1887
Volume 2013, Issue 1
  • ISSN: 2223-0440
  • EISSN:

Abstract

Breast cancer represents one of the most common cancers in women and is a major life threatening illness found all over the world. Therapy approaches include irradiation and surgery, with chemotherapy considered an important strategy to treat breast cancer. Platinum based anticancer drugs, such as cisplatin (cis-di-amino-dichloride-platin, CDDP), carboplatin, orthoplatin, etc., have been successfully used in breast cancer therapy because they activate multiple mechanisms to induce apoptosis in tumor cells. Nevertheless, during chemotherapy, drug resistance frequently develops; this impairs the successful treatment of breast cancer and often leads to patients' decease. While combinations of anticancer drugs used in chemotherapy regimens reduced the occurrence of drug resistance (e.g. doxorubicin+docetaxel, doxorubicin+cyclophosphamide, docetaxel+herceptin+carboplatin) the molecular mechanism of those effects are not completely understood. Here we review possible mechanisms related to breast cancer treatment and resistance to current therapies as well as possible new therapeutic targets (e.g. calcium signaling) which could be used in the future.

Loading

Article metrics loading...

/content/journals/10.5339/jlghs.2013.2
2013-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jlghs/2013/1/jlghs.2013.2.html?itemId=/content/journals/10.5339/jlghs.2013.2&mimeType=html&fmt=ahah

References

  1. Bener A, Ayub H, Kakil R, Ibrahim W. Patterns of cancer incidence among the population of Qatar: a worldwide comparative study. Asian Pac J Cancer Prev. 2008; 9:1:1924
    [Google Scholar]
  2. Saadat S. Can we prevent breast cancer? Int J Health Sci (Qassim). 2008; 2:2:167170
    [Google Scholar]
  3. El Hajj MS, Hamid Y. Breast cancer health promotion in Qatar: a survey of community pharmacists' interests and needs. Int J Clin Pharm. 2011; 33:1:7079
    [Google Scholar]
  4. American Cancer Society: Cancer Facts and Figures 2010. Atlanta, GA: American Cancer Society, 2010. Statistics for invasive breast cancer estimated new cases and deaths
  5. Dumitrescu RG, Cotarla I. Understanding breast cancer risk – where do we stand in 2005? J Cell Mol Med. 2005; 9:1:208221
    [Google Scholar]
  6. Dedeurwaerder S, Fumagalli D, Fuks F. Unravelling the epigenomic dimension of breast cancers. Curr Opin Oncol. 2011; 23:6:559565
    [Google Scholar]
  7. Iorio MV, Casalini P, Piovan C, Braccioli L, Tagliabue E. Breast cancer and microRNAs: therapeutic impact. Breast. 2011; 20 Suppl 3::S63S70
    [Google Scholar]
  8. Florea AM, Büsselberg D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers. 2011a; 3:1:20
    [Google Scholar]
  9. Florea AM, Büsselberg D. Metals and breast cancer: risk factors or healing agents? J Toxicol. 2011b;. 2011:159619
    [Google Scholar]
  10. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000; 406:6797:747752
    [Google Scholar]
  11. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98:19:1086910874
    [Google Scholar]
  12. Normanno N, Morabito A, De Luca A, Piccirillo MC, Gallo M, Maiello MR, Perrone F. Target-based therapies in breast cancer: current status and future perspectives. Endocr Relat Cancer. 2009; 16:3:675702
    [Google Scholar]
  13. Colombo PE, Milanezi F, Weigelt B, Reis-Filho JS. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res. 2011; 13:3:212
    [Google Scholar]
  14. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol. 2009; 20:8:13191329
    [Google Scholar]
  15. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Panelmembers. Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011; 22:8:17361747, doi: 10.1093/annonc/mdr304
    [Google Scholar]
  16. Schmidt M, Victor A, Bratzel D, Boehm D, Cotarelo C, Lebrecht A, Siggelkow W, Hengstler JG, Elsasser A, Gehrmann M, Lehr HA, Koelbl H, von Minckwitz G, Harbeck N, Thomssen C. Long-term outcome prediction by clinicopathological risk classification algorithms in node-negative breast cancer–comparison between Adjuvant!, St Gallen, and a novel risk algorithm used in the prospective randomized Node-Negative-Breast Cancer-3 (NNBC-3) trial. Annals of Oncology. 2009; 20:2:258264
    [Google Scholar]
  17. Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am Fam Physician. 2010; 81:11:13391346
    [Google Scholar]
  18. Rastelli F, Biancanelli S, Falzetta A, Martignetti A, Casi C, Bascioni R, Giustini L, Crispino S. Triple-negative breast cancer: current state of the art. Tumori. 2010; 96:6:875888
    [Google Scholar]
  19. Valero V, Forbes J, Pegram MD, Pienkowski T, Eiermann W, von Minckwitz G, Roche H, Martin M, Crown J, Mackey JR, Fumoleau P, Rolski J, Mrsic-Krmpotic Z, Jagiello-Gruszfeld A, Riva A, Buyse M, Taupin H, Sauter G, Press MF, Slamon DJ. Multicenter phase III randomized trial comparing docetaxel and trastuzumab with docetaxel, carboplatin, and trastuzumab as first-line chemotherapy for patients with HER2-gene-amplified metastatic breast cancer (BCIRG 007 study): two highly active therapeutic regimens. J Clin Oncol. 2011; 29:2:149156
    [Google Scholar]
  20. Zwiefel K, Janni W. [Current standards in the treatment of breast cancer]. Med Monatsschr Pharm. 2011; 34:8:280288, quiz 289–290
    [Google Scholar]
  21. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2011; 9:1:1632, doi: 10.1038/nrclinonc.2011.177
    [Google Scholar]
  22. Puglisi F, Minisini AM, De Angelis C, Arpino G. Overcoming treatment resistance in HER2-positive breast cancer: potential strategies. Drugs. 2012; 72:9:11751193, doi: 10.2165/11634000-000000000-00000
    [Google Scholar]
  23. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002; 415:6871:530536
    [Google Scholar]
  24. Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics. 2011; 2:2:171185
    [Google Scholar]
  25. Speirs CK, Hwang M, Kim S, Li W, Chang S, Varki V, Mitchell L, Schleicher S, Lu B. Harnessing the cell death pathway for targeted cancer treatment. Am J Cancer Res. 2011; 1:1:4361
    [Google Scholar]
  26. Cobleigh MA. Other options in the treatment of advanced breast cancer. Semin Oncol. 2011; 38 Suppl 2::S11S16
    [Google Scholar]
  27. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ. Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer. 2007; 7:7:519530
    [Google Scholar]
  28. Splettstoesser F, Florea AM, Büsselberg D. IP(3) receptor antagonist, 2-APB, attenuates cisplatin induced Ca2+-influx in HeLa-S3 cells and prevents activation of calpain and induction of apoptosis. Br J Pharmacol. 2007; 151:8:11761186
    [Google Scholar]
  29. Florea AM, Dopp E, Büsselberg D. Elevated Ca2+(i) transients induced by trimethyltin chloride in HeLa cells: types and levels of response. Cell Calcium. 2005; 37:3:251258
    [Google Scholar]
  30. Florea AM, Büsselberg D. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals. 2006; 19:4:419427
    [Google Scholar]
  31. Günes DA, Florea AM, Splettstoesser F, Büsselberg D. Co-application of arsenic trioxide (As2O3) and cisplatin (CDDP) on human SY-5Y neuroblastoma cells has differential effects on the intracellular calcium concentration ([Ca2+]i) and cytotoxicity. Neurotoxicology. 2009; 30:2:194202
    [Google Scholar]
  32. Florea AM, Splettstoesser F, Büsselberg D. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharmacol. 2007; 220:3:292301
    [Google Scholar]
  33. Florea AM, Büsselberg D. Arsenic trioxide in environmentally and clinically relevant concentrations interacts with calcium homeostasis and induces cell type specific cell death in tumor and non-tumor cells. Toxicol Lett. 2008; 179:1:3442
    [Google Scholar]
  34. Florea AM, Büsselberg D. Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology. 2009; 30:5:803810
    [Google Scholar]
  35. Florea AM, Büsselberg D. Metallic compounds (arsenic trioxide and trimethyltin chloride) interact with calcium homeostasis and trigger cell death in “in vitro” systems. Mat.-wiss. u. Werkstofftech. 2009; 40:1–2:4
    [Google Scholar]
  36. Tomaszewski A, Büsselberg D. Cisplatin modulates voltage gated channel currents of dorsal root ganglion neurons of rats. Neurotoxicology. 2007; 28:1:4958
    [Google Scholar]
  37. Zhang W, Couldwell WT, Song H, Takano T, Lin JH, Nedergaard M. Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells. Cancer Res. 2000; 60:19:53955400
    [Google Scholar]
  38. Charlier C, Bruyneel E, Lechanteur C, Bracke M, Mareel M, Castronovo V. Enhancement of tamoxifen-induced E-cadherin function by Ca2+channel antagonists in human breast cancer MCF7/6 cells. Eur J Pharmacol. 1996; 317:2–3:413416
    [Google Scholar]
  39. Maisano R, Zavettieri M, Azzarello D, Raffaele M, Maisano M, Bottari M, Nardi M. Carboplatin and gemcitabine combination in metastatic triple-negative anthracycline- and taxane-pretreated breast cancer patients: a phase II study. J Chemother. 2011; 23:1:4043
    [Google Scholar]
  40. Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, Remacle J. Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res. 2004; 64:24:89878993
    [Google Scholar]
  41. Saxena M, Stephens MA, Pathak H, Rangarajan A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2011; 2::e179
    [Google Scholar]
  42. Liu Y, Peng H, Zhang JT. Expression profiling of ABC transporters in a drug-resistant breast cancer cell line using AmpArray. Mol Pharmacol. 2005; 68:2:430438
    [Google Scholar]
  43. Cai FF, Kohler C, Zhang B, Wang MH, Chen WJ, Zhong XY. Epigenetic therapy for breast cancer. Int J Mol Sci. 2011; 12:7:44654487
    [Google Scholar]
  44. Trimarchi MP, Mouangsavanh M, Huang TH. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine resistance. Chin J Cancer. 2011; 30:11:749756
    [Google Scholar]
  45. Rhodes LV, Nitschke AM, Segar HC, Martin EC, Driver JL, Elliott S, Nam SY, Li M, Nephew KP, Burow ME, Collins-Burow BM. The histone deacetylase inhibitor trichostatin a alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol Rep. 2012; 27:1:1016
    [Google Scholar]
  46. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:5:646674
    [Google Scholar]
  47. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD, Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW, Winer EP, Garber JE. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010; 28:7:11451153
    [Google Scholar]
  48. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009; 4:7:e6146
    [Google Scholar]
  49. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011; 71:8:29882999
    [Google Scholar]
  50. Fan M, Yan PS, Hartman-Frey C, Chen L, Paik H, Oyer SL, Salisbury JD, Cheng AS, Li L, Abbosh PH, Huang TH, Nephew KP. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 2006; 66:24:1195411966
    [Google Scholar]
  51. Port M, Glaesener S, Ruf C, Riecke A, Bokemeyer C, Meineke V, Honecker F, Abend M. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines. Mol Cancer. 2011; 10::52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jlghs.2013.2
Loading
/content/journals/10.5339/jlghs.2013.2
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error