1887
Volume 2013, Issue 1
  • ISSN: 2305-7823
  • EISSN:
Preview this article:

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2013.7
2013-03-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2013/1/gcsp.2013.7.html?itemId=/content/journals/10.5339/gcsp.2013.7&mimeType=html&fmt=ahah

References

  1. Guyton ACHJ. Textbook of Medical Physiology. 11 ed. Philadelphia: Elsevier Inc 2006
    [Google Scholar]
  2. Sessler DI. Mild perioperative hypothermia. N Engl J Med. 1997 336::17301737
    [Google Scholar]
  3. DI S. Temperature monitoring. In: RD M, Miller's Anesthesia. 6th ed. Philadelphia: Elsevier, Churchill Livingstone 2005:15711597
    [Google Scholar]
  4. De Witte J, Sessler DI. Perioperative shivering: physiology and pharmacology. Anesthesiology. 2002 96::467484
    [Google Scholar]
  5. Siegel MN, Gravenstein N. Passive warming of airway gases (artificial nose) improves accuracy of esophageal temperature monitoring. J Clin Monit. 1990 6::8992
    [Google Scholar]
  6. Bissonnette B, Sessler DI, LaFlamme P. Intraoperative temperature monitoring sites in infants and children and the effect of inspired gas warming on esophageal temperature. Anesth Analg. 1989 69::192196
    [Google Scholar]
  7. Erickson RS. The continuing question of how best to measure body temperature. Crit Care Med. 1999 27::23072310
    [Google Scholar]
  8. Whitby JD, Dunkin LJ. Cerebral, oesophageal and nasopharyngeal temperatures. Br J Anaesth. 1971 43::673676
    [Google Scholar]
  9. Webb GE. Comparison of esophageal and tympanic temperature monitoring during cardiopulmonary bypass. Anesth Analg. 1973 52::729733
    [Google Scholar]
  10. Wallace CT, Marks WE Jr, Adkins WY, Mahaffey JE. Perforation of the tympanic membrane, a complication of tympanic thermometry during anesthesia. Anesthesiology. 1974 41::290291
    [Google Scholar]
  11. Hooper VD, Andrews JO. Accuracy of noninvasive core temperature measurement in acutely ill adults: the state of the science. Biol Res Nurs. 2006 8::2434
    [Google Scholar]
  12. Johansson BW. The hibernator heart—nature's model of resistance to ventricular fibrillation. Cardiovasc Res. 1996 31::826832
    [Google Scholar]
  13. Huh PW, Belayev L, Zhao W, Koch S, Busto R, Ginsberg MD. Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. J Neurosurg. 2000 92::9199
    [Google Scholar]
  14. Rosomoff HL, Safar P. Management of the comatose patient. Clin Anesth. 1965 1::244258
    [Google Scholar]
  15. Storm C, Schefold JC, Nibbe L, Martens F, Krueger A, Oppert M, Joerres A, Hasper D. Therapeutic hypothermia after cardiac arrest—the implementation of the ILCOR guidelines in clinical routine is possible! Crit Care. 2006 10::425
    [Google Scholar]
  16. Safar P. Community-Wide Cardiopulmonary Resuscitation. J Iowa Med Soc. 1964 54::629635
    [Google Scholar]
  17. Bohn DJ, Biggar WD, Smith CR, Conn AW, Barker GA. Influence of hypothermia, barbiturate therapy, and intracranial pressure monitoring on morbidity and mortality after near-drowning. Crit Care Med. 1986 14::529534
    [Google Scholar]
  18. Bellamy R, Safar P, Tisherman SA, Basford R, Bruttig SP, Capone A, Dubick MA, Ernster L, Hattler BG Jr, Hochachka P, Klain M, Kochanek PM, Kofke WA, Lancaster JR, McGowan FX Jr, Oeltgen PR, Severinghaus JW, Taylor MJ, Zar H. Suspended animation for delayed resuscitation. Crit Care Med. 1996 24::S24S47
    [Google Scholar]
  19. Liu L, Yenari MA. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci. 2007 12::816825
    [Google Scholar]
  20. Slikker W 3rd, Desai VG, Duhart H, Feuers R, Imam SZ. Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free Radic Biol Med. 2001 31::405411
    [Google Scholar]
  21. Dae MW, Gao DW, Sessler DI, Chair K, Stillson CA. Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs. Am J Physiol Heart Circ Physiol. 2002 282::H1584H1591
    [Google Scholar]
  22. MacLellan CL, Clark DL, Silasi G, Colbourne F. Use of prolonged hypothermia to treat ischemic and hemorrhagic stroke. J Neurotrauma. 2009 26::313323
    [Google Scholar]
  23. Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG. A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol. 1999 1::190192
    [Google Scholar]
  24. Sakoh M, Gjedde A. Neuroprotection in hypothermia linked to redistribution of oxygen in brain. Am J Physiol Heart Circ Physiol. 2003 285::H17H25
    [Google Scholar]
  25. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989 20::904910
    [Google Scholar]
  26. Baker AJ, Zornow MH, Grafe MR, Scheller MS, Skilling SR, Smullin DH, Larson AA. Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbits. Stroke. 1991 22::666673
    [Google Scholar]
  27. Huang R, Shuaib A, Hertz L. Glutamate uptake and glutamate content in primary cultures of mouse astrocytes during anoxia, substrate deprivation and simulated ischemia under normothermic and hypothermic conditions. Brain Res. 1993 618::346351
    [Google Scholar]
  28. Inamasu J, Suga S, Sato S, Horiguchi T, Akaji K, Mayanagi K, Kawase T. Postischemic hypothermia attenuates apoptotic cell death in transient focal ischemia in rats. Acta Neurochir Suppl. 2000 76::525527
    [Google Scholar]
  29. Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA. Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience. 2002 114::10811090
    [Google Scholar]
  30. Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab. 2003 23::589598
    [Google Scholar]
  31. Yenari MA, Han HS. Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFkappaB). Neurochem Int. 2006 49::164169
    [Google Scholar]
  32. Webster CM, Kelly S, Koike MA, Chock VY, Giffard RG, Yenari MA. Inflammation and NFkappaB activation is decreased by hypothermia following global cerebral ischemia. Neurobiol Dis. 2009 33::301312
    [Google Scholar]
  33. Ohmura A, Nakajima W, Ishida A, Yasuoka N, Kawamura M, Miura S, Takada G. Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis. Brain Dev. 2005 27::517526
    [Google Scholar]
  34. Sahuquillo J, Vilalta A. Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury. Curr Pharm Des. 2007 13::23102322
    [Google Scholar]
  35. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996 334::12091215
    [Google Scholar]
  36. Prakasa Babu P, Yoshida Y, Su M, Segura M, Kawamura S, Yasui N. Immunohistochemical expression of Bcl-2, Bax and cytochrome c following focal cerebral ischemia and effect of hypothermia in rat. Neurosci Lett. 2000 291::196200
    [Google Scholar]
  37. Hu WW, Du Y, Li C, Song YJ, Zhang GY. Neuroprotection of hypothermia against neuronal death in rat hippocampus through inhibiting the increased assembly of GluR6-PSD95-MLK3 signaling module induced by cerebral ischemia/reperfusion. Hippocampus. 2008 18::386397
    [Google Scholar]
  38. Tang XN, Liu L, Yenari MA. Combination therapy with hypothermia for treatment of cerebral ischemia. J Neurotrauma. 2009 26::325331
    [Google Scholar]
  39. Tokutomi T, Miyagi T, Takeuchi Y, Karukaya T, Katsuki H, Shigemori M. Effect of 35 degrees C hypothermia on intracranial pressure and clinical outcome in patients with severe traumatic brain injury. J Trauma. 2009 66::166173
    [Google Scholar]
  40. Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J Neurosurg. 2001 94::9096
    [Google Scholar]
  41. Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab. 1999 19::742749
    [Google Scholar]
  42. Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model. J Cereb Blood Flow Metab. 2000 20::17021708
    [Google Scholar]
  43. Hypothermia after Cardiac Arrest Study Group.  Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002 346::549556
    [Google Scholar]
  44. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002 346::557563
    [Google Scholar]
  45. Sydenham E, Roberts I, Alderson P. Hypothermia for traumatic head injury. Cochrane Database Syst Rev. 2009:CD001048
    [Google Scholar]
  46. Alderson P, Gadkary C, Signorini DF. Therapeutic hypothermia for head injury. Cochrane Database Syst Rev. 2004:CD001048
    [Google Scholar]
  47. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997 336::540546
    [Google Scholar]
  48. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M, Marlow N, Porter E, Thoresen M, Whitelaw A, Brocklehurst P, TOBY Study Group . Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009 361::13491358
    [Google Scholar]
  49. Krieger DW, Yenari MA. Therapeutic hypothermia for acute ischemic stroke: what do laboratory studies teach us? Stroke. 2004 35::14821489
    [Google Scholar]
  50. Strbian D, Durukan A, Tatlisumak T. Rodent models of hemorrhagic stroke. Curr Pharm Des. 2008 14::352358
    [Google Scholar]
  51. Sealy WC, Brown IW Jr, Young WG Jr. A report on the use of both extracorporeal circulation and hypothermia for open heart surgery. Ann Surg. 1958 147::603613
    [Google Scholar]
  52. Michenfelder JD, Milde JH. The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology. 1991 75::130136
    [Google Scholar]
  53. Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab. 2000 20::520530
    [Google Scholar]
  54. Yager JY, Asselin J. Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Stroke. 1996 27::919925 discussion 26
    [Google Scholar]
  55. Safar P. Mild hypothermia in resuscitation: a historical perspective. Ann Emerg Med. 2003 41::887888 author reply 8
    [Google Scholar]
  56. Safar PJ, Kochanek PM. Therapeutic hypothermia after cardiac arrest. N Engl J Med. 2002 346::612613
    [Google Scholar]
  57. Govier AV, Reves JG, McKay RD, Karp RB, Zorn GL, Morawetz RB, Smith LR, Adams M, Freeman AM. Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg. 1984 38::592600
    [Google Scholar]
  58. Cook DJ, Oliver WC Jr, Orszulak TA, Daly RC, Bryce RD. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Ann Thorac Surg. 1995 60::16711677
    [Google Scholar]
  59. Cook DJ, Oliver WC Jr, Orszulak TA, Daly RC. A prospective, randomized comparison of cerebral venous oxygen saturation during normothermic and hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994 107::10201028, discussion 8–9
    [Google Scholar]
  60. Klementavicius R, Nemoto EM, Yonas H. The Q10 ratio for basal cerebral metabolic rate for oxygen in rats. J Neurosurg. 1996 85::482487
    [Google Scholar]
  61. Grocott HP, Yoshitani K. Neuroprotection during cardiac surgery. J Anesth. 2007 21::367377
    [Google Scholar]
  62. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950 132::849866
    [Google Scholar]
  63. Hale SL, Dae MW, Kloner RA. Hypothermia during reperfusion limits ‘no-reflow’ injury in a rabbit model of acute myocardial infarction. Cardiovasc Res. 2003 59::715722
    [Google Scholar]
  64. Hale SL, Kloner RA. Myocardial temperature in acute myocardial infarction: protection with mild regional hypothermia. Am J Physiol. 1997 273::H220H227
    [Google Scholar]
  65. Kanemoto S, Matsubara M, Noma M, Leshnower BG, Parish LM, Jackson BM, Hinmon R, Hamamoto H, Gorman JH 3rd, Gorman RC. Mild hypothermia to limit myocardial ischemia-reperfusion injury: importance of timing. Ann Thorac Surg. 2009 87::157163
    [Google Scholar]
  66. Ning XH, Chi EY, Buroker NE, Chen SH, Xu CS, Tien YT, Hyyti OM, Ge M, Portman MA. Moderate hypothermia (30 degrees C) maintains myocardial integrity and modifies response of cell survival proteins after reperfusion. Am J Physiol Heart Circ Physiol. 2007 293::H2119H2128
    [Google Scholar]
  67. Ruiz-Meana M, Garcia-Dorado D, Pina P, Inserte J, Agullo L, Soler-Soler J. Cariporide preserves mitochondrial proton gradient and delays ATP depletion in cardiomyocytes during ischemic conditions. Am J Physiol Heart Circ Physiol. 2003 285::H999H1006
    [Google Scholar]
  68. Ning XH, Xu CS, Portman MA. Mitochondrial protein and HSP70 signaling after ischemia in hypothermic-adapted hearts augmented with glucose. Am J Physiol. 1999 277::R11R17
    [Google Scholar]
  69. Hamamoto H, Leshnower BG, Parish LM, Sakamoto H, Kanemoto S, Hinmon R, Miyamoto S, Gorman JH 3rd, Gorman RC. Regional heterogeneity of myocardial reperfusion injury: effect of mild hypothermia. Ann Thorac Surg. 2009 87::164171
    [Google Scholar]
  70. Lo TP Jr, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, Stagg M, Abril RM, Patel S, Dietrich WD, Pearse DD. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol. 2009 514::433448
    [Google Scholar]
  71. Vaquero J, Blei AT. Mild hypothermia for acute liver failure: a review of mechanisms of action. J Clin Gastroenterol. 2005 39::S147S157
    [Google Scholar]
  72. Meyer DM, Horton JW. Effect of moderate hypothermia in the treatment of canine hemorrhagic shock. Ann Surg. 1988 207::462469
    [Google Scholar]
  73. Kim SH, Stezoski SW, Safar P, Tisherman SA. Hypothermia, but not 100% oxygen breathing, prolongs survival time during lethal uncontrolled hemorrhagic shock in rats. J Trauma. 1998 44::485491
    [Google Scholar]
  74. Takasu A, Norio H, Sakamoto T, Okada Y. Mild hypothermia prolongs the survival time during uncontrolled hemorrhagic shock in rats. Resuscitation. 2002 54::303309
    [Google Scholar]
  75. Wu X, Kochanek PM, Cochran K, Nozari A, Henchir J, Stezoski SW, Wagner R, Wisniewski S, Tisherman SA. Mild hypothermia improves survival after prolonged, traumatic hemorrhagic shock in pigs. J Trauma. 2005 59::291299 discussion 9–301
    [Google Scholar]
  76. Alam HB, Bowyer MW, Koustova E, Gushchin V, Anderson D, Stanton K, Kreishman P, Cryer CM, Hancock T, Rhee P. Learning and memory is preserved after induced asanguineous hyperkalemic hypothermic arrest in a swine model of traumatic exsanguination. Surgery. 2002 132::278288
    [Google Scholar]
  77. Frank SM, Beattie C, Christopherson R, Norris EJ, Perler BA, Williams GM, Gottlieb SO. Unintentional hypothermia is associated with postoperative myocardial ischemia. The Perioperative Ischemia Randomized Anesthesia Trial Study Group. Anesthesiology. 1993 78::468476
    [Google Scholar]
  78. Frank SM, el-Gamal N, Raja SN, Wu PK. alpha-Adrenoceptor mechanisms of thermoregulation during cold challenge in humans. Clin Sci (Lond). 1996 91::627631
    [Google Scholar]
  79. Frank SM, Higgins MS, Breslow MJ, Fleisher LA, Gorman RB, Sitzmann JV, Raff H, Beattie C. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. A randomized clinical trial. Anesthesiology. 1995 82::8393
    [Google Scholar]
  80. Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet. 1996 347::289292
    [Google Scholar]
  81. Schmied H, Schiferer A, Sessler DI, Meznik C. The effects of red-cell scavenging, hemodilution, and active warming on allogenic blood requirements in patients undergoing hip or knee arthroplasty. Anesth Analg. 1998 86::387391
    [Google Scholar]
  82. Johansson T, Lisander B, Ivarsson I. Mild hypothermia does not increase blood loss during total hip arthroplasty. Acta Anaesthesiol Scand. 1999 43::10051010
    [Google Scholar]
  83. Valeri CR, Feingold H, Cassidy G, Ragno G, Khuri S, Altschule MD. Hypothermia-induced reversible platelet dysfunction. Ann Surg. 1987 205::175181
    [Google Scholar]
  84. Valeri CR, Khabbaz K, Khuri SF, Marquardt C, Ragno G, Feingold H, Gray AD, Axford T. Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg. 1992 104::108116
    [Google Scholar]
  85. Khuri SF, Wolfe JA, Josa M, Axford TC, Szymanski I, Assousa S, Ragno G, Patel M, Silverman A, Park M. Hematologic changes during and after cardiopulmonary bypass and their relationship to the bleeding time and nonsurgical blood loss. J Thorac Cardiovasc Surg. 1992 104::94107
    [Google Scholar]
  86. Bunker JP, Goldstein R. Coagulation during hypothermia in man. Proc Soc Exp Biol Med. 1958 97::199202
    [Google Scholar]
  87. Rohrer MJ, Natale AM. Effect of hypothermia on the coagulation cascade. Crit Care Med. 1992 20::14021405
    [Google Scholar]
  88. Kettner SC, Kozek SA, Groetzner JP, Gonano C, Schellongowski A, Kucera M, Zimpfer M. Effects of hypothermia on thrombelastography in patients undergoing cardiopulmonary bypass. Br J Anaesth. 1998 80::313317
    [Google Scholar]
  89. Ramaker AJ, Meyer P, van der Meer J, Struys MM, Lisman T, van Oeveren W, Hendriks HG. Effects of acidosis, alkalosis, hyperthermia and hypothermia on haemostasis: results of point-of-care testing with the thromboelastography analyser. Blood Coagul Fibrinolysis. 2009 20::436439
    [Google Scholar]
  90. Rundgren M, Engstrom M. A thromboelastometric evaluation of the effects of hypothermia on the coagulation system. Anesth Analg. 2008 107::14651468
    [Google Scholar]
  91. Sessler DI, Olofsson CI, Rubinstein EH. The thermoregulatory threshold in humans during nitrous oxide-fentanyl anesthesia. Anesthesiology. 1988 69::357364
    [Google Scholar]
  92. Hopf HW, Hunt TK, West JM, Blomquist P, Goodson WH 3rd, Jensen JA, Jonsson K, Paty PB, Rabkin JM, Upton RA, von Smitten K, Whitney JD. Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg. 1997 132::9971004 discussion 5
    [Google Scholar]
  93. Saririan K, Nickerson DA. Enhancement of murine in vitro antibody formation by hyperthermia. Cell Immunol. 1982 74::306312
    [Google Scholar]
  94. Farkas LG, Bannantyne RM, James JS, Umamaheswaran B. Effect of two different climates on severely burned rats infected with Pseudomonas aeruginosa. Eur Surg Res. 1974 6::295300
    [Google Scholar]
  95. van Oss CJ, Absolom DR, Moore LL, Park BH, Humbert JR. Effect of temperature on the chemotaxis, phagocytic engulfment, digestion and O2 consumption of human polymorphonuclear leukocytes. J Reticuloendothel Soc. 1980 27::561565
    [Google Scholar]
  96. Sessler DI, Rubinstein EH, Moayeri A. Physiologic responses to mild perianesthetic hypothermia in humans. Anesthesiology. 1991 75::594610
    [Google Scholar]
  97. Kurz A, Sessler DI, Narzt E, Bekar A, Lenhardt R, Huemer G, Lackner F. Postoperative hemodynamic and thermoregulatory consequences of intraoperative core hypothermia. J Clin Anesth. 1995 7::359366
    [Google Scholar]
  98. Boelhouwer RU, Bruining HA, Ong GL. Correlations of serum potassium fluctuations with body temperature after major surgery. Crit Care Med. 1987 15::310312
    [Google Scholar]
  99. Bruining HA, Boelhouwer RU. Acute transient hypokalemia and body temperature. Lancet. 1982 2::12831284
    [Google Scholar]
  100. Freysz M, Timour Q, Mazze RI, Bertrix L, Cohen S, Samii K, Faucon G. Potentiation by mild hypothermia of ventricular conduction disturbances and reentrant arrhythmias induced by bupivacaine in dogs. Anesthesiology. 1989 70::799804
    [Google Scholar]
  101. Reynolds PC, Antoine JA, Bettencourt J, Starck TW. Regional hypothermia affects somatosensory evoked potentials. Anesth Analg. 1991 73::653656
    [Google Scholar]
  102. Paulus DA, Monroe MC. Cool fingers and pulse oximetry. Anesthesiology. 1989 71::168169
    [Google Scholar]
  103. Heier T, Caldwell JE, Sessler DI, Miller RD. Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology. 1991 74::815819
    [Google Scholar]
  104. Heier T, Caldwell JE, Sharma ML, Gruenke LD, Miller RD. Mild intraoperative hypothermia does not change the pharmacodynamics (concentration-effect relationship) of vecuronium in humans. Anesth Analg. 1994 78::973977
    [Google Scholar]
  105. Lenhardt R, Marker E, Goll V, Tschernich H, Kurz A, Sessler DI, Narzt E, Lackner F. Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology. 1997 87::13181323
    [Google Scholar]
  106. Rajek A, Lenhardt R, Sessler DI, Grabenwöger M, Kastner J, Mares P, Jantsch U, Gruber E. Tissue heat content and distribution during and after cardiopulmonary bypass at 17 degrees C. Anesth Analg. 1999 88::12201225
    [Google Scholar]
  107. Rajek A, Lenhardt R, Sessler DI, Kurz A, Laufer G, Christensen R, Matsukawa T, Hiesmayr M. Tissue heat content and distribution during and after cardiopulmonary bypass at 31 degrees C and 27 degrees C. Anesthesiology. 1998 88::15111518
    [Google Scholar]
  108. Barber PA, Hach S, Tippett LJ, Ross L, Merry AF, Milsom P. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke. 2008 39::14271433
    [Google Scholar]
  109. Ho KM, Tan JA. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: a systematic review. Cardiovasc Ther. 2009 29:4:260279
    [Google Scholar]
  110. Partington MT, Acar C, Buckberg GD, Julia PL. Studies of retrograde cardioplegia. II. Advantages of antegrade/retrograde cardioplegia to optimize distribution in jeopardized myocardium. J Thorac Cardiovasc Surg. 1989 97::613622
    [Google Scholar]
  111. Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg. 1977 73::8794
    [Google Scholar]
  112. Lichtenstein SV, Ashe KA, el Dalati H, Cusimano RJ, Panos A, Slutsky AS. Warm heart surgery. J Thorac Cardiovasc Surg. 1991 101::269274
    [Google Scholar]
  113. Bigelow WG, Lindsay WK, Harrison RC, Gordon RA, Greenwood WF. Oxygen transport and utilization in dogs at low body temperatures. Am J Physiol. 1950 160::125137
    [Google Scholar]
  114. Moffitt EA, Sessler AD, Molnar GD, McGoon DC. Normothermia versus hypothermia for whole-body perfusion: effects on myocardial and body metabolism. Anesth Analg. 1971 50::505516
    [Google Scholar]
  115. Watanabe G, Ohtake H, Tomita S, Yamaguchi S, Kimura K, Yashiki N. Tepid hypothermic (32°C) circulatory arrest for total aortic arch replacement: a paradigm shift from profound hypothermic surgery. Interact CardioVasc Thorac Surg. 2011 12::952955
    [Google Scholar]
  116. Leslie K, Sessler DI. The implications of hypothermia for early tracheal extubation following cardiac surgery. J Cardiothorac Vasc Anesth. 1998 12::3034, discussion 41–44
    [Google Scholar]
  117. Nesher N, Uretzky G, Insler S, Nataf P, Frolkis I, Pineau E, Cantoni E, Bolotin G, Vardi M, Pevni D, Lev-Ran O, Sharony R, Weinbroum AA. Thermo-wrap technology preserves normothermia better than routine thermal care in patients undergoing off-pump coronary artery bypass and is associated with lower immune response and lesser myocardial damage. J Thorac Cardiovasc Surg. 2005 129::13711378
    [Google Scholar]
  118. Woo YJ, Atluri P, Grand TJ, Hsu VM, Cheung A. Active thermoregulation improves outcome of off-pump coronary artery bypass. Asian Cardiovasc Thorac Ann. 2005 13::157160
    [Google Scholar]
  119. Jeong SM, Hahm KD, Jeong YB, Yang HS, Choi IC. Warming of intravenous fluids prevents hypothermia during off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2008 22::6770
    [Google Scholar]
  120. Hynson JM, Sessler DI. Intraoperative warming therapies: a comparison of three devices. J Clin Anesth. 1992 4::194199
    [Google Scholar]
  121. Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab. 2007 27::18791894
    [Google Scholar]
  122. Hynson JM, Sessler DI, Moayeri A, McGuire J, Schroeder M. The effects of preinduction warming on temperature and blood pressure during propofol/nitrous oxide anesthesia. Anesthesiology. 1993 79::219228 discussion 21A–22A
    [Google Scholar]
  123. Just B, Trevien V, Delva E, Lienhart A. Prevention of intraoperative hypothermia by preoperative skin-surface warming. Anesthesiology. 1993 79::214218
    [Google Scholar]
  124. Deriaz H, Fiez N, Lienhart A. [Effect of hygrophobic filter or heated humidifier on peroperative hypothermia]. Ann Fr Anesth Reanim. 1992 11::145149
    [Google Scholar]
  125. Bissonnette B, Sessler DI. Passive or active inspired gas humidification increases thermal steady-state temperatures in anesthetized infants. Anesth Analg. 1989 69::783787
    [Google Scholar]
  126. Morris RH. Operating room temperature and the anesthetized, paralyzed patient. Arch Surg. 1971 102::9597
    [Google Scholar]
  127. Sessler DI, McGuire J, Sessler AM. Perioperative thermal insulation. Anesthesiology. 1991 74::875879
    [Google Scholar]
  128. Sessler DI, Schroeder M. Heat loss in humans covered with cotton hospital blankets. Anesth Analg. 1993 77::7377
    [Google Scholar]
  129. Sessler DI, Moayeri A, Stoen R, Glosten B, Hynson J, McGuire J. Thermoregulatory vasoconstriction decreases cutaneous heat loss. Anesthesiology. 1990 73::656660
    [Google Scholar]
  130. Morris RH, Kumar A. The effect of warming blankets on maintenance of body temperature of the anesthetized, paralyzed adult patient. Anesthesiology. 1972 36::408411
    [Google Scholar]
  131. Sessler DI, Moayeri A. Skin-surface warming: heat flux and central temperature. Anesthesiology. 1990 73::218224
    [Google Scholar]
  132. Borms SF, Engelen SL, Himpe DG, Suy MR, Theunissen WJ. Bair hugger forced-air warming maintains normothermia more effectively than thermo-lite insulation. J Clin Anesth. 1994 6::303307
    [Google Scholar]
  133. Negishi C, Hasegawa K, Mukai S, Nakagawa F, Ozaki M, Sessler DI. Resistive-heating and forced-air warming are comparably effective. Anesth Analg. 2003 96:6:16831687
    [Google Scholar]
  134. Rosenberg H, Davis M, James D, Pollock N, Stowell K. Malignant hyperthermia. Orphanet J Rare Dis. 2007 2::21
    [Google Scholar]
  135. Tautz TJ, Urwyler A, Antognini JF, Riou B. Case scenario: Increased end-tidal carbon dioxide: a diagnostic dilemma. Anesthesiology. 2010 112::440446
    [Google Scholar]
  136. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009 361::6272
    [Google Scholar]
  137. Glahn KPE, Ellis FR, Halsall PJ, Müller CR, Snoeck MMJ, Urwyler A, Wappler F. Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group. Br J Anaesth. 2010 105::417420
    [Google Scholar]
  138. Inan S, Wei H. The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth Analg. 2010 111::14001410
    [Google Scholar]
  139. Girard T, Ginz H, Urwyler A. MaligneHyperthermie. Schweiz Med Forum. 2004:11921197
    [Google Scholar]
  140. Lichtman A, Oribabor C. Malignant hyperthermia following systemic rewarming after hypothermic cardiopulmonary bypass. Anesth Analg. 2006 102::372375
    [Google Scholar]
  141. Siddik-Sayyid SM, Moussa AR, Baraka AS. Can we prevent malignant hyperthermia after hypothermic cardiopulmonary bypass in a malignant hyperthermia-susceptible patient? Anesth Analg. 2006 102::372375
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2013.7
Loading
/content/journals/10.5339/gcsp.2013.7
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error