1887
Volume 2019, Issue 1
  • EISSN: 2223-506X

Abstract

Information on genetic relatedness can be used to control the rate of inbreeding by applying the sib-avoidance mating strategy. Estimation of genetic relatedness based on molecular markers is a potential technique to infer the degree of genetic relationships among individuals identified as parent–offspring, full-sib, half-sib, and unrelated pairs. The objectives of the study were to assess the genetic variation, the population structure, and the level of inbreeding and relatedness in seven different collections of Oryx leucoryx based on the analysis of 13 polymorphic microsatellite loci, in order to provide information about the impact of captive breeding management. The analysis revealed that the mean number of alleles per locus, the polymorphic information content, and the observed and expected heterozygosity across the loci were 6.46 ± 0.95, 0.523 ± 0.028, 0.391 ± 0.032, and 0.583 ± 0.031, respectively. The inbreeding coefficient was found to be significant in five of the seven collections. The structure analysis identified two groups among the 96 individuals. The pairwise relatedness (rW) in the combined sample followed the distributions expected under the unrelated category. A low level of heterozygosity and a high level of inbreeding and relatedness were found in the samples of O. leucoryx collected from Qatar. As individual animals can be identified by tags, this relatedness information can be used to control the rate of inbreeding by avoiding mating between close relatives.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2019.3
2019-08-28
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/connect/2019/1/connect.2019.3.html?itemId=/content/journals/10.5339/connect.2019.3&mimeType=html&fmt=ahah

References

  1. Harrison DL, Bates PJ. The mammals of Arabia. 2nd ed. Sevenoaks: Harrison Zoological Museum 1991.
    [Google Scholar]
  2. Henderson DS. Were they the last Arabian oryx? Oryx. 1974; 12:3:347350.
    [Google Scholar]
  3. Adams WM. Against extinction: The story of conservation. London: Earthscan 2004.
    [Google Scholar]
  4. Thorp JL. xx;, The Arabian Oryx, 1963–1964. Arizona Zoological Society, Special Bulletin No. 1, 1964. pp. 1–14.
  5. Homan WG. The establishment of the world herd. In: Dixon AMJones DM, eds. Conservation and biology of desert antelopes. London: Christopher Helm 1988;:913.
    [Google Scholar]
  6. Price MS. The reintroduction of the Arabian oryx (Oryx leucoryx) into Oman. International Zoo Yearbook. 1986; 24:1:179188.
    [Google Scholar]
  7. Bailey T, O'Donovan D, Lloyd C, Bailey T. Editorial. Wildlife Middle East News. 2011; 6:1, Available from: https://www.gbif.org/es/species/144098782 [Accessed2011].
    [Google Scholar]
  8. Convention on International Trade of Endangered Species Appendices I CITES-Listed Species. Available from: https://www.cites.org/eng/app/appendices.php [Accessed 04 October 2017].
  9. Greth A, Sunnucks P, Vassart M, Stanley HF. Genetic management of an Arabian oryx (Oryx leucoryx) population without known pedigree. In: Spitz FJaneau GGonzalez GAulagnier S, eds. Ungulates. Toulouse: SFEPM–IRGM 1991;:7783.
    [Google Scholar]
  10. Vassart M, Granjon L, Greth A. Genetic variability in the Arabian oryx (Oryx leucoryx). Zoo Biology. 1991; 10::399408.
    [Google Scholar]
  11. Woodruff DS, Ryder OA. Genetic characterization and conservation of endangered species: Arabian oryx and Père David's deer. Isozyme Bulletin. 1986; 19::33.
    [Google Scholar]
  12. Marshall TC, Sunnucks P, Spalton JA, Greth A, Pemberton JM. Use of genetic data for conservation management: The case of the Arabian oryx. Animal Conservation. 1999; 2:4:269278.
    [Google Scholar]
  13. Arif IA, Khan HA, Shobrak M, Al Homaidan AA, Al Sadoon M, Al Farhan AH. Measuring the genetic diversity of Arabian oryx using microsatellite markers: Implication for captive breeding. Genes & Genetic Systems. 2010; 85::141145.
    [Google Scholar]
  14. NBSAP. National Biodiversity Strategy and Action Plan, State of Qatar, 2004. Available from: https://www.cbd.int/doc/world/qa/qa-nbsap-01-en.pdf [Accessed October 2004].
  15. Wranik M. Arabian oryx sanctuary. Time Out Doha, 26 May 2010. Available from: https://www.timeoutdoha.com/community/features/15975-arabian-oryx-sanctuary [Accessed 26 May 2010].
  16. Van Wyk JB, Fair MD, Cloete SWP. Case study: The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livestock Science. 2009; 120::218224.
    [Google Scholar]
  17. Reed DH, Frankham R. Correlation between fitness and genetic diversity. Conservation Biology. 2003; 17::230237.
    [Google Scholar]
  18. Szablewski P, Wolc A, Szwaczkowski T. The effect of inbreeding level and genetic factors on longevity in Arabian oryx (Oryx leucoryx). Animal Science Papers and Reports. 2006; 24:4:279287.
    [Google Scholar]
  19. Tapio I, Tapio M, Li MH, Popov R, Ivanova Z, Kantanen J. Estimation of relatedness among non-pedigreed Yakutian cryo-bank bulls using molecular data: Implications for conservation and breed management. Genetics Selection Evolution. 2010; 42:1:28.
    [Google Scholar]
  20. Toro M, Barragan C, Ovilo C, Rodriganez J, Rodriguez C, Silio L. Estimation of coancestry in Iberian pigs using molecular markers. Conservation Genetics. 2002; 3::309320.
    [Google Scholar]
  21. Lynch M, Ritland K. Estimation of pairwise relatedness with molecular markers. Genetics. 1999; 152::17531766.
    [Google Scholar]
  22. Nei M. Molecular evolutionary genetics. New York: Columbia University Press 1987.
    [Google Scholar]
  23. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology. 2007; 16:5:10991106.
    [Google Scholar]
  24. Goudet J. FSTAT version 1.2: A computer program to calculate F-statistics. Journal of Heredity. 1995; 86::485486.
    [Google Scholar]
  25. Goudet J. FSTAT: A program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from: http://www2.unil.ch/popgen/softwares/fstat.htm [Accessed February 2002].
  26. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984; 38::13581370.
    [Google Scholar]
  27. Rousset F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Molecular Ecology Resources. 2008; 8:1:103106.
    [Google Scholar]
  28. Peakall R, Smouse PE. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – An update. Bioinformatics. 2012; 28::25372539.
    [Google Scholar]
  29. Rice WR. Analyzing tables of statistical tests. Evolution. 1989; 43::223225.
    [Google Scholar]
  30. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003; 164:4:15671587.
    [Google Scholar]
  31. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155::945959.
    [Google Scholar]
  32. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology. 2005; 14::26112620.
    [Google Scholar]
  33. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: A website for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. 2012; 4:2:359361.
    [Google Scholar]
  34. Wang JL. An estimator for pairwise relatedness using molecular markers. Genetics. 2002; 160::12031215.
    [Google Scholar]
  35. Wang J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources. 2011; 11::141145.
    [Google Scholar]
  36. Blouin MS, Parsons M, Lacaille V, Lotz S. Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology. 1996; 5::393401.
    [Google Scholar]
  37. Botstein D, White RL, Skolnick M, David R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 1980; 32::314331.
    [Google Scholar]
  38. Khidhir MA, Kumar KP, Al-Aseer M. Genetic comparison of two different Arabian oryx populations in UAE based on microsatellite analysis. World Academy of Science, Engineering and Technology. 2011; 60::11051107.
    [Google Scholar]
  39. El Alqamy H, Senn H, Roberts MF, McEwing R, Ogden R. Genetic assessment of the Arabian oryx founder population in the Emirate of Abu Dhabi, UAE: An example of evaluating unmanaged captive stocks for reintroduction. Conservation Genetics. 2012; 13::7988.
    [Google Scholar]
  40. Zhou H, Li D, Zhang Y, Yang T, Liu Y. Genetic diversity of microsatellite DNA loci of Tibetan antelope (Chiru, Pantholops hodgsonii) in Hoh Xil National Nature Reserve, Qinghai, China. Journal of Genetics and Genomics. 2007; 34:7:600607.
    [Google Scholar]
  41. Hartl DL, Clark AG. Principles of population genetics. 3rd ed. Sunderlands, MA: Sinauer 1997.
    [Google Scholar]
  42. Wright S. Systems of mating II. The effects of inbreeding on the genetic composition of a population. Genetics. 1921; 6::124143.
    [Google Scholar]
  43. Castric V, Bernatchez L, Belkhir K, Bonhomme F. Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): A test of alternative hypotheses. Heredity. 2002; 89::2735.
    [Google Scholar]
  44. Wright S. Evolution and the genetics of populations. Volume 4: Variability within and among natural populations. Chicago, IL: University of Chicago Press 1978.
    [Google Scholar]
  45. Bentzen P, Olsen JB, McLean JE, Seamons TR, Quinn TP. Kinship analysis of Pacific salmon: Insights into mating homing, and timing of reproduction. Journal of Heredity. 2001; 92::127136.
    [Google Scholar]
  46. Robinson SP, Simmons LW, Kennington WJ. Estimating relatedness and inbreeding using molecular markers and pedigrees: The effect of demographic history. Molecular Ecology. 2013; 22::57795792.
    [Google Scholar]
  47. Nahiduzzaman M, Akter S, RobiulHasan M, Hossain MAR, Alam MS. Microsatellite-based sibship reconstruction and estimation of genetic relatedness in the endangered Labeo calbasu (Hamilton 1822) (Cyprinidae: Cypriniformes). Journal of Animal and Plant Sciences. 2015; 25:3:825835.
    [Google Scholar]
  48. Hedrick PW, Kalinowski ST. Inbreeding depression in conservation biology. Annual Review of Ecology and Systematics. 2000; 31:1:139162.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2019.3
Loading
/content/journals/10.5339/connect.2019.3
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Genetic variationinbreedingmicrosatelliteoryx and relatedness
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error