1887
Volume 2014, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2014.11
2014-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2014/1/gcsp.2014.11.html?itemId=/content/journals/10.5339/gcsp.2014.11&mimeType=html&fmt=ahah

References

  1. [1]. El-Hamamsy   I., , Eryigit   Z., , Stevens   LM., , Sarang   Z., , George   R., , Clark   L., , Melina   G., , Takkenberg   JJ., , Yacoub   MH. . Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial. . Lancet . 2010; ;376: 9740 : 524– 531 .
    [Google Scholar]
  2. [2]. Yacoub   MH., , Kilner   PJ., , Birks   EJ., , Misfeld   M. . The aortic outflow and root: a tale of dynamism and crosstalk. . Ann Thorac Surg . 1999; ;68: 3 : S37– S43 .
    [Google Scholar]
  3. [3]. Lentink   D., , Müller   UK., , Stamhuis   EJ., , de Kat   R., , van Gestel   W., , Veldhuis   LLM., , Henningsson   P., , Hedenström   A., , Videler   JJ., , van Leeuwen   JL. . How swifts control their glide performance with morphing wings. . Nature . 2007; ;446: 7139 : 1082– 1085 .
    [Google Scholar]
  4. [4]. Rajamannan   NM. . Bicuspid aortic valve disease: the role of oxidative stress in Lrp5 bone formation. . Cardiovasc Pathol . 2011; ;20: 3 : 168– 176 .
    [Google Scholar]
  5. [5]. Arjunon   S., , Rathan   S., , Jo   H., , Yoganathan   AP. . Aortic valve: mechanical environment and mechanobiology. . Ann Biomed Eng . 2013; ;41: 7 : 1331– 1346 .
    [Google Scholar]
  6. [6]. Sucosky   P., , Padala   M., , Elhammali   A., , Balachandran   K., , Jo   H., , Yoganathan   AP. . Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. . J Biomech Eng . 2008; ;130: 3 : 035001 .
    [Google Scholar]
  7. [7]. Dagum   P., , Green   GR., , Nistal   FJ., , Daughters   GT., , Timek   TA., , Foppiano   LE., , Bolger   AF., , Ingels   NB Jr., , Miller   DC. . Deformational dynamics of the aortic root: modes and physiologic determinants. . Circulation . 1999; ;100: 19 : II54– II62 .
    [Google Scholar]
  8. [8]. Lansac   E., , Lim   HS., , Shomura   Y., , Lim   KH., , Rice   NT., , Goetz   WA., , Duran   CM. . Aortic root dynamics are asymmetric. . J Heart Valve Dis . 2005; ;14: 3 : 400– 407 .
    [Google Scholar]
  9. [9]. Katayama   S., , Umetani   N., , Sugiura   S., , Hisada   T. . The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. . J Thorac Cardiovasc Surg . 2008; ;136: 6 : 1528– 1535 , 35 e1 .
    [Google Scholar]
  10. [10]. Robicsek   F., , Thubrikar   MJ. . Role of sinus wall compliance in aortic leaflet function. . Am J Cardiol . 1999; ;84: 8 : 944– 946 , A7 .
    [Google Scholar]
  11. [11]. Thubrikar   MJ., , Nolan   SP., , Aouad   J., , Deck   JD. . Stress sharing between the sinus and leaflets of canine aortic valve. . Ann Thorac Surg . 1986; ;42: 4 : 434– 440 .
    [Google Scholar]
  12. [12]. Butcher   JT., , Simmons   CA., , Warnock   JN. . Mechanobiology of the aortic heart valve. . J Heart Valve Dis . 2008; ;17: 1 : 62– 73 .
    [Google Scholar]
  13. [13]. Abu-Issa   R., , Kirby   ML. . Patterning of the heart field in the chick. . Dev Biol . 2008; ;319: 2 : 223– 233 .
    [Google Scholar]
  14. [14]. Waldo   KL., , Hutson   MR., , Ward   CC., , Zdanowicz   M., , Stadt   HA., , Kumiski   D., , Abu-Issa   R., , Kirby   ML. . Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. . Dev Biol . 2005; ;281: 1 : 78– 90 .
    [Google Scholar]
  15. [15]. Moreno-Rodriguez   RA., , Krug   EL., , Reyes   L., , Villavicencio   L., , Mjaatvedt   CH., , Markwald   RR. . Bidirectional fusion of the heart-forming fields in the developing chick embryo. . Dev Dyn . 2006; ;235: 1 : 191– 202 .
    [Google Scholar]
  16. [16]. Mjaatvedt   CH., , Nakaoka   T., , Moreno-Rodriguez   R., , Norris   RA., , Kern   MJ., , Eisenberg   CA., , Turner   D., , Markwald   RR. . The outflow tract of the heart is recruited from a novel heart-forming field. . Dev Biol . 2001; ;238: 1 : 97– 109 .
    [Google Scholar]
  17. [17]. Olson   EN. . Gene regulatory networks in the evolution and development of the heart. . Science . 2006; ;313: 5795 : 1922– 1927 .
    [Google Scholar]
  18. [18]. Dyer   LA., , Kirby   ML. . The role of secondary heart field in cardiac development. . Dev Biol . 2009; ;336: 2 : 137– 144 .
    [Google Scholar]
  19. [19]. Lucitti   JL., , Jones   EA., , Huang   C., , Chen   J., , Fraser   SE., , Dickinson   ME. . Vascular remodeling of the mouse yolk sac requires hemodynamic force. . Development . 2007; ;134: 18 : 3317– 3326 .
    [Google Scholar]
  20. [20]. de la Cruz   MV., , Markwald   RR., , Krug   EL., , Rumenoff   L., , Sánchez Gómez   C., , Sadowinski   S., , Galicia   TD., , Gómez   F., , Salazar García   M., , Villavicencio Guzman   L., , Reyes Angeles   L., , Moreno-Rodriguez   RA. . Living morphogenesis of the ventricles and congenital pathology of their component parts. . Cardiol Young . 2001; ;11: 6 : 588– 600 .
    [Google Scholar]
  21. [21]. Camenisch   TD., , Schroeder   JA., , Bradley   J., , Klewer   SE., , McDonald   JA. . Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. . Nat Med . 2002; ;8: 8 : 850– 855 .
    [Google Scholar]
  22. [22]. Bernanke   DH., , Markwald   RR. . Effects of hyaluronic acid on cardiac cushion tissue cells in collagen matrix cultures. . Tex Rep Biol Med . 1979; ;39: : 271– 285 .
    [Google Scholar]
  23. [23]. Luna-Zurita   L., , Prados   B., , Grego-Bessa   J., , Luxán   G., , del Monte   G., , Benguría   A., , Adams   RH., , Pérez-Pomares   JM., , de la Pompa   JL. . Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. . J Clin Invest . 2010; ;120: 10 : 3493– 3507 .
    [Google Scholar]
  24. [24]. Scherz   PJ., , Huisken   J., , Sahai-Hernandez   P., , Stainier   DY. . High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. . Development . 2008; ;135: 6 : 1179– 1187 .
    [Google Scholar]
  25. [25]. Butcher   JT., , Markwald   RR. . Valvulogenesis: the moving target. . Philos Trans R Soc Lond B Biol Sci . 2007; ;362: 1484 : 1489– 1503 .
    [Google Scholar]
  26. [26]. Person   AD., , Klewer   SE., , Runyan   RB. . Cell biology of cardiac cushion development. . Int Rev Cytol . 2005; ;243: : 287– 335 .
    [Google Scholar]
  27. [27]. Chang   CP., , Neilson   JR., , Bayle   JH., , Gestwicki   JE., , Kuo   A., , Stankunas   K., , Graef   IA., , Crabtree   GR. . A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. . Cell . 2004; ;118: 5 : 649– 663 .
    [Google Scholar]
  28. [28]. Yamagishi   T., , Nakajima   Y., , Miyazono   K., , Nakamura   H. . Bone morphogenetic protein-2 acts synergistically with transforming growth factor-beta3 during endothelial-mesenchymal transformation in the developing chick heart. . J Cell Physiol . 1999; ;180: 1 : 35– 45 .
    [Google Scholar]
  29. [29]. Mercado-Pimentel   ME., , Runyan   RB. . Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. . Cells Tissues Organs . 2007; ;185: 1-3 : 146– 156 .
    [Google Scholar]
  30. [30]. Holifield   JS., , Arlen   AM., , Runyan   RB., , Tomanek   RJ. . TGF-beta1, -beta2 and -beta3 cooperate to facilitate tubulogenesis in the explanted quail heart. . J Vasc Res . 2004; ;41: 6 : 491– 498 .
    [Google Scholar]
  31. [31]. Camenisch   TD., , Molin   DG., , Person   A., , Runyan   RB., , Gittenberger-de Groot   AC., , McDonald   JA., , Klewer   SE. . Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. . Dev Biol . 2002; ;248: 1 : 170– 181 .
    [Google Scholar]
  32. [32]. Boyer   AS., , Ayerinskas   II., , Vincent   EB., , McKinney   LA., , Weeks   DL., , Runyan   RB. . TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. . Dev Biol . 1999; ;208: 2 : 530– 545 .
    [Google Scholar]
  33. [33]. Brown   CB., , Boyer   AS., , Runyan   RB., , Barnett   JV. . Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. . Science . 1999; ;283: 5410 : 2080– 2082 .
    [Google Scholar]
  34. [34]. Duong   TD., , Erickson   CA. . MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. . Dev Dyn . 2004; ;229: 1 : 42– 53 .
    [Google Scholar]
  35. [35]. Bernanke   DH., , Markwald   RR. . Effects of two glycosaminoglycans on seeding of cardiac cushion tissue cells into a collagen-lattice culture system. . Anat Rec . 1984; ;210: 1 : 25– 31 .
    [Google Scholar]
  36. [36]. Butcher   JT., , Norris   RA., , Hoffman   S., , Mjaatvedt   CH., , Markwald   RR. . Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. . Dev Biol . 2007; ;302: 1 : 256– 266 .
    [Google Scholar]
  37. [37]. Snider   P., , Hinton   RB., , Moreno-Rodriguez   RA., , Wang   J., , Rogers   R., , Lindsley   A., , Li   F., , Ingram   DA., , Menick   D., , Field   L., , Firulli   AB., , Molkentin   JD., , Markwald   R., , Conway   SJ. . Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. . Circ Res . 2008; ;102: 7 : 752– 760 .
    [Google Scholar]
  38. [38]. Zhou   B., , Wu   B., , Tompkins   KL., , Boyer   KL., , Grindley   JC., , Baldwin   HS. . Characterization of Nfatc1 regulation identifies an enhancer required for gene expression that is specific to pro-valve endocardial cells in the developing heart. . Development . 2005; ;132: 5 : 1137– 1146 .
    [Google Scholar]
  39. [39]. Forouhar   AS., , Liebling   M., , Hickerson   A., , Nasiraei-Moghaddam   A., , Tsai   HJ., , Hove   JR., , Fraser   SE., , Dickinson   ME., , Gharib   M. . The embryonic vertebrate heart tube is a dynamic suction pump. . Science . 2006; ;312: 5774 : 751– 753 .
    [Google Scholar]
  40. [40]. Butcher   JT., , McQuinn   TC., , Sedmera   D., , Turner   D., , Markwald   RR. . Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. . Circ Res . 2007; ;100: 10 : 1503– 1511 .
    [Google Scholar]
  41. [41]. Sugi   Y., , Ito   N., , Szebenyi   G., , Myers   K., , Fallon   JF., , Mikawa   T., , Markwald   RR. . Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. . Dev Biol . 2003; ;258: 2 : 252– 263 .
    [Google Scholar]
  42. [42]. Yalcin   HC., , Shekhar   A., , McQuinn   TC., , Butcher   JT. . Hemodynamic patterning of the avian atrioventricular valve. . Dev Dyn . 2011; ;240: 1 : 23– 35 .
    [Google Scholar]
  43. [43]. Snarr   BS., , Wirrig   EE., , Phelps   AL., , Trusk   TC., , Wessels   A. . A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. . Dev Dyn . 2007; ;236: 5 : 1287– 1294 .
    [Google Scholar]
  44. [44]. Webb   S., , Qayyum   SR., , Anderson   RH., , Lamers   WH., , Richardson   MK. . Septation and separation within the outflow tract of the developing heart. . J Anat . 2003; ;202: 4 : 327– 342 .
    [Google Scholar]
  45. [45]. Jain   R., , Engleka   KA., , Rentschler   SL., , Manderfield   LJ., , Li   L., , Yuan   L., , Epstein   JA. . Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. . J Clin Invest . 2011; ;121: 1 : 422– 430 .
    [Google Scholar]
  46. [46]. Kirby   ML., , Gale   TF., , Stewart   DE. . Neural crest cells contribute to normal aorticopulmonary septation. . Science . 1983; ;220: 4601 : 1059– 1061 .
    [Google Scholar]
  47. [47]. Qayyum   SR., , Webb   S., , Anderson   RH., , Verbeek   FJ., , Brown   NA., , Richardson   MK. . Septation and valvar formation in the outflow tract of the embryonic chick heart. . Anat Rec . 2001; ;264: 3 : 273– 283 .
    [Google Scholar]
  48. [48]. van den Hoff   MJ., , Moorman   AF., , Ruijter   JM., , Lamers   WH., , Bennington   RW., , Markwald   RR., , Wessels   A. . Myocardialization of the cardiac outflow tract. . Dev Biol . 1999; ;212: 2 : 477– 490 .
    [Google Scholar]
  49. [49]. Lincoln   J., , Alfieri   CM., , Yutzey   KE. . Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. . Dev Dyn . 2004; ;230: 2 : 239– 250 .
    [Google Scholar]
  50. [50]. Ranger   AM., , Grusby   MJ., , Hodge   MR., , Gravallese   EM., , de la Brousse   FC., , Hoey   T., , Mickanin   C., , Baldwin   HS., , Glimcher   LH. . The transcription factor NF-ATc is essential for cardiac valve formation. . Nature . 1998; ;392: 6672 : 186– 190 .
    [Google Scholar]
  51. [51]. Jackson   LF., , Qiu   TH., , Sunnarborg   SW., , Chang   A., , Zhang   C., , Patterson   C., , Lee   DC. . Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. . EMBO J . 2003; ;22: 11 : 2704– 2716 .
    [Google Scholar]
  52. [52]. de Lange   FJ., , Moorman   AF., , Anderson   RH., , Männer   J., , Soufan   AT., , de Gier-de Vries   C., , Schneider   MD., , Webb   S., , van den Hoff   MJ., , Christoffels   VM. . Lineage and morphogenetic analysis of the cardiac valves. . Circ Res . 2004; ;95: 6 : 645– 654 .
    [Google Scholar]
  53. [53]. Wessels   A., , van den Hoff   MJ., , Adamo   RF., , Phelps   AL., , Lockhart   MM., , Sauls   K., , Briggs   LE., , Norris   RA., , van Wijk   B., , Perez-Pomares   JM., , Dettman   RW., , Burch   JB. . Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. . Dev Biol . 2012; ;366: 2 : 111– 124 .
    [Google Scholar]
  54. [54]. Colvee   E., , Hurle   JM. . Maturation of the extracellular material of the semilunar heart values in the mouse. A histochemical analysis of collagen and mucopolysaccharides. . Anat Embryol (Berl) . 1981; ;162: 3 : 343– 352 .
    [Google Scholar]
  55. [55]. Armstrong   EJ., , Bischoff   J. . Heart valve development: endothelial cell signaling and differentiation. . Circ Res . 2004; ;95: 5 : 459– 470 .
    [Google Scholar]
  56. [56]. Chiu   YN., , Norris   RA., , Mahler   G., , Recknagel   A., , Butcher   JT. . Transforming growth factor beta, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: relevance for heart valve tissue engineering. . Tissue Eng Part A . 2010; ;16: 11 : 3375– 3383 .
    [Google Scholar]
  57. [57]. Chakraborty   S., , Combs   MD., , Yutzey   KE. . Transcriptional regulation of heart valve progenitor cells. . Pediatr Cardiol . 2010; ;31: 3 : 414– 421 .
    [Google Scholar]
  58. [58]. Galvin   KM., , Donovan   MJ., , Lynch   CA., , Meyer   RI., , Paul   RJ., , Lorenz   JN., , Fairchild-Huntress   V., , Dixon   KL., , Dunmore   JH., , Gimbrone   MA Jr., , Falb   D., , Huszar   D. . A role for smad6 in development and homeostasis of the cardiovascular system. . Nat Genet . 2000; ;24: 2 : 171– 174 .
    [Google Scholar]
  59. [59]. Peacock   JD., , Levay   AK., , Gillaspie   DB., , Tao   G., , Lincoln   J. . Reduced sox9 function promotes heart valve calcification phenotypes in vivo. . Circ Res . 2010; ;106: 4 : 712– 719 .
    [Google Scholar]
  60. [60]. Levay   AK., , Peacock   JD., , Lu   Y., , Koch   M., , Hinton   RB Jr., , Kadler   KE., , Lincoln   J. . Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. . Circ Res . 2008; ;103: 9 : 948– 956 .
    [Google Scholar]
  61. [61]. Lee   MP., , Yutzey   KE. . Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. . PLoS One . 2011; ;6: 12 : e29758 .
    [Google Scholar]
  62. [62]. Lincoln   J., , Alfieri   CM., , Yutzey   KE. . BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. . Dev Biol . 2006; ;292: 2 : 292– 302 .
    [Google Scholar]
  63. [63]. Cheek   JD., , Wirrig   EE., , Alfieri   CM., , James   JF., , Yutzey   KE. . Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. . J Mol Cell Cardiol . 2012; ;52: 3 : 689– 700 .
    [Google Scholar]
  64. [64]. Manner   J. . Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. . Anat Rec . 2000; ;259: 3 : 248– 262 .
    [Google Scholar]
  65. [65]. Hove   JR., , Koster   RW., , Forouhar   AS., , Acevedo-Bolton   G., , Fraser   SE., , Gharib   M. . Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. . Nature . 2003; ;421: 6919 : 172– 177 .
    [Google Scholar]
  66. [66]. Vermot   J., , Forouhar   AS., , Liebling   M., , Wu   D., , Plummer   D., , Gharib   M., , Fraser   SE. . Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. . PLoS Biol . 2009; ;7: 11 : e1000246 .
    [Google Scholar]
  67. [67]. Egorova   AD., , Khedoe   PP., , Goumans   MJ., , Yoder   BK., , Nauli   SM., , ten Dijke   P., , Poelmann   RE., , Hierck   BP. . Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. . Circ Res . 2011; ;108: 9 : 1093– 1101 .
    [Google Scholar]
  68. [68]. Buskohl   PR., , Jenkins   JT., , Butcher   JT. . Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves. . Biomech Model Mechanobiol . 2012; ;11: 8 : 1205– 1217 .
    [Google Scholar]
  69. [69]. Biechler   SV., , Potts   JD., , Yost   MJ., , Junor   L., , Goodwin   RL., , Weidner   JW. . Mathematical modeling of flow-generated forces in an in vitro system of cardiac valve development. . Ann Biomed Eng . 2010; ;38: 1 : 109– 117 .
    [Google Scholar]
  70. [70]. Goodwin   RL., , Nesbitt   T., , Price   RL., , Wells   JC., , Yost   MJ., , Potts   JD. . Three-dimensional model system of valvulogenesis. . Dev Dyn . 2005; ;233: 1 : 122– 129 .
    [Google Scholar]
  71. [71]. Tan   H., , Biechler   S., , Junor   L., , Yost   MJ., , Dean   D., , Li   J., , Potts   JD., , Goodwin   RL. . Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves. . Dev Biol . 2013; ;374: 2 : 345– 356 .
    [Google Scholar]
  72. [72]. Hu   N., , Christensen   DA., , Agrawal   AK., , Beaumont   C., , Clark   EB., , Hawkins   JA. . Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. . Anat Rec (Hoboken) . 2009; ;292: 5 : 652– 660 .
    [Google Scholar]
  73. [73]. Reckova   M., , Rosengarten   C., , deAlmeida   A., , Stanley   CP., , Wessels   A., , Gourdie   RG., , Thompson   RP., , Sedmera   D. . Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. . Circ Res . 2003; ;93: 1 : 77– 85 .
    [Google Scholar]
  74. [74]. Sedmera   D., , Hu   N., , Weiss   KM., , Keller   BB., , Denslow   S., , Thompson   RP. . Cellular changes in experimental left heart hypoplasia. . Anat Rec . 2002; ;267: 2 : 137– 145 .
    [Google Scholar]
  75. [75]. Sedmera   D., , Pexieder   T., , Rychterova   V., , Hu   N., , Clark   EB. . Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. . Anat Rec . 1999; ;254: 2 : 238– 252 .
    [Google Scholar]
  76. [76]. Yalcin   HC., , Shekhar   A., , Nishimura   N., , Rane   AA., , Schaffer   CB., , Butcher   JT. . Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects. . Am J Physiol Heart Circ Physiol . 2010; ;299: 5 : H1728– H1735 .
    [Google Scholar]
  77. [77]. Yano   K., , Gale   D., , Massberg   S., , Cheruvu   PK., , Monahan-Earley   R., , Morgan   ES., , Haig   D., , von Andrian   UH., , Dvorak   AM., , Aird   WC. . Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. . Blood . 2007; ;109: 2 : 613– 615 .
    [Google Scholar]
  78. [78]. Otto   CM., , Kuusisto   J., , Reichenbach   DD., , Gown   AM., , O'Brien   KD. . Characterization of the early lesion of ’degenerative’ valvular aortic stenosis. . Histological and immunohistochemical studies. Circulation . 1994; ;90: 2 : 844– 853 .
    [Google Scholar]
  79. [79]. Imberti   B., , Seliktar   D., , Nerem   RM., , Remuzzi   A. . The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. . Endothelium . 2002; ;9: 1 : 11– 23 .
    [Google Scholar]
  80. [80]. Passerini   AG., , Polacek   DC., , Shi   C., , Francesco   NM., , Manduchi   E., , Grant   GR., , Pritchard   WF., , Powell   S., , Chang   GY., , Stoeckert   CJ Jr., , Davies   PF. . Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. . Proc Natl Acad Sci USA . 2004; ;101: 8 : 2482– 2487 .
    [Google Scholar]
  81. [81]. Butcher   JT., , Penrod   AM., , Garcia   AJ., , Nerem   RM. . Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. . Arterioscler Thromb Vasc Biol . 2004; ;24: 8 : 1429– 1434 .
    [Google Scholar]
  82. [82]. Deck   JD. . Endothelial cell orientation on aortic valve leaflets. . Cardiovasc Res . 1986; ;20: 10 : 760– 767 .
    [Google Scholar]
  83. [83]. Farivar   RS., , Cohn   LH., , Soltesz   EG., , Mihaljevic   T., , Rawn   JD., , Byrne   JG. . Transcriptional profiling and growth kinetics of endothelium reveals differences between cells derived from porcine aorta versus aortic valve. . Eur J Cardiothorac Surg . 2003; ;24: 4 : 527– 534 .
    [Google Scholar]
  84. [84]. Davies   PF. . Flow-mediated endothelial mechanotransduction. . Physiol Rev . 1995; ;75: 3 : 519– 560 .
    [Google Scholar]
  85. [85]. Lopez-Quintero   SV., , Amaya   R., , Pahakis   M., , Tarbell   JM. . The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. . Am J Physiol Heart Circ Physiol . 2009; ;296: 5 : H1451– H1456 .
    [Google Scholar]
  86. [86]. Pahakis   MY., , Kosky   JR., , Dull   RO., , Tarbell   JM. . The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. . Biochem Biophys Res Commun . 2007; ;355: 1 : 228– 233 .
    [Google Scholar]
  87. [87]. Wang   N., , Butler   JP., , Ingber   DE. . Mechanotransduction across the cell surface and through the cytoskeleton. . Science . 1993; ;260: 5111 : 1124– 1127 .
    [Google Scholar]
  88. [88]. Ku   DD., , Nelson   JM., , Caulfield   JB., , Winn   MJ. . Release of endothelium-derived relaxing factors from canine cardiac valves. . J Cardiovasc Pharmacol . 1990; ;16: 2 : 212– 218 .
    [Google Scholar]
  89. [89]. Misfeld   M., , Morrison   K., , Sievers   H., , Yacoub   MH., , Chester   AH. . Localization of immunoreactive endothelin and characterization of its receptors in aortic cusps. . J Heart Valve Dis . 2002; ;11: 4 : 472– 476   discussion 6-7 .
    [Google Scholar]
  90. [90]. Pompilio   G., , Rossoni   G., , Sala   A., , Polvani   GL., , Berti   F., , Dainese   L., , Porqueddu   M., , Biglioli   P. . Endothelial-dependent dynamic and antithrombotic properties of porcine aortic and pulmonary valves. . Ann Thorac Surg . 1998; ;65: 4 : 986– 992 .
    [Google Scholar]
  91. [91]. Caro   CG. . Discovery of the role of wall shear in atherosclerosis. . Arterioscler Thromb Vasc Biol . 2009; ;29: 2 : 158– 161 .
    [Google Scholar]
  92. [92]. Chatzizisis   YS., , Coskun   AU., , Jonas   M., , Edelman   ER., , Feldman   CL., , Stone   PH. . Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. . J Am Coll Cardiol . 2007; ;49: 25 : 2379– 2393 .
    [Google Scholar]
  93. [93]. Butcher   JT., , Tressel   S., , Johnson   T., , Turner   D., , Sorescu   G., , Jo   H., , Nerem   RM. . Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. . Arterioscler Thromb Vasc Biol . 2006; ;26: 1 : 69– 77 .
    [Google Scholar]
  94. [94]. Rabkin   E., , Aikawa   M., , Stone   JR., , Fukumoto   Y., , Libby   P., , Schoen   FJ. . Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. . Circulation . 2001; ;104: 21 : 2525– 2532 .
    [Google Scholar]
  95. [95]. Walker   GA., , Masters   KS., , Shah   DN., , Anseth   KS., , Leinwand   LA. . Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. . Circ Res . 2004; ;95: 3 : 253– 260 .
    [Google Scholar]
  96. [96]. Taylor   PM., , Allen   SP., , Yacoub   MH. . Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. . J Heart Valve Dis . 2000; ;9: 1 : 150– 158 .
    [Google Scholar]
  97. [97]. Brand   NJ., , Roy   A., , Hoare   G., , Chester   A., , Yacoub   MH. . Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. . Int J Biochem Cell Biol . 2006; ;38: 1 : 30– 42 .
    [Google Scholar]
  98. [98]. Rabkin-Aikawa   E., , Farber   M., , Aikawa   M., , Schoen   FJ. . Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. . J Heart Valve Dis . 2004; ;13: 5 : 841– 847 .
    [Google Scholar]
  99. [99]. Liu   AC., , Joag   VR., , Gotlieb   AI. . The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. . Am J Pathol . 2007; ;171: 5 : 1407– 1418 .
    [Google Scholar]
  100. [100]. Osman   L., , Yacoub   MH., , Latif   N., , Amrani   M., , Chester   AH. . Role of human valve interstitial cells in valve calcification and their response to atorvastatin. . Circulation . 2006; ;114: 1 : I547– I552 .
    [Google Scholar]
  101. [101]. Merryman   WD., , Youn   I., , Lukoff   HD., , Krueger   PM., , Guilak   F., , Hopkins   RA., , Sacks   MS. . Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. . Am J Physiol Heart Circ Physiol . 2006; ;290: 1 : H224– H231 .
    [Google Scholar]
  102. [102]. Latif   N., , Sarathchandra   P., , Taylor   PM., , Antoniw   J., , Brand   N., , Yacoub   MH. . Characterization of molecules mediating cell-cell communication in human cardiac valve interstitial cells. . Cell Biochem Biophys . 2006; ;45: 3 : 255– 264 .
    [Google Scholar]
  103. [103]. Latif   N., , Sarathchandra   P., , Thomas   PS., , Antoniw   J., , Batten   P., , Chester   AH., , Taylor   PM., , Yacoub   MH. . Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. . J Heart Valve Dis . 2007; ;16: 1 : 56– 66 .
    [Google Scholar]
  104. [104]. Balachandran   K., , Sucosky   P., , Jo   H., , Yoganathan   AP. . Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. . Am J Physiol Heart Circ Physiol . 2009; ;296: 3 : H756– H764 .
    [Google Scholar]
  105. [105]. Ku   CH., , Johnson   PH., , Batten   P., , Sarathchandra   P., , Chambers   RC., , Taylor   PM., , Yacoub   MH., , Chester   AH. . Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. . Cardiovasc Res . 2006; ;71: 3 : 548– 556 .
    [Google Scholar]
  106. [106]. Merryman   WD., , Lukoff   HD., , Long   RA., , Engelmayr   GC Jr., , Hopkins   RA., , Sacks   MS. . Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. . Cardiovasc Pathol . 2007; ;16: 5 : 268– 276 .
    [Google Scholar]
  107. [107]. Schoen   FJ. . Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. . Circulation . 2008; ;118: 18 : 1864– 1880 .
    [Google Scholar]
  108. [108]. Latif   N., , Sarathchandra   P., , Taylor   PM., , Antoniw   J., , Yacoub   MH. . Molecules mediating cell-ECM and cell-cell communication in human heart valves. . Cell Biochem Biophys . 2005; ;43: 2 : 275– 287 .
    [Google Scholar]
  109. [109]. Blaschuk   KL., , Frost   EE., , ffrench-Constant   C. . The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins. . Development . 2000; ;127: 9 : 1961– 1969 .
    [Google Scholar]
  110. [110]. Mawatari   K., , Liu   B., , Kent   KC. . Activation of integrin receptors is required for growth factor-induced smooth muscle cell dysfunction. . J Vasc Surg . 2000; ;31: 2 : 375– 381 .
    [Google Scholar]
  111. [111]. Tsuji   T., , Waga   I., , Tezuka   K., , Kamada   M., , Yatsunami   K., , Kodama   H. . Integrin beta2 (CD18)-mediated cell proliferation of HEL cells on a hematopoietic-supportive bone marrow stromal cell line, HESS-5 cells. . Blood . 1998; ;91: 4 : 1263– 1271 .
    [Google Scholar]
  112. [112]. El-Hamamsy   I., , Yacoub   MH., , Chester   AH. . Neuronal regulation of aortic valve cusps. . Curr Vasc Pharmacol . 2009; ;7: 1 : 40– 46 .
    [Google Scholar]
  113. [113]. Marron   K., , Yacoub   MH., , Polak   JM., , Sheppard   MN., , Fagan   D., , Whitehead   BF., , de Leval   MR., , Anderson   RH., , Wharton   J. . Innervation of human atrioventricular and arterial valves. . Circulation . 1996; ;94: 3 : 368– 375 .
    [Google Scholar]
  114. [114]. Kawano   H., , Kawai   S., , Shirai   T., , Okada   R. . Morphological study on vagal innervation in human atrioventricular valves using histochemical method. . Jpn Circ J . 1993; ;57: 8 : 753– 759 .
    [Google Scholar]
  115. [115]. Kawano   H., , Shirai   T., , Kawano   Y., , Okada   R. . Morphological study of vagal innervation in human semilunar valves using a histochemical method. . Jpn Circ J . 1996; ;60: 1 : 62– 66 .
    [Google Scholar]
  116. [116]. De Biasi   S., , Vitellaro-Zuccarello   L. . Intrinsic innervation of porcine semilunar heart valves. . Anat Embryol (Berl) . 1982; ;165: 1 : 71– 79 .
    [Google Scholar]
  117. [117]. Steele   PA., , Gibbins   IL., , Morris   JL. . Projections of intrinsic cardiac neurons to different targets in the guinea-pig heart. . J Auton Nerv Syst . 1996; ;56: 3 : 191– 200 .
    [Google Scholar]
  118. [118]. Chester   AH., , Kershaw   JD., , Sarathchandra   P., , Yacoub   MH. . Localisation and function of nerves in the aortic root. . J Mol Cell Cardiol . 2008; ;44: 6 : 1045– 1052 .
    [Google Scholar]
  119. [119]. Billiar   KL., , Sacks   MS. . Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II–A structural constitutive model. . J Biomech Eng . 2000; ;122: 4 : 327– 335 .
    [Google Scholar]
  120. [120]. Billiar   KL., , Sacks   MS. . Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: Experimental results. . J Biomech Eng . 2000; ;122: 1 : 23– 30 .
    [Google Scholar]
  121. [121]. Stella   JA., , Liao   J., , Sacks   MS. . Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. . J Biomech . 2007; ;40: 14 : 3169– 3177 .
    [Google Scholar]
  122. [122]. Butcher   JT., , Nerem   RM. . Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. . Tissue Eng . 2006; ;12: 4 : 905– 915 .
    [Google Scholar]
  123. [123]. El-Hamamsy   I., , Balachandran   K., , Yacoub   MH., , Stevens   LM., , Sarathchandra   P., , Taylor   PM., , Yoganathan   AP., , Chester   AH. . Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. . J Am Coll Cardiol . 2009; ;53: 16 : 1448– 1455 .
    [Google Scholar]
  124. [124]. Aicher   D., , Urbich   C., , Zeiher   A., , Dimmeler   S., , Schafers   HJ. . Endothelial nitric oxide synthase in bicuspid aortic valve disease. . Ann Thorac Surg . 2007; ;83: 4 : 1290– 1294 .
    [Google Scholar]
  125. [125]. Lee   TC., , Zhao   YD., , Courtman   DW., , Stewart   DJ. . Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. . Circulation . 2000; ;101: 20 : 2345– 2348 .
    [Google Scholar]
  126. [126]. Davies   JE., , Parker   KH., , Francis   DP., , Hughes   AD., , Mayet   J. . What is the role of the aorta in directing coronary blood flow?.   Heart . 2008; ;94: 12 : 1545– 1547 .
    [Google Scholar]
  127. [127]. Grande-Allen   KJ., , Cochran   RP., , Reinhall   PG., , Kunzelman   KS. . Re-creation of sinuses is important for sparing the aortic valve: a finite element study. . J Thorac Cardiovasc Surg . 2000; ;119: 4 Pt 1 : 753– 763 .
    [Google Scholar]
  128. [128]. El-Hamamsy   I., , Yacoub   MH. . A measured approach to managing the aortic root in patients with bicuspid aortic valve disease. . Curr Cardiol Rep . 2009; ;11: 2 : 94– 100 .
    [Google Scholar]
  129. [129]. Grande   KJ., , Cochran   RP., , Reinhall   PG., , Kunzelman   KS. . Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. . Ann Thorac Surg . 2000; ;69: 6 : 1851– 1857 .
    [Google Scholar]
  130. [130]. Owens   DS., , Otto   CM. . Is it time for a new paradigm in calcific aortic valve disease?.   JACC Cardiovasc Imaging . 2009; ;2: 8 : 928– 930 .
    [Google Scholar]
  131. [131]. Thubrikar   MJ., , Aouad   J., , Nolan   SP. . Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. . Am J Cardiol . 1986; ;58: 3 : 304– 308 .
    [Google Scholar]
  132. [132]. Ingber   DE. . The mechanochemical basis of cell and tissue regulation. . Mech Chem Biosyst . 2004; ;1: 1 : 53– 68 .
    [Google Scholar]
  133. [133]. Van der Heiden   K., , Groenendijk   BC., , Hierck   BP., , Hogers   B., , Koerten   HK., , Mommaas   AM., , Gittenberger-de Groot   AC., , Poelmann   RE. . Monocilia on chicken embryonic endocardium in low shear stress areas. . Dev Dyn . 2006; ;235: 1 : 19– 28 .
    [Google Scholar]
  134. [134]. Dumbauld   DW., , Michael   KE., , Hanks   SK., , Garcia   AJ. . Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. . Biol Cell . 2010; ;102: 4 : 203– 213 .
    [Google Scholar]
  135. [135]. Xu   Y., , Bismar   TA., , Su   J., , Xu   B., , Kristiansen   G., , Varga   Z., , Teng   L., , Ingber   DE., , Mammoto   A., , Kumar   R., , Alaoui-Jamali   MA. . Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. . J Exp Med . 2010; ;207: 11 : 2421– 2437 .
    [Google Scholar]
  136. [136]. Kyndt   F., , Gueffet   JP., , Probst   V., , Jaafar   P., , Legendre   A., , Le Bouffant   F., , Toquet   C., , Roy   E., , McGregor   L., , Lynch   SA., , Newbury-Ecob   R., , Tran   V., , Young   I., , Trochu   JN., , Le Marec   H., , Schott   JJ. . Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. . Circulation . 2007; ;115: 1 : 40– 49 .
    [Google Scholar]
  137. [137]. Gu   X., , Masters   KS. . Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. . Am J Physiol Heart Circ Physiol . 2011; ;300: 2 : H448– H458 .
    [Google Scholar]
  138. [138]. Helmke   BP., , Davies   PF. . The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. . Ann Biomed Eng . 2002; ;30: 3 : 284– 296 .
    [Google Scholar]
  139. [139]. Ingber   DE. . Tensegrity: the architectural basis of cellular mechanotransduction. . Annu Rev Physiol . 1997; ;59: : 575– 599 .
    [Google Scholar]
  140. [140]. Wang   N., , Tytell   JD., , Ingber   DE. . Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. . Nat Rev Mol Cell Biol . 2009; ;10: 1 : 75– 82 .
    [Google Scholar]
  141. [141]. Lammerding   J. . Mechanics of the nucleus. . Compr Physiol . 2011; ;1: 2 : 783– 807 .
    [Google Scholar]
  142. [142]. Gould   RA., , Sinha   R., , Aziz   H., , Rouf   R., , Dietz   HC 3rd., , Judge   DP., , Butcher   J. . Multi-scale biomechanical remodeling in aging and genetic mutant murine mitral valve leaflets: insights into Marfan syndrome. . PLoS One . 2012; ;7: 9 : e44639 .
    [Google Scholar]
  143. [143]. Weiler   M., , Yap   CH., , Balachandran   K., , Padala   M., , Yoganathan   AP. . Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. . J Biomech . 2011; ;44: 8 : 1459– 1465 .
    [Google Scholar]
  144. [144]. Gould   RA., , Chin   K., , Santisakultarm   TP., , Dropkin   A., , Richards   JM., , Schaffer   CB., , Butcher   JT. . Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. . Acta Biomater . 2012; ;8: 5 : 1710– 1719 .
    [Google Scholar]
  145. [145]. Kural   MH., , Billiar   KL. . Mechanoregulation of valvular interstitial cell phenotype in the third dimension. . Biomaterials . 2014; ;35: 4 : 1128– 1137 .
    [Google Scholar]
  146. [146]. Holliday   CJ., , Ankeny   RF., , Jo   H., , Nerem   RM. . Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. . Am J Physiol Heart Circ Physiol . 2011; ;301: 3 : H856– H867 .
    [Google Scholar]
  147. [147]. Metzler   SA., , Digesu   CS., , Howard   JI., , Filip To   SD., , Warnock   JN. . Live en face imaging of aortic valve leaflets under mechanical stress. . Biomech Model Mechanobiol . 2012; ;11: 3-4 : 355– 361 .
    [Google Scholar]
  148. [148]. Clark-Greuel   JN., , Connolly   JM., , Sorichillo   E., , Narula   NR., , Rapoport   HS., , Mohler   ER 3rd., , Gorman   JH 3rd., , Gorman   RC., , Levy   RJ. . Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. . Ann Thorac Surg . 2007; ;83: 3 : 946– 953 .
    [Google Scholar]
  149. [149]. Mohler   ER 3rd., , Chawla   MK., , Chang   AW., , Vyavahare   N., , Levy   RJ., , Graham   L., , Gannon   FH. . Identification and characterization of calcifying valve cells from human and canine aortic valves. . J Heart Valve Dis . 1999; ;8: 3 : 254– 260 .
    [Google Scholar]
  150. [150]. Ngo   DT., , Sverdlov   AL., , Willoughby   SR., , Nightingale   AK., , Chirkov   YY., , McNeil   JJ., , Horowitz   JD. . Determinants of occurrence of aortic sclerosis in an aging population. . JACC Cardiovasc Imaging . 2009; ;2: 8 : 919– 927 .
    [Google Scholar]
  151. [151]. Miller   JD., , Chu   Y., , Brooks   RM., , Richenbacher   WE., , Pena-Silva   R., , Heistad   DD. . Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. . J Am Coll Cardiol . 2008; ;52: 10 : 843– 850 .
    [Google Scholar]
  152. [152]. Ferdous   Z., , Jo   H., , Nerem   RM. . Strain magnitude-dependent calcific marker expression in valvular and vascular cells. . Cells Tissues Organs . 2013; ;197: 5 : 372– 383 .
    [Google Scholar]
  153. [153]. Mohler   ER., , Gannon   F., , Reynolds   C., , Zimmerman   R., , Keane   MG., , Kaplan   FS. . Bone formation and inflammation in cardiac valves. . Circulation . 2001; ;103: 11 : 1522– 1528 .
    [Google Scholar]
  154. [154]. Yang   X., , Meng   X., , Su   X., , Mauchley   DC., , Ao   L., , Cleveland   JC Jr., , Fullerton   DA. . Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. . J Thorac Cardiovasc Surg . 2009; ;138: 4 : 1008– 1015 .
    [Google Scholar]
  155. [155]. Yip   CY., , Chen   JH., , Zhao   R., , Simmons   CA. . Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. . Arterioscler Thromb Vasc Biol . 2009; ;29: 6 : 936– 942 .
    [Google Scholar]
  156. [156]. Balachandran   K., , Sucosky   P., , Jo   H., , Yoganathan   AP. . Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. . Am J Pathol . 2010; ;177: 1 : 49– 57 .
    [Google Scholar]
  157. [157]. Chen   JH., , Yip   CY., , Sone   ED., , Simmons   CA. . Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. . Am J Pathol . 2009; ;174: 3 : 1109– 1119 .
    [Google Scholar]
  158. [158]. Richards   J., , El-Hamamsy   I., , Chen   S., , Sarang   Z., , Sarathchandra   P., , Yacoub   MH., , Chester   AH., , Butcher   JT. . Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. . Am J Pathol . 2013; ;182: 5 : 1922– 1931 .
    [Google Scholar]
  159. [159]. Kennedy   JA., , Hua   X., , Mishra   K., , Murphy   GA., , Rosenkranz   AC., , Horowitz   JD. . Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors. . Eur J Pharmacol . 2009; ;602: 1 : 28– 35 .
    [Google Scholar]
  160. [160]. Simmons   CA., , Zilberberg   J., , Davies   PF. . A rapid, reliable method to isolate high quality endothelial RNA from small spatially-defined locations. . Ann Biomed Eng . 2004; ;32: 10 : 1453– 1459 .
    [Google Scholar]
  161. [161]. Simmons   CA., , Grant   GR., , Manduchi   E., , Davies   PF. . Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. . Circ Res . 2005; ;96: 7 : 792– 799 .
    [Google Scholar]
  162. [162]. Peltonen   TO., , Taskinen   P., , Soini   Y., , Rysa   J., , Ronkainen   J., , Ohtonen   P., , Satta   J., , Juvonen   T., , Ruskoaho   H., , Leskinen   H. . Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis. . Circulation . 2007; ;116: 11 : 1283– 1289 .
    [Google Scholar]
  163. [163]. Yip   CY., , Blaser   MC., , Mirzaei   Z., , Zhong   X., , Simmons   CA. . Inhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide. . Arterioscler Thromb Vasc Biol . 2011; ;31: 8 : 1881– 1889 .
    [Google Scholar]
  164. [164]. Chester   AH. . Molecular and cellular mechanisms of valve calcification. . Aswan Heart Cent Sci Pract Ser . 2011; ;4: : 19 .
    [Google Scholar]
  165. [165]. Helderman   F., , Segers   D., , de Crom   R., , Hierck   BP., , Poelmann   RE., , Evans   PC., , Krams   R. . Effect of shear stress on vascular inflammation and plaque development. . Curr Opin Lipidol . 2007; ;18: 5 : 527– 533 .
    [Google Scholar]
  166. [166]. Partridge   J., , Carlsen   H., , Enesa   K., , Chaudhury   H., , Zakkar   M., , Luong   L., , Kinderlerer   A., , Johns   M., , Blomhoff   R., , Mason   JC., , Haskard   DO., , Evans   PC. . Laminar shear stress acts as a switch to regulate divergent functions of NF-kappaB in endothelial cells. . FASEB J . 2007; ;21: 13 : 3553– 3561 .
    [Google Scholar]
  167. [167]. Steinmetz   M., , Skowasch   D., , Wernert   N., , Welsch   U., , Preusse   CJ., , Welz   A., , Nickenig   G., , Bauriedel   G. . Differential profile of the OPG/RANKL/RANK-system in degenerative aortic native and bioprosthetic valves. . J Heart Valve Dis . 2008; ;17: 2 : 187– 193 .
    [Google Scholar]
  168. [168]. Jian   B., , Narula   N., , Li   QY., , Mohler   ER 3rd., , Levy   RJ. . Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. . Ann Thorac Surg . 2003; ;75: 2 : 457– 465 , ; discussion 65-6 .
    [Google Scholar]
  169. [169]. Hakuno   D., , Kimura   N., , Yoshioka   M., , Fukuda   K. . Molecular mechanisms underlying the onset of degenerative aortic valve disease. . J Mol Med (Berl) . 2009; ;87: 1 : 17– 24 .
    [Google Scholar]
  170. [170]. Latif   N., , Sarathchandra   P., , Chester   AH., , Yacoub   MH. . Expression of smooth muscle cell markers and co-activators in calcified aortic valves. . Eur Heart J . 2014; ; , In Press .
    [Google Scholar]
  171. [171]. Torii   R., , El-Hamamsy   I., , Donya   M., , Babu-Narayan   SV., , Ibrahim   M., , Kilner   PJ., , Mohiaddin   RH., , Xu   XY., , Yacoub   MH. . Integrated morphologic and functional assessment of the aortic root after different tissue valve root replacement procedures. . J Thorac Cardiovasc Surg . 2012; ;143: 6 : 1422– 1428 .
    [Google Scholar]
  172. [172]. Aikawa   E., , Nahrendorf   M., , Sosnovik   D., , Lok   VM., , Jaffer   FA., , Aikawa   M., , Weissleder   R. . Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. . Circulation . 2007; ;115: 3 : 377– 386 .
    [Google Scholar]
  173. [173]. Bertazzo   S., , Gentleman   E., , Cloyd   KL., , Chester   AH., , Yacoub   MH., , Stevens   MM. . Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. . Nat Mater . 2013; ;12: 6 : 576– 583 .
    [Google Scholar]
  174. [174]. Yacoub   MH., , Takkenberg   JJ. . Will heart valve tissue engineering change the world?.   Nat Clin Pract Cardiovasc Med . 2005; ;2: 2 : 60– 61 .
    [Google Scholar]
  175. [175]. Lansac   E., , Lim   HS., , Shomura   Y., , Lim   KH., , Rice   NT., , Goetz   W., , Acar   C., , Duran   CM. . A four-dimensional study of the aortic root dynamics. . Eur J Cardiothorac Surg . 2002; ;22: 4 : 497– 503 .
    [Google Scholar]
  176. [176]. High   FA., , Epstein   JA. . The multifaceted role of Notch in cardiac development and disease. . Nat Rev Genet . 2008; ;9: 1 : 49– 61 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2014.11
Loading
/content/journals/10.5339/gcsp.2014.11
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error