  168. Buckley MS, Staib RL, Wicks LM. Combination therapy in the management of pulmonary arterial hypertension. Int J Clin Pract. 2013; 67::1323.
    [Google Scholar]
  169. Lunze K, Gilbert N, Mebus S, Miera O, Fehske W, Uhlemann F, Mühler EG, Ewert P, Lange PE, Berger F, Schulze-Neick I. First experience with an oral combination therapy using bosentan and sildenafil for pulmonary arterial hypertension. Eur J Clin Invest. 2006; 36::3238.
    [Google Scholar]
  170. Torres F, Gupta H, Soto F, Park M, Frey N, Murali S, Benza R. Safety and efficacy of bosentan in combination with sildenafil in pulmonary arterial hypertension: The COMPASS-3 study. Eur Respir J. 2011; 38:Suppl 55:409.
    [Google Scholar]
  171. Spence R, Mandagere A, Harrison B, Dufton C, Boinpally R. No clinically relevant pharmacokinetic and safety interactions of ambrisentan in combination with tadalafil in healthy volunteers. J Pharm Sci. 2009; 98:12:49624974.
    [Google Scholar]
  172. NIH. Study of ambrisentan and phosphodiesterase type-5 Inhibitor (PDE-5i) to treat pulmonary arterial hypertension [Internet]. Available from: www.clinicaltrials.gov/ct2/show/NCT00617305..
  173. AMBITION [Internet]. Available from: www.clinicaltrials.gov/ct2/show/NCT01178073..
  174. Kylhammar D, Persson L, Hesselstrand R, Rådegran G. Prognosis and response to first-line single and combination therapy in pulmonary arterial hypertension. Scand Cardiovasc J. 2014; 48:4:223233.
    [Google Scholar]
  175. Collins FS, Orringer EP. Pulmonary hypertension and cor pulmonale in the sickle hemoglobinopathies. Am J Med. 1982; 73:6:814821.
    [Google Scholar]
  176. Castro O, Hoque M, Brown BD. Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. Blood. 2003; 101:4:12571261.
    [Google Scholar]
  177. Fonseca GH, Souza R, Salemi VM, Jardim CV, Gualandro SF. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. Eur Respir J. 2012; 39:1:112118.
    [Google Scholar]
  178. Simonneau G, Parent F. Pulmonary hypertension in patients with sickle cell disease: not so frequent but so different. Eur Respir J. 2012; 39:1:34.
    [Google Scholar]
  179. Aliyu ZY, Kato GJ, Taylor J 6th, Babadoko A, Mamman AI, Gordeuk VR, Gladwin MT. Sickle cell disease and pulmonary hypertension in Africa: A global perspective and review of epidemiology, pathophysiology, and management. Am J Hematol. 2008; 83:1:6370.
    [Google Scholar]
  180. Gladwin MT, Kato GJ. Cardiopulmonary complications of sickle cell disease: Role of nitric oxide and hemolytic anemia. Hematology Am Soc Hematol Educ Program. 2005;5157.
    [Google Scholar]
  181. Gladwin MT, Sachdev V, Jison ML, Shizukuda Y, Plehn JF, Minter K, Brown B, Coles WA, Nichols JS, Ernst I, Hunter LA, Blackwelder WC, Schechter AN, Rodgers GP, Castro O, Ognibene FP. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004; 350:9:886895.
    [Google Scholar]
  182. Machado RF, Gladwin MT. Pulmonary hypertension in hemolytic disorders: Pulmonary vascular disease: The global perspective. Chest. 2010; 137:6_suppl:30S38S.
    [Google Scholar]
  183. Schnog JJ, Jager EH, van der Dijs FP, Duits AJ, Moshage H, Muskiet FD, Muskiet FA. Evidence for a metabolic shift of arginine metabolism in sickle cell disease. Ann Hematol. 2004; 83:6:371375.
    [Google Scholar]
  184. Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, Gladwin MT. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002; 8:12:13831389.
    [Google Scholar]
  185. Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, Hazen SL, Vichinsky EP, Morris SM Jr, Gladwin MT. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA. 2005; 294:1:8190.
    [Google Scholar]
  186. Bunn HF, Nathan DG, Dover GJ, Hebbel RP, Platt OS, Rosse WF, Ware RE. Pulmonary hypertension and nitric oxide depletion in sickle cell disease. Blood. 2010; 116:5:687692.
    [Google Scholar]
  187. Machado RF, Martyr S, Kato GJ, Barst RJ, Anthi A, Robinson MR, Hunter L, Coles W, Nichols J, Hunter C, Sachdev V, Castro O, Gladwin MT. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol. 2005; 130:3:445453.
    [Google Scholar]
  188. Derchi G, Forni GL, Formisano F, Cappellini MD, Galanello R, D'Ascola G, Bina P, Magnano C, Lamagna M. Efficacy and safety of sildenafil in the treatment of severe pulmonary hypertension in patients with hemoglobinopathies. Haematologica. 2005; 90:4:452458.
    [Google Scholar]
  189. Mehari A, Gladwin MT, Tian X, Machado RF, Kato GJ. Mortality in adults with sickle cell disease and pulmonary hypertension. JAMA. 2012; 307:12:12541256.
    [Google Scholar]
  190. Mehari A, Alam S, Tian X, Cuttica MJ, Barnett CF, Miles G, Xu D, Seamon C, Adams-Graves P, Castro OL, Minniti CP, Sachdev V, Taylor JG 6th, Kato GJ, Machado RF. Hemodynamic predictors of mortality in adults with sickle cell disease. Am J Respir Crit Care Med. 2013; 187:8:840847.
    [Google Scholar]
  191. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013; 62:25:D34D41.
    [Google Scholar]
  192. Gladwin MT, Barst RJ, Gibbs JS, Hildesheim M, Sachdev V, Nouraie M, Hassell KL, Little JA, Schraufnagel DE, Krishnamurti L, Novelli E, Girgis RE, Morris CR, Berman Rosenzweig E, Badesch DB, Lanzkron S, Castro OL, Taylor JG 6th, Goldsmith JC, Kato GJ, Gordeuk VR, Machado RF, walk-PHaSST Investigators and Patients . Risk factors for death in 632 patients with sickle cell disease in the United States and United Kingdom. PloS One. 2014; 9:7:e99489.
    [Google Scholar]
  193. Machado RF, Barst RJ, Yovetich NA, Hassell KL, Goldsmith JC, Woolson R, Gordeuk VR, Gibbs S, Little JA, Kato GJ, Schraufnagel DE, Krishnamurti L, Girgis R, Morris CR, Berman-Rosenzweig E, Badesch DB, Waclawiw MA, Gladwin MT. Evaluation of sildenafil therapy for patients with sickle cell disease and increased tricuspid regurgitant velocity: Preliminary results of the Walk-PHaSST trial. B16. Pulmonary Arterial Hypertension: From Assessing Risk to Therapeutic Results. 2010;A2514. doi:10.1164/ajrccm-conference.2010.181.1_MeetingAbstracts.A2514..
    [Google Scholar]
  194. Machado RF, Barst RJ, Yovetich NA, Hassell KL, Kato GJ, Gordeuk VR, Gibbs JS, Little JA, Schraufnagel DE, Krishnamurti L, Girgis RE, Morris CR, Rosenzweig EB, Badesch DB, Lanzkron S, Onyekwere O, Castro OL, Sachdev V, Waclawiw MA, Woolson R, Goldsmith JC, Gladwin MT, walk-PHaSST Investigators and Patients . Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood. 2011; 118:4:855864.
    [Google Scholar]
  195. Zuber JP, Calmy A, Evison JM, Hasse B, Schiffer V, Wagels T, Nuesch R, Magenta L, Ledergerber B, Jenni R, Speich R, Opravil M, Swiss HIV Cohort Study Group . Pulmonary arterial hypertension related to HIV infection: Improved hemodynamics and survival associated with antiretroviral therapy. Clin Infect Dis. 2004; 38:8:11781185.
    [Google Scholar]
  196. Wong AR, Rasool AHG, Abidin NZ, Noor AR, Quah BS. Sildenafil as treatment for human immunodeficiency virus-related pulmonary hypertension in a child. J Paediatr Child Health. 2006; 42:3:147148.
    [Google Scholar]
  197. Degano B, Guillaume M, Savale L, Montani D, Jaïs X, Yaici A, Le Pavec J, Humbert M, Simonneau G, Sitbon O. HIV-associated pulmonary arterial hypertension: Survival and prognostic factors in the modern therapeutic era. AIDS. 2010; 24:1:6775.
    [Google Scholar]
  198. Degano B, Valmary S, Sitbon O, Humbert M. Pulmonary arterial hypertension and HIV and other viral infections. In: Humbert MSouza RSimonneau G, eds. Pulmonary Vascular Disorders. Prog Respir Res. Vol 41. Basel: Karger 2012;:105112Available from: http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowAbstractBuch&ArtikelNr=334362&ProduktNr=255594.
    [Google Scholar]
  199. Sitbon O, Lascoux-Combe C, Delfraissy JF, Yeni PG, Raffi F, De Zuttere D, Gressin V, Clerson P, Sereni D, Simonneau G. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med. 2008; 177:1:108113.
    [Google Scholar]
  200. Ghofrani HA, Distler O, Gerhardt F, Gorenflo M, Grünig E, Haefeli WE, Held M, Hoeper MM, Kähler CM, Kaemmerer H, Klose H, Köllner V, Kopp B, Mebus S, Meyer A, Miera O, Pittrow D, Riemekasten G, Rosenkranz S, Schranz D, Voswinckel R, Olschewski H. Treatment of pulmonary arterial hypertension (PAH): Updated recommendations of the cologne consensus conference 2011. Int J Cardiol. 2011; 154:Suppl 1:S20S33.
    [Google Scholar]
  201. Schumacher YO, Zdebik A, Huonker M, Kreisel W. Sildenafil in HIV-related pulmonary hypertension. AIDS. 2001; 15:13:17471748.
    [Google Scholar]
  202. D'Alto M, Romeo E, Argiento P, Sarubbi B, Santoro G, Grimaldi N, Correra A, Scognamiglio G, Russo MG, Calabrò R. Bosentan-sildenafil association in patients with congenital heart disease-related pulmonary arterial hypertension and Eisenmenger physiology. Int J Cardiol. 2012; 155:3:378382.
    [Google Scholar]
  203. Singh TP, Rohit M, Grover A, Malhotra S, Vijayvergiya R. A randomized, placebo-controlled, double-blind, crossover study to evaluate the efficacy of oral sildenafil therapy in severe pulmonary artery hypertension. Am Heart J. 2006; 151:4:851e1851e5.
    [Google Scholar]
  204. Mukhopadhyay S, Sharma M, Ramakrishnan S, Yusuf J, Gupta MD, Bhamri N, Trehan V, Tyagi S. Phosphodiesterase-5 inhibitor in eisenmenger syndrome: A preliminary observational study. Circulation. 2006; 114:17:18071810.
    [Google Scholar]
  205. Chau EMC, Fan KYY, Chow WH. Effects of chronic sildenafil in patients with Eisenmenger syndrome versus idiopathic pulmonary arterial hypertension. Int J Cardiol. 2007; 120:3:301305.
    [Google Scholar]
  206. Lu XL, Xiong CM, Shan GL, Zhu XY, Wu BX, Wu GH, Liu ZH, Ni XH, Cheng XS, Gu Q, Zhao ZH, Zhang DZ, Li WM, Zhang C, Tian HY, Guo YJ, Guo T, Liu HM, Zhang WJ, Gu H, Huang SA, Chen JY, Wu WF, Huang K, Li JJ, He JG. Impact of sildenafil therapy on pulmonary arterial hypertension in adults with congenital heart disease. Cardiovasc Ther. 2010; 28:6:350355.
    [Google Scholar]
  207. Sun YJ, Yang T, Zeng WJ, Gu Q, Ni XH, Zhao ZH, Liu ZH, Xiong CM, He JG. Impact of sildenafil on survival of patients with Eisenmenger syndrome. J Clin Pharmacol. 2013; 53:6:611618.
    [Google Scholar]
  208. Mukhopadhyay S, Nathani S, Yusuf J, Shrimal D, Tyagi S. Clinical efficacy of phosphodiesterase-5 inhibitor tadalafil in Eisenmenger syndrome-a randomized, placebo-controlled, double-blind crossover study. Congenit Heart Dis. 2011; 6:5:424431.
    [Google Scholar]
  209. Goldberg DJ, French B, McBride MG, Marino BS, Mirarchi N, Hanna BD, Wernovsky G, Paridon SM, Rychik J. Impact of oral sildenafil on exercise performance in children and young adults after the fontan operation: A randomized, double-blind, placebo-controlled, crossover trial. Circulation. 2011; 123:11:11851193.
    [Google Scholar]
  210. Manes A, Palazzini M, Leci E, Reggiani MLB, Branzi A, Galiè N. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: A comparison between clinical subgroups. Eur Heart J. 2014; 35:11:716724.
    [Google Scholar]
  211. Okyay K, Cemri M, Boyac B, Yalcn R, Cengel A. Use of long-term combined therapy with inhaled iloprost and oral sildenafil in an adult patient with Eisenmenger syndrome. Cardiol Rev. 2005; 13:6:312314.
    [Google Scholar]
  212. Iversen K, Jensen AS, Jensen TV, Vejlstrup NG, Søndergaard L. Combination therapy with bosentan and sildenafil in Eisenmenger syndrome: A randomized, placebo-controlled, double-blinded trial. Eur Heart J. 2010; 31:9:11241131.
    [Google Scholar]
  213. Fedullo P, Kerr KM, Kim NH, Auger WR. Chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2011; 183:12:16051613.
    [Google Scholar]
  214. Fedullo PF, Auger WR, Kerr KM, Rubin LJ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2001; 345:20:14651472.
    [Google Scholar]
  215. De Jesus Perez VA, Zamanian RT, Jais X, D'Armini AM, Jansa P. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011; 2011:364:16771678.
    [Google Scholar]
  216. Hoeper MM, Mayer E, Simonneau G, Rubin LJ. Chronic thromboembolic pulmonary hypertension. Circulation. 2006; 113:16:20112020.
    [Google Scholar]
  217. Ghofrani HA, Schermuly RT, Rose F, Wiedemann R, Kohstall MG, Kreckel A, Olschewski H, Weissmann N, Enke B, Ghofrani S, Seeger W, Grimminger F. Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2003; 167:8:11391141.
    [Google Scholar]
  218. Reichenberger F, Voswinckel R, Enke B, Rutsch M, El Fechtali E, Schmehl T, Olschewski H, Schermuly R, Weissmann N, Ghofrani HA, Grimminger F, Mayer E, Seeger W. Long-term treatment with sildenafil in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2007; 30:5:922927.
    [Google Scholar]
  219. Suntharalingam J, Treacy CM, Doughty NJ, Goldsmith K, Soon E, Toshner MR, Sheares KK, Hughes R, Morrell NW, Pepke-Zaba J. Long-term use of sildenafil in inoperable chronic thromboembolic pulmonary hypertension. Chest. 2008; 134:2:229236.
    [Google Scholar]
  220. Ghofrani HA, D'Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, Mayer E, Simonneau G, Wilkins MR, Fritsch A, Neuser D, Weimann G, Wang C, CHEST-1 Study Group . Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013; 369:4:319329.
    [Google Scholar]
  221. Hsu AR, Barnholt KE, Grundmann NK, Lin JH, McCallum SW, Friedlander AL. Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J Appl Physiol. 2006; 100:6:20312040.
    [Google Scholar]
  222. Richalet JP, Gratadour P, Robach P, Pham I, Déchaux M, Joncquiert-Latarjet A, Mollard P, Brugniaux J, Cornolo J. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med. 2005; 171:3:275281.
    [Google Scholar]
  223. Aldashev AA, Kojonazarov BK, Amatov TA, Sooronbaev TM, Mirrakhimov MM, Morrell NW, Wharton J, Wilkins MR. Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax. 2005; 60:8:683687.
    [Google Scholar]
  224. Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H, Seeger W, Grimminger F. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: A randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med. 2004; 141:3:169177.
    [Google Scholar]
  225. Reichenberger F, Kohstall MG, Seeger T, Olschewski H, Grimminger F, Seeger W, Ghofrani HA. Effect of sildenafil on hypoxia-induced changes in pulmonary circulation and right ventricular function. Respir Physiol Neurobiol. 2007; 159:2:196201.
    [Google Scholar]
  226. Bates MG, Thompson AA, Baillie JK, Sutherland AI, Irving JB, Hirani N, Webb DJ. Sildenafil citrate for the prevention of high altitude hypoxic pulmonary hypertension: Double blind, randomized, placebo-controlled trial. High Alt Med Biol. 2011; 12:3:207214.
    [Google Scholar]
  227. Faoro V, Lamotte M, Deboeck G, Pavelescu A, Huez S, Guenard H, Martinot JB, Naeije R. Effects of sildenafil on exercise capacity in hypoxic normal subjects. High Alt Med Biol. 2007; 8:2:155163.
    [Google Scholar]
  228. Maggiorini M, Brunner-La Rocca HP, Peth S, Fischler M, Böhm T, Bernheim A, Kiencke S, Bloch KE, Dehnert C, Naeije R, Lehmann T, Bärtsch P, Mairbäurl H. Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: A randomized trial. Ann Intern Med. 2006; 145:7:497506.
    [Google Scholar]
  229. Xu Y, Liu Y, Liu J, Qian G. Meta-analysis of clinical efficacy of sildenafil, a phosphodiesterase type-5 inhibitor on high altitude hypoxia and its complications. High Alt Med Biol. 2014; 15:1:4651.
    [Google Scholar]
  230. Travadi JN, Patole SK. Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: A review. Pediatr Pulmonol. 2003; 36:6:529535.
    [Google Scholar]
  231. Scipioni A, Giorgi M, Nuccetelli V, Stefanini S. Immunohistochemical localisation of PDE5 in rat lung during pre- and postnatal development. J Biomed Biotechnol. 2009; 2009::17.
    [Google Scholar]
  232. Jaillard S, Larrue B, Deruelle P, Delelis A, Rakza T, Butrous G, Storme L. Effects of phosphodiesterase 5 inhibitor on pulmonary vascular reactivity in the fetal lamb. Ann Thorac Surg. 2006; 81:3:935942.
    [Google Scholar]
  233. Larrue B, Jaillard S, Lorthioir M, Roubliova X, Butrous G, Rakza T, Warembourg H, Storme L. Pulmonary vascular effects of sildenafil on the development of chronic pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol. 2005; 288:6:L1193L1200.
    [Google Scholar]
  234. Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology. 1999; 91:1:307310.
    [Google Scholar]
  235. Bigatello LM, Hess D, Dennehy KC, Medoff BD, Hurford WE. Sildenafil can increase the response to inhaled nitric oxide. Anesthesiology. 2000; 92:6:1827.
    [Google Scholar]
  236. Miller OI, Tang SF, Keech A, Pigott NB, Beller E, Celermajer DS. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: A randomised double-blind study. Lancet. 2000; 356:9240:14641469.
    [Google Scholar]
  237. Abrams D, Schulze-Neick I, Magee AG. Sildenafil as a selective pulmonary vasodilator in childhood primary pulmonary hypertension. Heart. 2000; 84:2:e4.
    [Google Scholar]
  238. Baquero H, Soliz A, Neira F, Venegas ME, Sola A. Oral Sildenafil in infants with persistent pulmonary hypertension of the newborn: A pilot randomized blinded study. Pediatrics. 2006; 117:4:10771083.
    [Google Scholar]
  239. Steinhorn RH, Kinsella JP, Pierce C, Butrous G, Dilleen M, Oakes M, Wessel DL. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr. 2009; 155:6:841847.
    [Google Scholar]
  240. Steinhorn RH, Kinsella JP, Butrous G, Dilleen M, Oakes M, Wessel DL. Abstract 2768: Open-Label, Multicentre, Pharmacokinetic Study of IV Sildenafil in the Treatment of Neonates With Persistent Pulmonary Hypertension of the Newborn (PPHN). Circulation. 2007; 116:16 Suppl:II_614.
    [Google Scholar]
  241. Schulze-Neick I, Hartenstein P, Li J, Stiller B, Nagdyman N, Hübler M, Butrous G, Petros A, Lange P, Redington AN. Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation. 2003; 108:10 suppl 1:II167II173.
    [Google Scholar]
  242. Fraisse A, Butrous G, Taylor M, Oakes M, Dilleen M, Wessel D. Intravenous sildenafil for postoperative pulmonary hypertension in children with congenital heart disease. Intensive Care Med. 2011; 37:3:502509.
    [Google Scholar]
  243. Tunks RD, Barker PCA, Benjamin DK, Cohen-Wolkowiez M, Fleming GA, Laughon M, Li JS, Hill KD. Sildenafil exposure and hemodynamic effect after fontan surgery. Pediatr Crit Care Med. 2014; 15:1:2834.
    [Google Scholar]
  244. Douwes JM, Roofthooft MTR, Loon RLEV, Ploegstra M-J, Bartelds B, Hillege HL, Berger RM. Sildenafil add-on therapy in paediatric pulmonary arterial hypertension, experiences of a national referral centre. Heart. 2014; 100:3:224230.
    [Google Scholar]
  245. van Loon RL, Roofthooft MT, van Osch-Gevers M, Delhaas T, Strengers JL, Blom NA, Backx A, Berger RM. Clinical characterization of pediatric pulmonary hypertension: Complex presentation and diagnosis. J Pediatr. 2009; 155:2:17682e1.
    [Google Scholar]
  246. Cerro MJ, Abman S, Diaz G, Freudenthal AH, Freudenthal F, Harikrishnan S, Haworth SG, Ivy D, Lopes AA, Raj JU, Sandoval J, Stenmark K, Adatia I. A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: Report from the PVRI pediatric taskforce. Panama Pulm Circ. 2011; 1:2:286298.
    [Google Scholar]
  247. Lammers AE, Adatia I, Cerro MJ, Diaz G, Freudenthal AH, Freudenthal F, Harikrishnan S, Ivy D, Lopes AA, Raj JU, Sandoval J, Stenmark K, Haworth SG. Functional classification of pulmonary hypertension in children: Report from the PVRI pediatric taskforce. Panama Pulm Circ. 2011; 1:2:280285.
    [Google Scholar]
  248. Barst RJ, Ertel SI, Beghetti M, Ivy DD. Pulmonary arterial hypertension: A comparison between children and adults. Eur Respir J. 2011; 37:3:665677.
    [Google Scholar]
  249. Humpl T, Reyes JT, Holtby H, Stephens D, Adatia I. Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension twelve-month clinical trial of a single-drug, open-label, pilot study. Circulation. 2005; 111:24:32743280.
    [Google Scholar]
  250. Barst RJ, Ivy DD, Gaitan G, Szatmari A, Rudzinski A, Garcia AE, Sastry BK, Pulido T, Layton GR, Serdarevic-Pehar M, Wessel DL. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation. 2012; 125:2:324334.
    [Google Scholar]
  251. Barst RJ, Beghetti M, Pulido T, Layton G, Konourina I, Zhang M, Ivy DD, STARTS-2 Investigators . STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation. 2014; 129:19:19141923.
    [Google Scholar]
  252. Abman SH, Kinsella JP, Rosenzweig EB, Krishnan U, Kulik T, Mullen M, Wessel DL, Steinhorn R, Adatia I, Hanna B, Feinstein J, Fineman J, Raj U, Humpl T, Pediatric Pulmonary Hypertension Network (PPHNet) . Implications of the U.S. food and drug administration warning against the use of sildenafil for the treatment of pediatric pulmonary hypertension. Am J Respir Crit Care Med. 2013; 187:6:572575.
    [Google Scholar]
  253. US Food and Drug Administration. FDA Drug Safety Communication: FDA recommends against use of Revatio (sildenafil) in children with pulmonary hypertension [Internet]. Available from: http://www.fda.gov/Drugs/DrugSafety/ucm317123.htm.
  254. McElhinney DB. A new START for sildenafil in pediatric pulmonary hypertension: Reframing the dose-survival relationship in the STARTS-2 trial. Circulation. 2014; 129:19:19051908.
    [Google Scholar]
  255. Barst RJ, Beghetti M, Pulido T, Layton G, Konourina I, Zhang M, Ivy DD, STARTS-2 Investigators . STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation. 2014; 129:19:19141923.
    [Google Scholar]
  256. Kang KK, Ahn GJ, Sohn YS, Ahn BO, Kim WB. DA-8159, a new PDE5 inhibitor, attenuates the development of compensatory right ventricular hypertrophy in a rat model of pulmonary hypertension. J Int Med Res. 2003; 31:6:517528.
    [Google Scholar]
  257. Nagendran J, Sutendra G, Paterson I, Champion HC, Webster L, Chiu B, Haromy A, Rebeyka IM, Ross DB, Michelakis ED. Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ Res. 2013; 112:2:347354.
    [Google Scholar]
  258. Xie Y-P, Chen B, Sanders P, Guo A, Li Y, Zimmerman K, Wang LC, Weiss RM, Grumbach IM, Anderson ME, Song LS. Sildenafil prevents and reverses transverse-tubule remodeling and Ca2+ handling dysfunction in right ventricle failure induced by pulmonary artery hypertension. Hypertension. 2012; 59:2:355362.
    [Google Scholar]
  259. Friedberg MK, Redington AN. Right versus left ventricular failure differences, similarities, and interactions. Circulation. 2014; 129:9:10331044.
    [Google Scholar]
  260. Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM, Kass DA. Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J. 2001; 15:10:17181726.
    [Google Scholar]
  261. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005; 11:2:214222.
    [Google Scholar]
  262. Kukreja RC, Salloum F, Das A, Ockaili R, Yin C, Bremer YA, Fisher PW, Wittkamp M, Hawkins J, Chou E, Kukreja AK, Wang X, Marwaha VR, Xi L. Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascul Pharmacol. 2005; 42:5-6:219232.
    [Google Scholar]
  263. Salloum F, Yin C, Xi L, Kukreja RC. Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res. 2003; 92:6:595597.
    [Google Scholar]
  264. Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem. 2005; 280:13:1294412955.
    [Google Scholar]
  265. Sahara M, Sata M, Morita T, Nakajima T, Hirata Y, Nagai R. A phosphodiesterase-5 inhibitor vardenafil enhances angiogenesis through a protein kinase G-dependent hypoxia-inducible factor-1/vascular endothelial growth factor pathway. Arterioscler Thromb Vasc Biol. 2010; 30:7:13151324.
    [Google Scholar]
  266. Lewis GD, Lachmann J, Camuso J, Lepore JJ, Shin J, Martinovic ME, Systrom DM, Bloch KD, Semigran MJ. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007; 115:1:5966.
    [Google Scholar]
  267. Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP, Hung J, Tawakol A, Gerszten RE, Systrom DM, Bloch KD, Semigran MJ. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007; 116:14:15551562.
    [Google Scholar]
  268. Guazzi M, Vicenzi M, Arena R, Guazzi MD. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011; 4:1:817.
    [Google Scholar]
  269. Redfield MM, Borlaug BA, Lewis GD, Mohammed SF, Semigran MJ, Lewinter MM, Deswal A, Hernandez AF, Lee KL, Braunwald E, Heart Failure Clinical Research Network . PhosphdiesteRasE-5 inhibition to improve clinical status and exercise capacity in diastolic heart failure (RELAX) trial: Rationale and design. Circ Heart Fail. 2012; 5:5:653659.
    [Google Scholar]
  270. Borlaug B, Lewis G, McNulty S, Semigran M, LeWinter M, Chen H, Lin G, Anstrom K, Velazquez E, Shah M, Margulies K, Redfield M. Diverging effects of sildenafil on ventricular-vascular function in HFPEF. J Am Coll Cardiol. 2014; 63:12_S, Available from: http://dx.doi.org/10.1016/S0735-1097(14)60759-2..
    [Google Scholar]
  271. Sharma K, Kass DA. Heart failure with preserved ejection fraction mechanisms, clinical features, and therapies. Circ Res. 2014; 115:1:7996.
    [Google Scholar]
  272. Melenovsky V, Hwang S-J, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. pii: ehu193. [Epub ahead of print] 2014.
    [Google Scholar]
  273. Mohammed SF, Borlaug BA, McNulty S, Lewis GD, Lin G, Zakeri R, Semigran MJ, LeWinter M, Hernandez AF, Braunwald E, Redfield MM. Resting ventricular-vascular function and exercise capacity in heart failure with preserved ejection fraction: A RELAX trial ancillary study. Circ Heart Fail. 2014; 7:4:580589.
    [Google Scholar]
  274. Zakeri R, Borlaug BA, McNulty SE, Mohammed SF, Lewis GD, Semigran MJ, Deswal A, LeWinter M, Hernandez AF, Braunwald E, Redfield MM. Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction A RELAX trial ancillary study. Circ Heart Fail. 2014; 7:1:123130.
    [Google Scholar]
  275. Minai OA, Chaouat A, Adnot S. Pulmonary hypertension in COPD: Epidemiology, significance, and management pulmonary vascular disease: The global perspective. Chest. 2010; 137:6_suppl:39S51S.
    [Google Scholar]
  276. Voelkel NF, Cool CD. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Eur Respir J. 2003; 22:46 suppl:28s32s.
    [Google Scholar]
  277. Barberà JA. Chronic obstructive pulmonary disease: A Disease of the endothelium? Am J Respir Crit Care Med. 2013; 188:1:57.
    [Google Scholar]
  278. Goudie A, Hopkinson P, Anderson W, Lipworth B, Struthers A. The effects of sildenafil on lung function in COPD. Eur Respir J. 2012; 40:Suppl 56:P2188.
    [Google Scholar]
  279. Wang T, Liu Y, Chen L, Wang X, Hu XR, Feng YL, Liu DS, Xu D, Duan YP, Lin J, Ou XM, Wen FQ. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats. Eur Respir J. 2009; 33:5:11221132.
    [Google Scholar]
  280. Ghofrani HA, Wiedemann R, Rose F, Schermuly RT, Olschewski H, Weissmann N, Gunther A, Walmrath D, Seeger W, Grimminger F. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: A randomised controlled trial. Lancet. 2002; 360:9337:895900.
    [Google Scholar]
  281. Amen EM, Becker E-M, Truebel H. Analysis of V/Q-matching—a safety biomarker in pulmonary drug development? Biomarkers. 2011; 16:S1:S510.
    [Google Scholar]
  282. Alp S, Skrygan M, Schmidt WE, Bastian A. Sildenafil improves hemodynamic parameters in COPD—an investigation of six patients. Pulm Pharmacol Ther. 2006; 19:6:386390.
    [Google Scholar]
  283. Madden BP, Allenby M, Loke T-K, Sheth A. A potential role for sildenafil in the management of pulmonary hypertension in patients with parenchymal lung disease. Vascul Pharmacol. 2006; 44:5:372376.
    [Google Scholar]
  284. Naeije R, Boerrigter BG. Pulmonary hypertension at exercise in COPD: Does it matter? Eur Respir J. 2013; 41:5:10021004.
    [Google Scholar]
  285. Naeije R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005; 2:1:2022.
    [Google Scholar]
  286. Blanco I, Santos S, Gea J, Güell R, Torres F, Gimeno-Santos E, Rodriguez DA, Vilaró J, Gómez B, Roca J, Barberà JA. Sildenafil to improve respiratory rehabilitation outcomes in COPD: A controlled trial. Eur Respir J. 2013; 42:4:982992.
    [Google Scholar]
  287. Goudie AR, Lipworth BJ, Hopkinson PJ, Wei L, Struthers AD. Tadalafil in patients with chronic obstructive pulmonary disease: A randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med. 2014; 2:4:293300.
    [Google Scholar]
  288. Holverda S, Rietema H, Bogaard HJ, Westerhof N, Postmus PE, Boonstra A, Vonk-Noordegraaf A. Acute effects of sildenafil on exercise pulmonary hemodynamics and capacity in patients with COPD. Pulm Pharmacol Ther. 2008; 21:3:558564.
    [Google Scholar]
  289. Lederer DJ, Bartels MN, Schluger NW, Brogan F, Jellen P, Thomashow BM, Kawut SM. Sildenafil for chronic obstructive pulmonary disease: A randomized crossover trial. COPD. 2012; 9:3:268275.
    [Google Scholar]
  290. Maron BA, Goldstein RH, Rounds SI, Shapiro S, Jankowich M, Garshick E, Moy ML, Gagnon D, Choudhary G. Study design and rationale for investigating phosphodiesterase type 5 inhibition for the treatment of pulmonary hypertension due to chronic obstructive lung disease: The TADA-PHiLD (TADAlafil for pulmonary hypertension associated with chronic obstructive lung disease) trial. Pulm Circ. 2013; 3:4:889897.
    [Google Scholar]
  291. Hurdman J, Condliffe R, Elliot CA, Swift A, Rajaram S, Davies C, Hill C, Hamilton N, Armstrong IJ, Billings C, Pollard L, Wild JM, Lawrie A, Lawson R, Sabroe I, Kiely DG. Pulmonary hypertension in COPD: Results from the ASPIRE registry. Eur Respir J. 2013; 41:6:12921301.
    [Google Scholar]
  292. Collard HR, Anstrom KJ, Schwarz MI, Zisman DA. SIldenafil improves walk distance in idiopathic pulmonary fibrosis. Chest. 2007; 131:3:897899.
    [Google Scholar]
  293. Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010; 363:7:620628.
    [Google Scholar]
  294. Nathan SD, King CS. Treatment of pulmonary hypertension in idiopathic pulmonary fibrosis: Shortfall in efficacy or trial design? Drug Des Devel Ther. 2014; 8::875885.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.42
Loading
/content/journals/10.5339/gcsp.2014.42
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error