1887
Volume 2013, Issue 3
  • ISSN: 2305-7823
  • EISSN:

Abstract

Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2013.38
2013-12-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2013/3/gcsp.2013.38.html?itemId=/content/journals/10.5339/gcsp.2013.38&mimeType=html&fmt=ahah

References

  1. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004; 428::487492.
    [Google Scholar]
  2. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001; 101:7:18691879.
    [Google Scholar]
  3. Kyung JH, Yeon KS, Jeong KS, Moo LY. pH / temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci. 2002; 83::128136.
    [Google Scholar]
  4. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960; 185::117129.
    [Google Scholar]
  5. Hoffman AS. Hydrogels for biomedical applications. Ann N Y Acad Sci. 2001; 944::6273.
    [Google Scholar]
  6. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000; 50::2746.
    [Google Scholar]
  7. Guenet JM. Thermoreversible gelation of polymers and biopolymers. New York: Academic Press 1992:p.89.
    [Google Scholar]
  8. In: Markey MLBowman MLBergamini MY, eds. Chitin and chitosan. London: Elsevier Appl. Sci 1989:p.713.
    [Google Scholar]
  9. Klech CM. Gels and jellies. In: Swarbrick JBoylan JC, eds. Encyclopedia of pharmaceutical technology: Marcel Dekker, New York 1990:p.415.
    [Google Scholar]
  10. Gehrke SH, Lee PI. Hydrogels for drug delivery systems. In: Tyle P, ed. Specialized drug delivery systems: Marcel Dekker, New York 1990:p.333.
    [Google Scholar]
  11. Kunzier JF. Hydrogels. In: Hoboken NJ, ed. Encyclopedia of polymer science and technology. vol 2. John Wiley & Sons, Hoboken, New Jersey2003:p.691.
    [Google Scholar]
  12. Zhu W, Ding J. Synthesis and characterization of a redox-initiated, injectable, biodegradable hydrogel. J Appl Polym Sci. 2006; 99::2375.
    [Google Scholar]
  13. Gutowska A, Bae YH, Feijen J, Kim SW. Heparin release from thermosensitive hydrogels. J Control Release. 1992; 22::95104.
    [Google Scholar]
  14. Ferreira L, Vidal MM, Gil MH. Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm. 2000; 194::169180.
    [Google Scholar]
  15. D'Emanuele A, Staniforth JN. An electrically modulated drug delivery device: I. Pharm Res. 1991; 8::913918.
    [Google Scholar]
  16. Shantha KL, Harding DRK. Synthesis and evaluation of sucrose-containing polymeric hydrogels for oral drug delivery. J Appl Polym Sci. 2002; 84::25972604.
    [Google Scholar]
  17. Shantha KL, Harding DRK. Synthesis, characterisation and evaluation of poly[lactose acrylate-N-vinyl-2-pyrrolidinone] hydrogels for drug delivery. Eur Polym J. 2003; 39::6368.
    [Google Scholar]
  18. El-Sherbiny IM, Lins RJ, Abdel-Bary EM, Harding DRK. Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. Eur Polym J. 2005; 41::25842591.
    [Google Scholar]
  19. El-Sherbiny IM, Abdel-Bary EM, Harding DRK. Preparation and swelling study of a pH-dependent interpolymeric hydrogel based on chitosan for controlled drug release. Int J Polym Mater. 2006; 55::789802.
    [Google Scholar]
  20. Jabbari E, Nozari S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polym J. 2000; 36::26852692.
    [Google Scholar]
  21. Rosiak JM, Ulanski P. Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem. 1999; 55::139151.
    [Google Scholar]
  22. El-Sherbiny IM, Smyth HDC. Poly(ethylene glycol)/carboxymethyl chitosan-based pH-responsive hydrogels: Photo-induced synthesis, characterization, swelling and in-vitro evaluation as potential drug carriers. Carbohydr Res. 2010; 345:14:20042012.
    [Google Scholar]
  23. Yamada K, Tabata Y, Yamamoto K, Miyamoto S, Nagata I, Kikuchi H, Ikada Y. Potential efficacy of basic fibroblast growth factor incorporated in biodegradable hydrogels for skull bone regeneration. J Neurosurg. 1997; 86::871875.
    [Google Scholar]
  24. Akin H, Hasirci N. Thermal properties of crosslinked gelatin microspheres. Polym Preprint. 1995; 36::384385.
    [Google Scholar]
  25. Anal AK, Stevens WF. Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm. 2005; 290::4554.
    [Google Scholar]
  26. Nakashima T, Takakura K, Komoto Y. Thromboresistance of graft-type copolymers with hydrophilic-hydrophobic microphase-separated structure. J Biomed Mater Res. 1977; 11::787798.
    [Google Scholar]
  27. Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS, Hubbell JA. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant. 1999; 8:3:293306.
    [Google Scholar]
  28. Kraehenbuehl TP, Ferreira LS, Zammaretti P, Hubbell JA, Langer R. Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials. 2009; 30:26:43184324.
    [Google Scholar]
  29. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010; 31::55365544.
    [Google Scholar]
  30. Shin H, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003; 24::43534364.
    [Google Scholar]
  31. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003; 24::43854415.
    [Google Scholar]
  32. Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc Natl Acad Sci USA. 1994; 91:13:59675971.
    [Google Scholar]
  33. West JL, Hubbell JA. Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: The roles of medial and luminal factors in arterial healing. Proc Natl Acad Sci USA. 1996; 93::1318813193.
    [Google Scholar]
  34. Hill-West JL, Dunn RC, Hubbell JA. Local release of fibrinolytic agents for adhesion prevention. J Surg Res. 1995; 59::759763.
    [Google Scholar]
  35. Sawhney AS, Pathak CP, van Rensburg JJ, Dunn RC, Hubbell JA. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res. 1994; 28::831838.
    [Google Scholar]
  36. Bergmann NM, Peppas NA. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Prog Polym Sci. 2008; 33::271288.
    [Google Scholar]
  37. Peppas NA, Kim B. Stimuli-sensitive protein delivery systems. J Drug Del Sci Technol. 2006; 16::1118.
    [Google Scholar]
  38. Peppas NA. Intelligent biomaterials as pharmaceutical carriers in microfabricated and nanoscale devices. MRS Bull. 2006; 31::888893.
    [Google Scholar]
  39. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002; 23::43074314.
    [Google Scholar]
  40. Lu SX, Ramirez WF, Anseth KS. Photopolymerized, multilaminated matrix devices with optimized nonuniform initial concentration profiles to control drug release. J Pharm Sci. 2000; 89::4551.
    [Google Scholar]
  41. Guyton A, Hall J. Textbook of medical physiology. 10th ed. Philadelphia, PA: Elsevier Saunders 2000:p.1064.
    [Google Scholar]
  42. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA. 1999; 96::31043107.
    [Google Scholar]
  43. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res. 2000; 51::164171.
    [Google Scholar]
  44. Suggs LJ, Mikos AG. Synthetic biodegradable polymers for medical. An injectable carrier for endothelial cells. Cell Transplant. 1999; 8::345350.
    [Google Scholar]
  45. Ratner BD. Biomaterials science: An introduction to materials in medicine. 2nd ed. Amsterdam: Elsevier Academic Press 2004:p.851.
    [Google Scholar]
  46. Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol. 2003; 14:5:551558.
    [Google Scholar]
  47. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005; 23:1:4755.
    [Google Scholar]
  48. Williams DF. The Williams', dictionary of biomaterials. Liverpool: Liverpool University Press 1999.
    [Google Scholar]
  49. Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed. 2000; 11::439457.
    [Google Scholar]
  50. Léon CA, Léon Y. New perspectives in mercury porosimetry. Adv Colloid Interface Sci. 1998; 76-77::341372.
    [Google Scholar]
  51. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering—part I: traditional factors. Tissue Eng. 2001; 7:6:679689.
    [Google Scholar]
  52. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004; 4:8:743765.
    [Google Scholar]
  53. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane micro architecture. J Biomed Mater Res. 1995; 29::15171524.
    [Google Scholar]
  54. Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load-bearing internal orthopedic applications. J Biomed Mater Res A Symposium. 1971; 2::161168.
    [Google Scholar]
  55. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA. 1989; 86::933937.
    [Google Scholar]
  56. Whang K, Healy KE, Elenz DR. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999; 5:1:3551.
    [Google Scholar]
  57. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006; 20::811827.
    [Google Scholar]
  58. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126::677689.
    [Google Scholar]
  59. Bryant SJ, Anseth KS, Lee DA, Bader DL. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthop Res. 2004; 22::11431149.
    [Google Scholar]
  60. Bryant SJ, Chowdhury TT, Lee DA, Bader DL, Anseth KS. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann Biomed Eng. 2004; 32::407417.
    [Google Scholar]
  61. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996; 17:2:137146.
    [Google Scholar]
  62. Elbert DL, Hubbell JA. Surface treatments of polymers for biocompatibility. Ann Rev Mater Sci. 1996; 26:1:365394.
    [Google Scholar]
  63. Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs. The bone bioreactor. Proc Natl Acad Sci USA. 2005; 102::1145011455.
    [Google Scholar]
  64. Tabata Y, Hijikata S, Ikada Y. Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release. 1994; 31::189199.
    [Google Scholar]
  65. Lee KY, Peters MC, Mooney DJ. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release. 2003; 87::4956.
    [Google Scholar]
  66. Lee KY, Peters MC, Anderson KW, Mooney DJ. Controlled growth factor release from synthetic extracellular matrices. Nature. 2000; 408::9981000.
    [Google Scholar]
  67. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003; 17::22602262.
    [Google Scholar]
  68. Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich JD. Stimulation of In-vivo angiogenesis by cytokine loaded hyaluronic acid hydrogel implants. Biomaterials. 2004; 25::27892798.
    [Google Scholar]
  69. Peattie RA, Rieke E, Hewett E, Fisher RJ, Shu XZ, Prestwich GD. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials. 2006; 27::18681875.
    [Google Scholar]
  70. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007; 104::1129811303.
    [Google Scholar]
  71. Shu XZ, Ghosh K, Liu YC, Palumbo FS, Luo Y, Clark RA, Prestwich GD. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A. 2004; 68::365375.
    [Google Scholar]
  72. Pape LG, Balazs EA. The use of sodium hyaluronate (Healon®) in human anterior segment surgery. Ophthalmology. 1980; 87::699705.
    [Google Scholar]
  73. Duranti F, Salti G, Bovani G, Calandra M, Rosati ML. Injectable hyaluronic acid gel for soft tissue augmentation. A clinical and histological study. Dermatol Surg. 1998; 24::13171325.
    [Google Scholar]
  74. Burns JM, Skinner K, Colt J, Sheidlin A, Bronson R, Yaacobi Y, Goldberg EP. Prevention of tissue injury and postsurgical adhesions by precoating tissues with hyaluronic acid solutions. J Surg Res. 1995; 59::644652.
    [Google Scholar]
  75. Ghosh KK, Ren XD, Shu XZ, Prestwich GD, Clark RAF. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng. 2006; 12::601613.
    [Google Scholar]
  76. Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008; 29::161171.
    [Google Scholar]
  77. Shu XZ, Ahmad S, Liu YC, Prestwich GD. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A. 2006; 79::902.
    [Google Scholar]
  78. Dare EV, Vascotto SG, Carlsson DJ, Hincke MT, Griffith M. Differentiation of a fibrin gel encapsulated chondrogenic cell line. Int J Artif Organs. 2007; 30::619627.
    [Google Scholar]
  79. Ryu JH, Kim IK, Cho MC, Hwang KK, Piao H, Piao S, Lim SH, Hong YS, Choi CY, Yoo KJ, Kim BS. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005; 26::319326.
    [Google Scholar]
  80. Currie LJ, Sharpe JR, Martin R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg. 2001; 108::17131726.
    [Google Scholar]
  81. Park SH, Park SR, Chung SI, Pai KS, Min BH. Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs. 2005; 29::838845.
    [Google Scholar]
  82. Stevens MM, Qanadilo HF, Langer R, Shastri VP. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials. 2004; 25::887894.
    [Google Scholar]
  83. Chang SCN, Rowley JA, Tobias G, Genes NG, Roy AK, Mooney DJ, Vacanti CA, Bonassar LJ. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res. 2001; 55::503511.
    [Google Scholar]
  84. Willers C, Chen J, Wood D, Zheng MH. Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng. 2005; 11::10651076.
    [Google Scholar]
  85. Thacharodi D, Rao KP. Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: development and in vitro evaluations. Biomaterials. 1996; 17::13071311.
    [Google Scholar]
  86. Itoh S, Takakuda K, Kawabata S, Aso Y, Kasai K, Itoh H, Shinomiya K. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials. 2002; 23::44754481.
    [Google Scholar]
  87. Joosten EAJ, Veldhuis WB, Hamers FBT. Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury. J Neurosci Res. 2004; 77::127142.
    [Google Scholar]
  88. Hahn MS, Teply BA, Stevens MM, Zeitels SM, Langer R. Collagen composite hydrogels for vocal fold lamina propria restoration. Biomaterials. 2006; 27::11041109.
    [Google Scholar]
  89. Liao E, Yaszemski M, Krebsbach P, Hollister S. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 2007; 13::537550.
    [Google Scholar]
  90. Gong YH, He LJ, Li J, Zhou QL, Ma ZW, Gao CY, Shen JC. Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. J Biomed Mater Res B. 2007; 82::192198.
    [Google Scholar]
  91. Tang SQ, Vickers SM, Hsu HP, Spector M. Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds. J Biomed Mater Res A. 2007; 82::323335.
    [Google Scholar]
  92. Magnani A, Rappuoli R, Lamponi S, Barbucci R. Novel polysaccharide hydrogels: characterization and properties. Polym Adv Technol. 2000; 11::488495.
    [Google Scholar]
  93. Duflo S, Thibeault SL, Li WH, Shu XZ, Prestwich GD. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng. 2006; 12::21712180.
    [Google Scholar]
  94. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003; 24::43374351.
    [Google Scholar]
  95. Kirker KR, Luo Y, Nielson JH, Shelby J, Prestwich GD. Glycosaminoglycan hydrogel films as biointeractive dressings for wound healing. Biomaterials. 2002; 23::36613671.
    [Google Scholar]
  96. Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym. 2013; 91:1:713.
    [Google Scholar]
  97. Park KM, Yang JA, Jung H, Yeom J, Park JS, Park K-H, Hoffman AS, Hahn SK, Kim K. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3d cellular engineering. ACS Nano. 2012; 6:4:29602968.
    [Google Scholar]
  98. Rossi F, Perale G, Storti G, Masi M. A library of tunable agarose carbomer-based hydrogels for tissue engineering applications: The role of cross-linkers. J Appl Polym Sci. 2012; 123:4:22112221.
    [Google Scholar]
  99. Buehler MJ. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. 2007; 18::295102.
    [Google Scholar]
  100. Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable rgd-modified peg hydrogels for bone tissue engineering. Biomaterials. 2002; 23::43154323.
    [Google Scholar]
  101. Burdick JA, Mason MN, Hinman AD, Thorne K, Anseth KS. Delivery of osteoinductive growth factors from degradable peg hydrogels influences osteoblast differentiation and mineralization. J Control Release. 2002; 83::5363.
    [Google Scholar]
  102. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA. 2003; 100::54135418.
    [Google Scholar]
  103. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, Hubbell JA. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials. 2008; 29::27572766.
    [Google Scholar]
  104. Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res. 2001; 19::10981104.
    [Google Scholar]
  105. Hwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J. Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials. 2006; 27::60156023.
    [Google Scholar]
  106. Lee HJ, Lee JS, Chansakul T, Yu C, Elisseeff JH, Yu SM. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials. 2006; 27::52685276.
    [Google Scholar]
  107. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials. 2005; 26::59915998.
    [Google Scholar]
  108. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008; 27::1221.
    [Google Scholar]
  109. Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 2004; 10::515522.
    [Google Scholar]
  110. Bryant SJ, Chowdhury TT, Lee DA, Bader DL, Anseth KS. Cross-linking density influences chondrocyte metabolism in dynamically loaded photocrosslinked PEG hydrogels. Ann Biomed Eng. 2004; 32::407417.
    [Google Scholar]
  111. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003; 9::679688.
    [Google Scholar]
  112. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg. 1999; 104::10141022.
    [Google Scholar]
  113. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg. 2007; 119::112120.
    [Google Scholar]
  114. Chowdhury SM, Hubbell JA. Adhesion prevention with ancrod release via a tissue-adherent hydrogel. J Surg Res. 1996; 61::5864.
    [Google Scholar]
  115. Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS, Hubbell JA. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant. 1999; 8::293306.
    [Google Scholar]
  116. Adelow C, Segura T, Hubbell JA, Frey P. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials. 2008; 29::314326.
    [Google Scholar]
  117. Mann BK, Gobin AS, Tsai AT, Schmedlen RH. West Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001; 22::30453051.
    [Google Scholar]
  118. Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A. 2004; 68::704716.
    [Google Scholar]
  119. An YJ, Hubbell JA. Intraarterial protein delivery via intimally-adherent bilayer hydrogels. J Control Release. 2000; 64::205215.
    [Google Scholar]
  120. Li H, Davison N, Moroni L, Feng F, Crist J, Salter E, Bingham CO, Elisseeff J. Evaluating osteoarthritic chondrocytes through a novel 3-dimensional in vitro system for cartilage tissue engineering and regeneration. Cartilage. 2012; 3:2:128140.
    [Google Scholar]
  121. Bryant SJ, Durand KL, Anseth KS. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J Biomed Mater Res A. 2003; 67::14301436.
    [Google Scholar]
  122. Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002; 59::6372.
    [Google Scholar]
  123. Cruise GM, Hegre OD, Scharp DS, Hubbell JA. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng. 1998; 57::655665.
    [Google Scholar]
  124. Martens PJ, Bryant SJ, Anseth KS. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules. 2003; 4::283292.
    [Google Scholar]
  125. Belkas JS, Munro CA, Shoichet MS, Johnston M, Midha R. Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials. 2005; 26::17411749.
    [Google Scholar]
  126. Vijayasekaran S, Chirila TV, Robertson TA, Lou X, Fitton JH, Hicks CR, Constable IJ. Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea: a 3-month study. J Biomater Sci Polym Ed. 2000; 11::599615.
    [Google Scholar]
  127. Bryant SJ, Cuy JL, Hauch KD, Ratner BD. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 2007; 28::29782986.
    [Google Scholar]
  128. Bakshi A, Fisher O, Dagci T, Himes BT, Fischer I, Lowman A. Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. J Neurosurg Spine. 2004; 1::322329.
    [Google Scholar]
  129. Liu Y, Rayatpisheh S, Chew SY, Chan-Park MB. Impact of endothelial cells on 3D cultured smooth muscle cells in a biomimetic hydrogel. ACS Appl Mater Interfaces. 2012; 4:3:13781387.
    [Google Scholar]
  130. Adams DJ, Holtzmann K, Schneider C, Butler MF. Self-assembly of peptide surfactants. Langmuir. 2007; 23::1272912736.
    [Google Scholar]
  131. Guler MO, Stupp SI. A self-assembled nanofiber catalyst for ester hydrolysis. J Am Chem Soc. 2007; 129::1208212083.
    [Google Scholar]
  132. Williams BAR, Lund K, Liu Y, Yan H, Chaput JC. Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. Angew Chem Int Ed. 2007; 46::30513054.
    [Google Scholar]
  133. Guler MO, Soukasene S, Hulvat JF, Stupp SI. Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. Nano Lett. 2005; 5::249252.
    [Google Scholar]
  134. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001; 294::16841688.
    [Google Scholar]
  135. Hwang JJ, Lyer SN, Li LS, Claussen R, Harrington DA, Stupp SI. Self-assembling biomaterials: Liquid crystal phases of cholesteryl oligo(L-lactic acid) and their interactions with cells. Proc Natl Acad Sci USA. 2002; 99::96629667.
    [Google Scholar]
  136. Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang SG, Lee RT. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005; 111::442450.
    [Google Scholar]
  137. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003; 21::11711178.
    [Google Scholar]
  138. Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng. 2002; 78:4:442453.
    [Google Scholar]
  139. Magyar JP, Nemir M, Ehler E, Suter N, Perriard JC, Eppenberger HM. Mass production of embryoid bodies in microbeads. Ann NY Acad Sci. 2001; 944::135143.
    [Google Scholar]
  140. Wu X, Black L, Santacana-Laffitte G, Patrick CW Jr. Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A. 2007; 81::59.
    [Google Scholar]
  141. Stokols S, Tuszynski MH. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials. 2004; 25::5839.
    [Google Scholar]
  142. Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials. 2006; 27::443451.
    [Google Scholar]
  143. Ricciardi R, D'Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Laupretre F, Lafuma F. Short time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze thaw techniques. Macromolecules. 2005; 38::6629.
    [Google Scholar]
  144. Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang D. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004; 25::129.
    [Google Scholar]
  145. Whang K, Thomas CH, Healy KE. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995; 36::837842.
    [Google Scholar]
  146. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP. Preparation and characterization of poly(L-lactic acid) foams. Polymer. 1994; 35::10681077.
    [Google Scholar]
  147. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993; 14::323330.
    [Google Scholar]
  148. Nam YS, Yoon JJ, Park TG. A novel fabrication method for macroporous scaffolds using gas foaming salt as porogen additive. J Biomed Mater Res. 2000; 53::17.
    [Google Scholar]
  149. Yoon JJ, Park TG. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res. 2001; 55::401408.
    [Google Scholar]
  150. Kim TG, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006; 27::152159.
    [Google Scholar]
  151. Peppas N, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine. Adv Mater. 2006; 18::117.
    [Google Scholar]
  152. Hahn MS, Miller JS, West JL. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater. 2006; 18::26792688.
    [Google Scholar]
  153. Mapili G, Lu Y, Chen S, Roy K. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B. 2005; 75B::414424.
    [Google Scholar]
  154. Luo Y, Shoichet MS. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater. 2004; 3::249253.
    [Google Scholar]
  155. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008; 60::184198.
    [Google Scholar]
  156. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006; 12::1197.
    [Google Scholar]
  157. Li L, Hsieh YL. Ultra-fine polyelectrolyte hydrogel fibers from poly (acrylic acid) poly (vinyl alcohol). Nanotechnology. 2005; 16::2852.
    [Google Scholar]
  158. Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid-collagen hybrid scaffold fabricated by concurrent electrospinning and deposition leaching of salt particles. Acta Biomater. 2008; 4::1611.
    [Google Scholar]
  159. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002; 60::613.
    [Google Scholar]
  160. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, Maclellan WR. Three-dimensional electronspun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008; 29::2907.
    [Google Scholar]
  161. Tan W, Desai TA. Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials. 2004; 25:7-8:13551364.
    [Google Scholar]
  162. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater. 2006; 5::365369.
    [Google Scholar]
  163. Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip. 2008; 8:7:10561061.
    [Google Scholar]
  164. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc. 2005; 127:28:1009610100.
    [Google Scholar]
  165. Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials. 2006; 27:30:52595267.
    [Google Scholar]
  166. Yeh J, Ling Y, Karp JM, Gantz J, Chandawarkar A, Eng G. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials. 2006; 27:31:53915398.
    [Google Scholar]
  167. Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A. A cell-laden microfluidic hydrogel. Lab chip. 2007; 7::756762.
    [Google Scholar]
  168. Khademhosseini A, Yeh J, Jon S, Eng G, Suh KY, Burdick JA, Langer R. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip. 2004; 4:5:425430.
    [Google Scholar]
  169. Franzesi GT, Ni B, Ling Y, Khademhosseini A. A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J Am Chem Soc. 2006; 128::1506415065.
    [Google Scholar]
  170. Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv Mater. 2005; 17:4:399403.
    [Google Scholar]
  171. Golden AP, Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip. 2007; 7:6:720725.
    [Google Scholar]
  172. Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, Alblas J, Dhert WJA. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules. 2009; 10::16891696.
    [Google Scholar]
  173. Mironov V, Boland T, Trusk T. Organ printing: computer-aided jet-based 3D tissue engineering. Trend Biotechnol. 2003; 21::157161.
    [Google Scholar]
  174. Fedorovich NE, Alblas J, Hennink WE, Oner FC, Dhert WJ. Organ printing: the future of bone regeneration? Trends Biotechnol. 2011; 29:12:601606.
    [Google Scholar]
  175. Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng A. 2011; 17::21132121.
    [Google Scholar]
  176. Varghese D, Deshpande M, Xu T. Advances in tissue engineering: cell printing. J Thorac CardioVasc Surg. 2005; 129::470472.
    [Google Scholar]
  177. Cohen DL, Malone E, Lipson H. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006; 12::13251335.
    [Google Scholar]
  178. Smith CM, Stone AL, Parkhill RL. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004; 10::15661576.
    [Google Scholar]
  179. Bhatia SN, Balis UJ, Yarmush ML. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999; 13::18831900.
    [Google Scholar]
  180. Khademhosseini A, Langer R, Borenstein J. Microscale technologies for tissue engineering and biology. Pro Natl Acad Sci USA. 2006; 103::24802487.
    [Google Scholar]
  181. Fukuda J, Khademhosseini A, Yeo Y. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and cocultures. Biomaterials. 2006; 27::52595267.
    [Google Scholar]
  182. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009; 30::54095416.
    [Google Scholar]
  183. Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 2005; 11::803813.
    [Google Scholar]
  184. Hecker L, Khait L, Radnoti D, Birla R. Development of a microperfusion system for the culture of bioengineered heart muscle. ASAIO J. 2008; 54::284294.
    [Google Scholar]
  185. Huang Y, Khait L, Birla RK. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mater Res A. 2007; 80::719731.
    [Google Scholar]
  186. Birla RK, Huang YC, Dennis RG. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng. 2007; 13::22392248.
    [Google Scholar]
  187. Copland IB, Jolicoeur EM, Gillis M, Cuerquis J, Eliopoulos N, Annabi B, Calderone A, Tanguay J, Ducharme A, Galipeau J. Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc Res. 2008; 79::405415.
    [Google Scholar]
  188. Giraud M, Ayuni E, Cook S, Siepe M, Carrel TP, Tevaearai HT. Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif Org. 2008; 32::692700.
    [Google Scholar]
  189. Kutschka I, Chen IY, Kofidis T, Arai T, von Degenfeld G, Sheikh AY, Hendry SL, Pearl J, Hoyt G, Sista R, Yang PC, Blau HM, Gambhir SS, Robbins RC. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation. 2006; 114::I167I173.
    [Google Scholar]
  190. Hansen A, Eder A, Bnstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B, Schwrer A, Uebeler J, Eschenhagen T. Development of a drug screening platform based on engineered heart tissue. Circ Res. 2010; 107::3544.
    [Google Scholar]
  191. Wang T, Jiang X, Tang Q, Li X, Lin T, Wu D, Zhang X, Okello E. Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater. 2009; 5::29392944.
    [Google Scholar]
  192. Allder MA, Guilbeau EJ, Brandon TA, Walker AS, Koeneman JB, Fisk RL. A hydrogel pericardial patch. ASAIO Trans. 1990; 36::M572M574.
    [Google Scholar]
  193. Walker AS, Blue MA, Brandon TA, Emmanual J, Guilbeau EJ. Performance of a hydrogel composite pericardial substitute after long-term implant studies. ASAIO J. 1992; 38::M550M554.
    [Google Scholar]
  194. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008; 372:9655:20232030.
    [Google Scholar]
  195. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006; 367::12411246.
    [Google Scholar]
  196. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010; 5:3:469484.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2013.38
Loading
/content/journals/10.5339/gcsp.2013.38
Loading

Data & Media loading...

Supplements

Supplementary File 1

  • Article Type: Research Article
Keyword(s): bioadhesion , biocompatibility, tissue engineering , biodegradability , hydrogels and scaffolds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error