1887
Volume 2022, Issue 3
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

Background: Dyslipidaemia is frequently associated with type 2 diabetes mellitus and it is the major contributor to cardiovascular diseases among type 2 diabetic patients. Despite the fact that several researches have proven the association between glycemic control and dylipidemia in type 2 diabetic patients, the results are rather varied.

Objectives: The aim of the study is to investigate the clinical relevance of lipid profile as predictive biochemical model for glycemic control in type 2 diabetic patients.

Methods: A cross-sectional study including 329 type 2 diabetic patients was done in Al-Sadr Teaching Hospital, Basrah, Iraq. Brief history, clinical examination, and investigations including fasting plasma glucose, lipid profile, and glycosylated hemoglobin were done. HbA1c >7% was considered as poor glycemic control. Receiver operator characteristics (ROC) analysis and logistic regression analysis were used to evaluate the association between lipid profile and HbA1c level.

Results: Out of 329 diabetic patients, 278 (84.5%) showed poor glycemic control. The univariate analysis showed a significant association between lipid parameters and poor glycemic control. ROC and logistic regression analyses found that TC/HDL (OR: 4.94; 95% CI: 2.35–10.41; P < 0.001) and LDL/HDL (OR: 4.63; 95% CI: 1.96–10.98; P < 0.001) were the only significant independent predictors of glycemic control, while non-HDL cholesterol was a weak predictor of glycemic control despite its significant association (P = 0.02).

Conclusion: LDL/HDL and TC/HDL ratios reveal promising indicators for predicting glycemic control in type 2 diabetic patients.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2022.32
2022-08-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2022/3/qmj.2022.32.html?itemId=/content/journals/10.5339/qmj.2022.32&mimeType=html&fmt=ahah

References

  1. International Diabetes Federation, Diabetes Atlas 10th edition, 2021. Available from: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf Accessed on March 23, 2022.
    [Google Scholar]
  2. Alkandari A, Alarouj M, Elkum N, Sharma P, Devarajan S, Abu-Farha M, et al. Adult diabetes and prediabetes prevalence in Kuwait: data from the cross-sectional Kuwait diabetes epidemiology program. J Clin Med 2020;:93420. doi: 10.3390/jcm9113420.
    [Google Scholar]
  3. Bayındır Çevik A, Karaaslan MM, Koçan S, Pekmezci H, Baydur S, Şahin S, Kırbaş A, Ayaz T. Prevalence and screening for risk factors of type 2 diabetes in Rize, Nourtheast Turkey: findings from a population-based study. Prim Care Diabetes 2016;:10:10–8. doi: 10.1016/j.pcd.2015.06.002.
    [Google Scholar]
  4. Hariri S, Rahimi Z, Hashemi-Madani N, Mard SA, Hashemi F, Mohammadi Z, et al.. Prevalence and determinants of diabetes and prediabetes in southwestern Iran: the Khuzestan comprehensive health study (KCHS). BMC Endocr Disord 2021;:21135. doi: 10.1186/s12902-021-00790-x.
    [Google Scholar]
  5. Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;:44:260–77. doi: 10.1186/s12902-021-00790-x.
    [Google Scholar]
  6. Arredondo A, Aviles R. Costs and epidemiological changes of chronic diseases: implications and challenges for health systems. PLoS One. 2015;:10:e0118611. doi: 10.1371/journal.pone.0118611.
    [Google Scholar]
  7. Artha IMJR, Bhargah A, Dharmawan NK, Pande UW, Triyana KA, Mahariski PA, et al. High level of individual lipid profile and lipid ratio as a predictive marker of poor glycemic control in type-2 diabetes mellitus. Vasc Health Risk Manag. 2019;:15:149–57. doi: 10.2147/VHRM.S209830.
    [Google Scholar]
  8. Wang S, Ji X, Zhang Z, Xue F. Relationship between lipid profiles and glycemic control among patients with type 2 diabetes in Qingdao, China. Int J Environ Res Public Health. 2020;:175317. doi: 10.3390/ijerph17155317.
    [Google Scholar]
  9. Mohsin ZA, Paul A, Devendra S. Pitfalls of using HbA1c in the diagnosis and monitoring of diabetes. Lond J Prim Care 2015;:4,66–9. doi: 10.1080/17571472.2015.11493437.
    [Google Scholar]
  10. Umpierrez GE, P Kovatchev B. Glycemic variability: how to measure and its clinical implication for type 2 diabetes. Am J Med Sci. 2018;:356:518–27. doi: 10.1016/j.amjms.2018.09.010.
    [Google Scholar]
  11. Critchley JA, Carey IM, Harris T, DeWilde S, Cook DG. Variability in glycated hemoglobin and risk of poor outcomes among people with type 2 diabetes in a large primary care cohort study. Diabetes Care 2019;:42:2237–46. doi: 10.2337/dc19-0848.
    [Google Scholar]
  12. Executive summary; of the 3rd report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high cholesterol in adults (Adult Treatment Panel III). J Amr Med Asso. 2001;:285:2486–97.
  13. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al; ESC Scientific Document Group. 2016 ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J. 2016;:37:2999–3058. doi: 10.1093/eurheartj/ehw272.
    [Google Scholar]
  14. Lu W, Resniick HE, Jablonskii KA, Jones KL, Jain AK, Howard WJ, et al. Non–HDL cholesterol as a predictor of cardiovascular disease in type II diabetics: the Strong Heart Study. Diabetes Care. 2003;:26:16–23. doi: 10.2337/diacare.26.1.16.
    [Google Scholar]
  15. National Heart Lung and Blood Institute. Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel IV). Available from: http://www.nhlbi.nih.gov/guidelines/cholesterol/atp4/index.htm Accessed on 2021, Oct 15].
    [Google Scholar]
  16. Peters AL. Clinical relevance of non-HDL cholesterol in patients with diabetes. Clin Diabetes 2008;: 26: 3–7. doi: 10.2337/diaclin.26.1.3.
    [Google Scholar]
  17. Langlois MR, Sniderman AD. Non-HDL cholesterol or apo B: which to prefer as a target for the prevention of atherosclerotic cardiovascular disease? Curr Cardiol Rep. 2020;:2267. doi: 10.2337/diaclin.26.1.3.
    [Google Scholar]
  18. Zhang P, Gao J, Pu C, Zhang Y. Apolipoprotein status in type 2 diabetes mellitus and its complications. Mol Med Rep 2017;:16:9279–86. doi: 10.3892/mmr.2017.7831.
    [Google Scholar]
  19. Klisic A, Kavaric N, Jovanovic M, Zvrko E, Skerovic V, Scepanovic A, et al. Association between unfavorable lipid profile and glycemic control in patients with type 2 diabetes mellitus. J Res Med Sci. 2017;:22122. doi: 10.3892/mmr.2017.7831.
    [Google Scholar]
  20. Babic N, Valjevac A, Zaciragic A, Avdagic N, Zukic S, Hasic S. The Triglyceride/HDL ratio and triglyceride glucose index as predictors of glycemic control in patients with diabetes mellitus type 2. Med Arch. 2019;:73:163–8. doi: 10.5455/medarh.2019.73.163-168.
    [Google Scholar]
  21. Phadake PG, Hadimani CP, Morkar D. The association between glycemic control and non-high density lipoprotein cholesterol in type 2 diabetic patients. J Sci Soc 2019;:46:46–8. doi: 10.4103/jss.JSS_12_19.
    [Google Scholar]
  22. Mansour AA, Alibrahim NTY, Alidrisi HA, Alhamza AH, Almomin AM, Zaboon IA, et al; FDEMC Study group. Prevalence and correlation of glycemic control achievement in patients with type 2 diabetes in Iraq: A retrospective analysis of a tertiary care database over a 9-year period. Diabetes Metab Syndr. 2020;:14:265–72. doi: 10.4103/jss.JSS_12_19.
    [Google Scholar]
  23. Omar SM, Musa IR, Osman OE, Adam I. Assessment of glycemic control in type 2 diabetes in the Eastern Sudan. BMC Res Notes. 2018;:11373. doi: 10.1186/s13104-018-3480-9.
    [Google Scholar]
  24. Zhu HT, Yu M, Hu H, He QF, Pan J, Hu RY. Factors associated with glycemic control in community-dwelling elderly individuals with type 2 diabetes mellitus in Zhejiang, China: a cross-sectional study. BMC Endocr Disord. 2019;:1957. doi: 10.1186/s12902-019-0384-1.
    [Google Scholar]
  25. Daniel WW. Biostatistics: a foundation for analysis in the health sciences. 7th edition. New York: John Wiley & Sons, 1999.
  26. Castelli WP, Abbott RD, McNamara PM. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 1983;:67:730–4. doi: 10.1161/01.cir.67.4.730.
    [Google Scholar]
  27. Li Z, Huang Q, Sun L, Bao T, Dai Z. Atherogenic index in type 2 diabetes and its relationship with chronic microvascular complications. Int J Endocrinol. 2018;:20181765835. doi: 10.1155/2018/1765835.
    [Google Scholar]
  28. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001;: 285:2486–97.
    [Google Scholar]
  29. Badrinath AK, Nagarajan K, Anand P, Babu SS, Asmathulla S, Inaamul Hassan MM. Coronary risk prediction by the correlation of total cholesterol/high-density lipoprotein, triglyceride/high-density lipoprotein, low-density lipoprotein/high-density lipoprotein ratios, nonhigh- density lipoprotein, apolipoprotein-B, and high-sensitivity C-reactive protein with low-density lipoprotein in Indian patients under statin therapy. Heart India 2019;:7:63–7.doi. 10.4103/heartindia.heartindia_2_19.
    [Google Scholar]
  30. Kayar Y, Ilhan A, Kayar NB, Unver N, Coban G, Ekinci I, et al. Relationship between the poor glycemic control and risk factors, life style and complications. Biomed Res India 2017;:28:1581–6.
    [Google Scholar]
  31. Alzaheb RA, Altemani AH. The prevalence and determinants of poor glycemic control among adults with type 2 diabetes mellitus in Saudi Arabia. Diabetes Metab Syndr Obes. 2018;:11:15–21. doi: 10.2147/DMSO.S156214.
    [Google Scholar]
  32. Mirzaei M, Rahmaninan M, Mirzaei M, Nadjarzadeh A, Dehghani Tafti AA. Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: results from Yazd health study. BMC Public Health. 2020;:20166. doi: 10.1186/s12889-020-8267-y.
    [Google Scholar]
  33. Sheleme T, Mamo G, Melaku T, Sahilu T. Glycemic Control and its Predictors among Adult Diabetic Patients attending Mettu Karl Referral Hospital, Southwest Ethiopia: A Prospective Observational Study. Diabetes Ther. 2020;:11:1775–94. doi: 10.1007/s13300-020-00861-7.
    [Google Scholar]
  34. Carls G, Huynh J, Tuttle E, Yee J, Edelman SV. Achievement of glycated hemoglobin goals in the US remains unchanged through 2014. Diabetes Ther. 2017;:8:863-73. doi: 10.1007/s13300-017-0280-5.
    [Google Scholar]
  35. Achila OO, Ghebretinsae M, Kidane A, Simon M, Makonen S, Rezene Y. Factors associated with poor glycemic and lipid levels in ambulatory diabetes mellitus type 2 patients in Asmara, Eritrea: a cross-sectional study. J Diabetes Res. 2020;:20205901569. doi: 10.1155/2020/5901569.
    [Google Scholar]
  36. Fekadu G, Bula K, Bayisa G, Turi E, Tolossa T, Kasaye HK. Challenges and factors associated with poor glycemic control among type 2 diabetes mellitus patients at Nekemte Referral Hospital, Western Ethiopia. J Multidiscip Healthc. 2019;:12:963–74. doi: 10.2147/JMDH.S232691.
    [Google Scholar]
  37. Abusaib M, Ahmed M, Nwayyir HA, Alidrisi HA, Al-Abbood M, Al-Bayati A, et al. Iraqi experts consensus on the management of type 2 diabetes/prediabetes in adults. Clin Med Insights Endocrinol Diabetes. 2020;:131179551420942232. doi: 10.1177/1179551420942232. PMID: 32884389; PMCID: PMC7440731.
    [Google Scholar]
  38. Aladhab RA, Alabood MH. Adherence of patients with diabetes to a lifestyle advice and management plan in Basra, Southern Iraq. Int J Diabetes Metab 2019;:25:100–5. doi: 10.1159/000500915.
    [Google Scholar]
  39. Balkau B, Calvi-Gries FC, Freemantle N, Vincent M, Pilorget V, Home PD. Predictors of HbA1c over 4 years in people with type 2 diabetes starting insulin therapies: the CREDIT study. Diabetes Res Clin Pract. 2015;:108:432–40. doi: 10.1016/j.diabres.2015.02.034.
    [Google Scholar]
  40. Erion DM, Park HJ, Lee HY. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB Rep. 2016;:49:139–48. doi: 10.5483/bmbrep.2016.49.3.268.
    [Google Scholar]
  41. Goldberg IJ. Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;:86:965–71. doi: 10.1210/jcem.86.3.7304.
    [Google Scholar]
  42. Bal BS, Salwan SK, Chandarana U. Study of association between HbA1c level and lipid profile in type 2 diabetes mellitus. Ann Int Med. Den Res 2017;:3:ME36-ME39. doi: 10.21276/aimdr.2017.3.2.ME9.
    [Google Scholar]
  43. Panjeta E, Jadrić R, Panjeta M, Ćorić J, Dervišević A. Correlation of serum lipid profile and glycemic control parameters in patients with type 2 diabetes mellitus. J Health Sci 2018;:8:110–6. doi: 10.17532/jhsci.2018.488.
    [Google Scholar]
  44. Mullugeta Y, Chawla R, Kebede T, Worku Y. Dyslipidemia associated with poor glycemic control in type 2 diabetes mellitus and the protective effect of metformin supplementation. Indian J Clin Biochem. 2012;:27:363–9. doi: 10.1007/s12291-012-0225-8.
    [Google Scholar]
  45. Quah JH, Liu YP, Luo N, How CH, Tay EG. Younger adult Type 2 diabetic patients have poorer glycaemic control: a cross-sectional study in a primary care setting in Singapore. BMC Endocr Disord 2013;:1318. https://doi.org/10.1186/1472-6823-13-18.
    [Google Scholar]
  46. Kosmas CE, Silverio D, Sourlas A, Garcia F, Montan PD, Guzman E. Impact of lipid-lowering therapy on glycemic control and the risk for new-onset diabetes mellitus. Drugs Context. 2018;:7212562. doi: 10.7573/dic.212562.
    [Google Scholar]
  47. Cui JY, Zhou RR, Han S, Wang TS, Wang LQ, Xie XH. Statin therapy on glycemic control in type 2 diabetic patients: A network meta-analysis. J Clin Pharm Ther 2018;: 43: 556–70. doi: 10.1111/jcpt.12690.
    [Google Scholar]
  48. Lin SH, Cheng PC, Tu ST, Hsu SR, Cheng YC, Liu YH. Effect of 5 metformin monotherapy on serum lipid profile in statin-naïve individuals with newly diagnosed type 2 diabetes mellitus: a cohort study. Peer J. 2018;:6:e4578. doi: 10.7717/peerj.4578.
    [Google Scholar]
  49. Hernandez-Rodas MC, Valenzuela R, Videla LA. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int J Mol Sci. 2015;:16:25168–98. doi: 10.3390/ijms161025168.
    [Google Scholar]
  50. Ulven SM, Leder L, Elind E, Ottestad I, Christensen JJ, Telle-Hansen VH, et al. Exchanging a few commercial, regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: A double-blind, randomized controlled trial. Br J Nutr 2016;:116:1383–93. doi: 10.1017/S0007114516003445.
    [Google Scholar]
  51. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020;:3:CD003177. doi: 10.1002/14651858.CD003177.pub5.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2022.32
Loading
/content/journals/10.5339/qmj.2022.32
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error