1887
Volume 2016, Issue 2
  • E-ISSN: 2223-506X

ملخص

Three-dimensional (3D) printing is a resourceful technology that offers a large selection of solutions that are readily adaptable to tissue engineering of artificial heart valves (HVs). Different deposition techniques could be used to produce complex architectures, such as the three-layered architecture of leaflets. Once the assembly is complete, the growth of cells in the scaffold would enable the deposition of cell-specific extracellular matrix proteins. 3D printing technology is a rapidly evolving field that first needs to be understood and then explored by tissue engineers, so that it could be used to create efficient scaffolds. On the other hand, to print the HV scaffold, a basic understanding of the fundamental structural and mechanical aspects of the HV should be gained. This review is focused on alginate that can be used as a building material due to its unique properties confirmed by the successful application of alginate-based biomaterials for the treatment of myocardial infarction in humans. Within the field of biomedicine, there is a broad scope for the application of alginate including wound healing, cell transplantation, delivery of bioactive agents, such as chemical drugs and proteins, heat burns, acid reflux, and weight control applications. The non-thrombogenic nature of this polymer has made it an attractive candidate for cardiac applications, including scaffold fabrication for heart valve tissue engineering (HVTE). The next essential property of alginate is its ability to form films, fibers, beads, and virtually any shape in a variety of sizes. Moreover, alginate possesses several prime properties that make it suitable for use in free-form fabrication techniques. The first property is its ability, when dissolved, to increase the viscosity of aqueous solutions, which is particularly important in formulating extrudable mixtures for 3D printing. The second property is its ability to form gels in mild conditions, for example, by adding calcium salt to an aqueous solution of alginate. The latter property is a basis for reactive extrusion- and inkjet printing-based solid free-form fabrication. Both techniques enable the production of scaffolds for cell encapsulation, which increases the seeding efficiency of fabricated structures. The objective of this article is to review methods for the fabrication of alginate hydrogels in the context of HVTE.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/connect.2016.3
٢٠١٦-٠٤-١٣
٢٠٢٤-٠٥-١٨
Loading full text...

Full text loading...

/deliver/fulltext/connect/2016/2/connect.2016.3.html?itemId=/content/journals/10.5339/connect.2016.3&mimeType=html&fmt=ahah

References

  1. Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014; 10::16461662.
    [Google الباحث العلمي]
  2. Lee DW, Choi WS, Byun MW, Park HJ, Yu Y-M, Lee CM. Effect of gamma-irradiation on degradation of alginate. J Agric Food Chem. 2003; 51::48194823.
    [Google الباحث العلمي]
  3. Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003; 24::40234029.
    [Google الباحث العلمي]
  4. Vauchel P, Kaas R, Arhaliass A, Baron R, Legrand J. A new process for extracting alginates from Laminaria digitata: Reactive extrusion. Food Bioprocess Technol. 2008; 1::297300.
    [Google الباحث العلمي]
  5. Hay ID, Ur Rehman Z, Ghafoor A, Rehm BHA. Bacterial biosynthesis of alginates. J Chem Technol Biotechnol. 2010; 85::752759.
    [Google الباحث العلمي]
  6. Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules. 2000; 33::42914294.
    [Google الباحث العلمي]
  7. Park H, Kang S-W, Kim B-S, Mooney DJ, Lee KY. Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci. 2009; 9::895901.
    [Google الباحث العلمي]
  8. Rhim J-W. Physical and mechanical properties of water resistant sodium alginate films. LWT – Food Sci Technol. 2004; 37::323330.
    [Google الباحث العلمي]
  9. Jianqi H, Hong H, Lieping S, Genghua G. Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2002; 60::14491454.
    [Google الباحث العلمي]
  10. Liberski AR, Delaney JT Jr., Schäfer H, Perelaer J, Schubert US. Organ weaving: Woven threads and sheets as a step towards a new strategy for artificial organ development. Macromol Biosci. 2011; 11::14911498.
    [Google الباحث العلمي]
  11. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga YT, Shimoyama Y, Takeuchi S. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater. 2013; 12::584590.
    [Google الباحث العلمي]
  12. Yoon H, Ahn S, Kim G. Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation. Macromol Rapid Commun. 2009; 30::16321637.
    [Google الباحث العلمي]
  13. Swain S, Behera A, Beg S, Patra CN, Dinda SC, Sruti J, Rao ME. Modified alginate beads for mucoadhesive drug delivery system: An updated review of patents. Recent Pat Drug Deliv Formul. 2012; 6::259277.
    [Google الباحث العلمي]
  14. Jeon O, Alt DS, Ahmed SM, Alsberg E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials. 2012; 33::35033514.
    [Google الباحث العلمي]
  15. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012; 37::106126.
    [Google الباحث العلمي]
  16. Lee RJ, Hinson A, Helgerson S, Bauernschmitt R, Sabbah HN. Polymer-based restoration of left ventricular mechanics. Cell Transplant. 2013; 22::529533.
    [Google الباحث العلمي]
  17. Frey N, Linke A, Süselbeck T, Müller-Ehmsen J, Vermeersch P, Schoors D, Rosenberg M, Bea F, Tuvia S, Leor J. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: A first-in-man study. Circ Cardiovasc Interv. 2014; 7::806812.
    [Google الباحث العلمي]
  18. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv Drug Deliv Rev. 2016; 96::5476.
    [Google الباحث العلمي]
  19. Cabrales P, Tsai AG, Intaglietta M. Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am J Physiol Heart Circ Physiol. 2005; 288::H1708H1716.
    [Google الباحث العلمي]
  20. Al-Shamkhani A, Duncan R. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo . J Bioact Compat Polym. 1995; 10::413.
    [Google الباحث العلمي]
  21. Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petneházy O, Landa N, Feinberg MS, Konen E, Goitein O, Tsur-Gang O, Shaul M, Klapper L, Cohen S. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol. 2009; 54::10141023.
    [Google الباحث العلمي]
  22. Gao W, Lin T, Li T, Yu M, Hu X, Duan D. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: Applications in cardiac surgery. Int J Clin Exp Med. 2013; 6::259268.
    [Google الباحث العلمي]
  23. Finosh GT, Jayabalan M. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: New developments and challenges. Biomatter. 2012; 2::114.
    [Google الباحث العلمي]
  24. Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng. 2002; 80::305312.
    [Google الباحث العلمي]
  25. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation. 2000; 102::III56III61.
    [Google الباحث العلمي]
  26. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013; 101::12551264.
    [Google الباحث العلمي]
  27. Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract. 2014; 2014::5277.
    [Google الباحث العلمي]
  28. Yacoub MH, Takkenberg JJM. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005; 2::6061.
    [Google الباحث العلمي]
  29. Dohmen PM, Konertz W. Tissue-engineered heart valve scaffolds. Ann Thorac Cardiovasc Surg Off J Assoc Thorac Cardiovasc Surg Asia. 2009; 15::362367.
    [Google الباحث العلمي]
  30. Dohmen PM. Tissue engineered aortic valve. HSR Proc Intensive Care Cardiovasc Anesth. 2012; 4::8993.
    [Google الباحث العلمي]
  31. Yacoub MH, Kilner PJ, Birks EJ, Misfeld M. The aortic outflow and root: A tale of dynamism and crosstalk. Ann Thorac Surg. 1999; 68::S37S43.
    [Google الباحث العلمي]
  32. Arjunon S, Rathan S, Jo H, Yoganathan AP. Aortic valve: Mechanical environment and mechanobiology. Ann Biomed Eng. 2013; 41::13311346.
    [Google الباحث العلمي]
  33. Hasan A, Ragaert K, Swieszkowski W, Selimović S, Paul A, Camci-Unal G, Mofrad MR, Khademhosseini A. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014; 47::19491963.
    [Google الباحث العلمي]
  34. Tara S, Rocco KA, Hibino N, Sugiura T, Kurobe H, Breuer CK, Shinoka T. Vessel bioengineering. Circ J Off J Jpn Circ Soc. 2014; 78::1219.
    [Google الباحث العلمي]
  35. Yacoub MH. In search of living valve substitutes. J Am Coll Cardiol. 2015; 66::889891.
    [Google الباحث العلمي]
  36. Kang KH, Hockaday LA, Butcher JT. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication. 2013; 5::035001.
    [Google الباحث العلمي]
  37. Cohen DL, Lo W, Tsavaris A, Peng D, Lipson H, Bonassar LJ. Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs. Tissue Eng Part C Methods. 2011; 17::239248.
    [Google الباحث العلمي]
  38. Liberski AR, Zhang R, Bradley M. In situ nanoliter-scale polymer fabrication for flexible cell patterning. J Assoc Lab Autom. 2009; 14::285293.
    [Google الباحث العلمي]
  39. Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, Bhaduri S. Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C. 2007; 27::372376.
    [Google الباحث العلمي]
  40. Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A. Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 1998; 14::279284.
    [Google الباحث العلمي]
  41. Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication. 2009; 1::035001.
    [Google الباحث العلمي]
  42. Lee CSD, Moyer HR, Gittens RAI, Williams JK, Boskey AL, Boyan BD, Schwartz Z. Regulating in vivo calcification of alginate microbeads. Biomaterials. 2010; 31::49264934.
    [Google الباحث العلمي]
  43. Place ES, Rojo L, Gentleman E, Sardinha JP, Stevens MM. Strontium- and zinc-alginate hydrogels for bone tissue engineering. Tissue Eng Part A. 2011; 17::27132722.
    [Google الباحث العلمي]
  44. Mørch YA, Donati I, Strand BL, Skjåk-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006; 7::14711480.
    [Google الباحث العلمي]
  45. Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication. 2011; 3::034113.
    [Google الباحث العلمي]
  46. Chapron J, Hosney H, Torii R, Sedky Y, Dunya M, Yacoub MH. Lessons from detailed 3D models of the cardiac chambers after the Mustard operation. Glob Cardiol Sci Pract. 2013; 2013::49.
    [Google الباحث العلمي]
  47. Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, Takiura K. Development of a three-dimensional bioprinter: Construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng. 2009; 131::035001.
    [Google الباحث العلمي]
  48. Liberski AR, Delaney JT, Schubert US. “One cell − one well”: A new approach to inkjet printing single cell microarrays. ACS Comb Sci. 2011; 13::190195.
    [Google الباحث العلمي]
  49. Park SA, Lee SH, Kim W. Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res. 2011; 19::694698.
    [Google الباحث العلمي]
  50. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012; 33::60206041.
    [Google الباحث العلمي]
  51. Xu M, Wang X, Yan Y, Yao R, Ge Y. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials. 2010; 31::38683877.
    [Google الباحث العلمي]
  52. Gaetani R, Doevendans PA, Metz CHG, Alblas J, Messina E, Giacomello A, Sluijter JP. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012; 33::17821790.
    [Google الباحث العلمي]
  53. Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S, Sun W. Three-dimensional printing of HeLa cells for cervical tumor model in vitro . Biofabrication. 2014; 6::035001.
    [Google الباحث العلمي]
  54. Colazzo F, Sarathchandra P, Smolenski RT, Chester AH, Tseng Y-T, Czernuszka JT, Yacoub MH, Taylor PM. Extracellular matrix production by adipose-derived stem cells: Implications for heart valve tissue engineering. Biomaterials. 2011; 32::119127.
    [Google الباحث العلمي]
  55. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007; 100::12491260.
    [Google الباحث العلمي]
  56. Sales VL, Mettler BA, Engelmayr GC, Aikawa E, Bischoff J, Martin DP, Exarhopoulos A, Moses MA, Schoen FJ, Sacks MS, Mayer JE Jr.  Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng Part A. 2010; 16::257267.
    [Google الباحث العلمي]
  57. Li S, Xiong Z, Wang X, Yan Y, Liu H, Zhang R. Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym. 2009; 24::249265.
    [Google الباحث العلمي]
  58. Huang Y, He K, Wang X. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C. 2013; 33::32203229.
    [Google الباحث العلمي]
  59. Duffy CRE, Zhang R, How S-E, Lilienkampf A, Tourniaire G, Hu W, West CC, de Sousa P, Bradley M. A high-throughput polymer microarray approach for identifying defined substrates for mesenchymal stem cells. Biomater Sci. 2014; 2::16831692.
    [Google الباحث العلمي]
  60. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006; 12::13251335.
    [Google الباحث العلمي]
  61. Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater. 2013; 2::777783.
    [Google الباحث العلمي]
  62. Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014; 6::024103.
    [Google الباحث العلمي]
  63. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011; 3::021001.
    [Google الباحث العلمي]
  64. Yeo M, Kim G. Cell-printed hierarchical scaffolds consisting of micro-sized polycaprolactone (PCL) and electrospun PCL nanofibers/cell-laden alginate struts for tissue regeneration. J Mater Chem B. 2013; 2::314324.
    [Google الباحث العلمي]
  65. Paranya G, Vineberg S, Dvorin E, Kaushal S, Roth SJ, Rabkin E, Schoen FJ, Bischoff J. Aortic valve endothelial cells undergo transforming growth factor-β-mediated and non-transforming growth factor-β-mediated transdifferentiation in vitro . Am J Pathol. 2001; 159::13351343.
    [Google الباحث العلمي]
  66. Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater Deerfield Beach Fla. 2015; 27::40354040.
    [Google الباحث العلمي]
  67. Hockaday LA, Kang KH, Colangelo NW, Cheung PYC, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012; 4::035005.
    [Google الباحث العلمي]
  68. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol Adv. 2013; 31::669687.
    [Google الباحث العلمي]
  69. Leng L, McAllister A, Zhang B, Radisic M, Günther A. Mosaic hydrogels: One-step formation of multiscale soft materials. Adv Mater Deerfield Beach Fla. 2012; 24::36503658.
    [Google الباحث العلمي]
  70. Introduction — Blender Reference Manual [Internet]. [http://www.blender.org/manual/getting_started/about_blender/introduction.html]. Accessed 23 November 2015.
  71. ABSTRACT – SFF08_Cohen.pdf [Internet]. [http://creativemachines.cornell.edu/papers/SFF08_Cohen.pdf]. Accessed 7 February 2016.
  72. Tan Y, Richards DJ, Trusk TC, Visconti RP, Yost MJ, Kindy MS, Drake CJ, Argraves WS, Markwald RR, Mei Y. 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication. 2014; 6::024111.
    [Google الباحث العلمي]
  73. Bakarich SE, Panhuis M in het, Beirne S, Wallace GG, Spinks GM. Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. J Mater Chem B. 2013; 1::49394946.
    [Google الباحث العلمي]
  74. Rouillard AD, Berglund CM, Lee JY, Polacheck WJ, Tsui Y, Bonassar LJ, Kirby BJ. Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng Part C Methods. 2011; 17::173179.
    [Google الباحث العلمي]
  75. Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2010; 2::014108.
    [Google الباحث العلمي]
  76. Vervaet E . The Suspended Deposition Project by Brian Harm is a new 3D printing concept (VIDEO) [Internet]. 3D Printing Event. [http://www.3dprintingevent.com/the-suspended-deposition-project-by-brian-harm-is-a-new-3d-printing-concept-video/]. Accessed 1 September 2014.
  77. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015; 1::e1500758.
    [Google الباحث العلمي]
  78. Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG, Angelini TE. Writing in the granular gel medium. Sci Adv. 2015; 1::e1500655.
    [Google الباحث العلمي]
  79. Cui J, Wang M, Zheng Y, Rodríguez Muñiz GM, del Campo A. Light-triggered cross-linking of alginates with caged Ca2+ . Biomacromolecules. 2013; 14::12511256.
    [Google الباحث العلمي]
  80. Bruchet M, Mendelson NL, Melman A. Photochemical patterning of ionically cross-linked hydrogels. Processes. 2013; 1::153166.
    [Google الباحث العلمي]
  81. Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002; 28::621630.
    [Google الباحث العلمي]
  82. Eral HB, López-Mejías V, O'Mahony M, Trout BL, Myerson AS, Doyle PS. Biocompatible alginate microgel particles as heteronucleants and encapsulating vehicles for hydrophilic and hydrophobic drugs. Cryst Growth Des. 2014; 14::20732082.
    [Google الباحث العلمي]
  83. Chan AW, Whitney RA, Neufeld RJ. Kinetic controlled synthesis of pH-responsive network alginate. Biomacromolecules. 2008; 9::25362545.
    [Google الباحث العلمي]
  84. Chu H, Wang Y. Therapeutic angiogenesis: Controlled delivery of angiogenic factors. Ther Deliv. 2012; 3::693714.
    [Google الباحث العلمي]
  85. Silva EA, Mooney DJ. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost. 2007; 5::590598.
    [Google الباحث العلمي]
  86. Ruvinov E, Leor J, Cohen S. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials. 2010; 31::45734582.
    [Google الباحث العلمي]
  87. Hao X, Silva EA, Månsson-Broberg A, Grinnemo K-H, Siddiqui AJ, Dellgren G, Wärdell E, Brodin LA, Mooney DJ, Sylvén C. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res. 2007; 75::178185.
    [Google الباحث العلمي]
  88. Subia B, Kundu J, Kundu SC. Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications. 2010 [http://www.intechopen.com/books/tissue-engineering/biomaterial-scaffold-fabrication-techniques-for-potential-tissue-engineering-applications]. Accessed 9 February 2016.
  89. Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998; 42::396402.
    [Google الباحث العلمي]
  90. Pavia FC, La Carrubba V, Piccarolo S, Brucato V. Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology. J Biomed Mater Res A. 2008; 86::459466.
    [Google الباحث العلمي]
  91. Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH. The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials. 2014; 35::18331844.
    [Google الباحث العلمي]
  92. Delaney JT, Liberski AR, Perelaer J, Schubert US. Reactive inkjet printing of calcium alginate hydrogel porogens—a new strategy to open-pore structured matrices with controlled geometry. Soft Matter. 2010; 6::866869.
    [Google الباحث العلمي]
  93. Aibibu D, Hild M, Wöltje M, Cherif C. Textile cell-free scaffolds for in situ tissue engineering applications. J Mater Sci Mater Med [Internet] . 2016; 27::63-1:63-20. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723636/]. Accessed 9 February 2016.
    [Google الباحث العلمي]
  94. Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000; 3::2324.
    [Google الباحث العلمي]
  95. Peck M, Dusserre N, McAllister TN, L'Heureux N. Tissue engineering by self-assembly. Mater Today. 2011; 14::218224.
    [Google الباحث العلمي]
  96. Amensag S, McFetridge PS. Tuning scaffold mechanics by laminating native extracellular matrix membranes and effects on early cellular remodeling. J Biomed Mater Res A. 2014; 102::13251333.
    [Google الباحث العلمي]
  97. Do A-V, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015; 4::17421762.
    [Google الباحث العلمي]
  98. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003; 24::23632378.
    [Google الباحث العلمي]
  99. Hribar KC, Soman P, Warner J, Chung P, Chen S. Light-assisted direct-write of 3D functional biomaterials. Lab Chip. 2014; 14::268275.
    [Google الباحث العلمي]
  100. Burks AW. The invention of the universal electronic computer—how the Electronic Computer Revolution began. Future Gener Comput Syst. 2002; 18::871892.
    [Google الباحث العلمي]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2016.3
Loading
/content/journals/10.5339/connect.2016.3
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Review Article
الموضوعات الرئيسية AlginateHeart ValveHydrogelsliving threadsThree-dimensional printing and Tissue Engineering
هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error