1887
Volume 2015, Issue 1
  • EISSN: 2223-506X

Abstract

Junctional complexes are specialized contacts between neighboring cells and between cells and the extracellular matrix. They play an important role in embryogenesis, growth and development, as well as being the cause of pathologies. These contacts lead to a number of different interactions that have a profound effect on cellular biology. Cell junctions are best visualized using conventional or freeze-fracture electron microscopy, which reveals the interacting plasma membranes are highly specialized in these regions.

Cell adhesion molecules (CAMs) are proteins responsible for homophillic and heterophillic adhesions. They consist of various groups, including cadherins, selectins and intergrins and they facilitate cell adhesion, cell signaling, and motility. Dysregulation of these molecules can lead to various pathologies, for example mucocutaneous diseases and invasion of cancer. This review focuses on the pathophysiology of cell junctions and related diseases.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2015.7
2015-07-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/connect/2015/1/connect.2015.7.html?itemId=/content/journals/10.5339/connect.2015.7&mimeType=html&fmt=ahah

References

  1. Berkowitz BKB, Holland GR, Bernard JM. Functional anatomy. In: Taylor SA, ed. Oral Anatomy, Histology and Embryology. 4rd ed. UK: Mosby Elsevier 2009;:154157.
    [Google Scholar]
  2. Gray H. Basic structure and functions of cells. In: Standring S, ed. Gray's anatomy: The anatomical basis of clinical practice. 39th ed. Livingstone: Elsevier Churchill 2005;:79.
    [Google Scholar]
  3. Ross M, Romrell L, Kaye G. Book of Histology. A text and atlas. In: Coryell PA, ed. Book of Histology. A text and atlas. 3rd ed. Baltimore, Maryland, USA: Lippincott Williams and Wilkins 1995;:6672.
    [Google Scholar]
  4. Bazzoun D, Lelièvre S, Talhouk R. Polarity proteins as regulators of cell junction complexes: Implications for breast cancer. Pharmacology and Therapeutics. 2013; 138:3:418427.
    [Google Scholar]
  5. Sigh IB. Cell structure: Contact between adjoining cells. Textbook of human histology. With color atlas and practical guide. 6th ed. New Delhi: Jaypee Brothers Medical 2011;:910.
    [Google Scholar]
  6. Nanci A. Cytoskeleton, junctions and fibroblasts. In: Ten Cate ARDolan JArnold R, eds. Ten Cate's Oral Histology. Development, Structure and Function. 5th ed. St. Louis, Mo, USA: Mosby Elsevier 1985;:5478.
    [Google Scholar]
  7. Kierszenbaum AL, Tres L. Epithelium. Histology and cell biology: An introduction to pathology. 3rd ed. Philadelphia, PA: Elsevier Saunders 2012;:712.
    [Google Scholar]
  8. Garant PR. Oral mucosa. In: Dickson A, ed. Textbook of oral cells and tissues. 3rd ed. Quintessence 2003;:100112.
    [Google Scholar]
  9. Brandner JM, Haftek M, Niessen CM. Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Dermatology Journal. 2010; 4::1420.
    [Google Scholar]
  10. Barradori L, Sonnenberg A. Structure and function of hemidesmosomes: More than simple adhesion complex. Journal of Investigative Dermatology. 1999; 112:4:411418.
    [Google Scholar]
  11. Kashyap T, Germain E, Roche M, Lyle S, Rabinovitz I. Role of β4 integrin phosphorylation in human invasive squamous cell carcinoma: regulation of hemidesmosome stability modulates cell migration. Laboratory Investigation. 2011; 91:10:14141426.
    [Google Scholar]
  12. Wilhelmsen K, Litjens SH, Sonnenberg A. Multiple functions of the integrin alpha6beta4 in epidermal homeostasis and tumorigenesis. Molecular and Cellular Biology. 2006; 26:8:28772886.
    [Google Scholar]
  13. Spray DC. Iluminating gap junctions. Nature Methods. 2005; 2:1:1214.
    [Google Scholar]
  14. Panchin YV. Evolution of gap junction proteins – the pannexin alternative. Journal of Experimental Biology; 208 (Pt. 2005; 208:Pt 8:14151419.
    [Google Scholar]
  15. Gutherie S, Gilula NB. Gap junction communication and development. Trends in Neuroscience. 1989; 12:1:1216.
    [Google Scholar]
  16. Lu R, Dan H, Wu R, Meng W, Lui N, Jin X, Zhou M, Zeng X, Zhou G, Chen Q. Lycopene: features and potential significance in the oral cancer and precancerous lesions. Journal of Oral Pathology and Medicine. 2011; 40:5:361368.
    [Google Scholar]
  17. Seller Z. Cellular adhesion and adhesion molecules. Turkish Journal of Biology.. 2001; 25::115.
    [Google Scholar]
  18. Oda H, Takeichi M. Structural and functional diversity of cadherin at the adherens junction. Journal of Cell Biology. 2011; 193:7:11371146.
    [Google Scholar]
  19. Maıˆtre1 JL, Heisenberg CP. Three functions of cadherins in cell adhesion review. Current Biology. 2013; 23:14:R626R633.
    [Google Scholar]
  20. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes, Chromosomes & Cancer. 2002; 34:3:255268.
    [Google Scholar]
  21. Fukunaga Y, Liu H, Shimizu M, Komiya S, Kawasuji M, Nagafuchi A. Defining the roles of beta-catenin and plakoglobin in cell-cell adhesion: isolation of beta-catenin/plakoglobin-deficient F9 cells. Cell Structure and Function. 2005; 30:2:2534.
    [Google Scholar]
  22. MacDonald BT, Tamai KK, He X. Wnt/b-Catenin signaling: Components, mechanisms, and diseases. Developmental Cell. 2009; 17:1:926.
    [Google Scholar]
  23. Clevers H, Nusse R. Wnt/b-Catenin Signaling and Disease. Cell. 2012; 149:6:11921205.
    [Google Scholar]
  24. Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion on Therapeutic Targets. 2007; 11:11:14731491.
    [Google Scholar]
  25. Danen EHJ. Integrin signaling as a cancer drug target. Cell Biology. 2013; ID 135164.
    [Google Scholar]
  26. Zent R, Pozzi A. Integrin structure and function. Cell extracellular matrix interaction in cancer. New York, NY: Springer 2010.
    [Google Scholar]
  27. Tkachenko E, Rhodes JM, Simons M. Syndecans: New kids on the signaling block. Circulation Research. 2005; 96:5:488500.
    [Google Scholar]
  28. Beauvais DM, Rapraeger AC. Syndecans in tumor cell adhesion and signaling. Reproductive Biology and Endocrinology. 2004; 2::3.
    [Google Scholar]
  29. Garant PR. Early tooth development. In: Dickson A, ed. Textbook of oral cells and tissues. 3rd ed: Quintessence publisher 2003;:1619.
    [Google Scholar]
  30. To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair. 2011; 4::21.
    [Google Scholar]
  31. Stanislawski L, Simpson WA, Hasty D, Sharon N, Beachey EH, Ofek I. Role of fibronectin in attachment of streptococcus pyogenes and scherichia coli to human cell lines and isolated oral epithelial cells. Infection and Immunology. 1985; 48:1:257259.
    [Google Scholar]
  32. Simpson WA, Beachey EH. Adherence of group a streptococci to fibronectin on oral epithelial cells. Infection and Immunity. 1983; 39:1:275279.
    [Google Scholar]
  33. Miner JH, Yurch PD. Laminin functions in tissue morphogenesis. Annual Reviews; Cell and Developmental Biology. 2004; 20::255284.
    [Google Scholar]
  34. Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. Journal of the Federation of American Societies for Experimental Biology. 1990; 4:2:148160.
    [Google Scholar]
  35. Hsia HC, Schwarzbauer JE. Meet the Tenascins: Multifunctional and mysterious. Journal of Biological Chemistry. 2005; 280:29:2664126644.
    [Google Scholar]
  36. Miosge N, Holzhausen S, Zelent C, Sprysch P, Herken R. Nidogen-1 and nidogen-2 are found in basement membranes during human embryonic development. The Histochemical Journal. 2001; 33:9-10:523530.
    [Google Scholar]
  37. Hanemann JAC, Oliveira DT, Nonogaki S, Nishimoto IN, de Carli ML, Landman G, Kowalski LP. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers? British Medical Council: Cancer. 2014; 14::395.
    [Google Scholar]
  38. Fujii R, Imanishi Y, Shibata K, Sakai N, Sakamoto K, Shigetomi S. Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research. 2014; 33::40.
    [Google Scholar]
  39. Tanaka N, Odajima T, Ogi K, Ikeda T, Satoh M. Expression of E-cadherin, a-catenin, and b-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. British Journal of Cancer. 2003; 89:3:557563.
    [Google Scholar]
  40. Chen YJ, Chang JT, Lee L, Wang HM, Liao CT, Chiu CC, Chen PJ, Cheng AJ. DSG3 is overexpressed in head neck cancer and is a potential molecular target for inhibition of oncogenesis. Oncogene. 2007; 26:3:467476.
    [Google Scholar]
  41. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. Journal of Cancer. 2013; 4:1:6683.
    [Google Scholar]
  42. Tran T, Barlow B, O'Rear L, Jarvis B, Li Z, Dickeson K, Dupont W, Zutter M. Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro. PLoS ONE. 2011; 6:10:e26858.
    [Google Scholar]
  43. Wang D, Müller S, Ruhul Amin ARM, Huang D, Su L, Hu Z, Rahman MA, Nannapaneni S, Koenig L, Chen Z, Tighiouart M, Shin DM, Chen ZG. The pivotal role of integrin β1 in metastasis of head and neck squamous cell carcinoma. Clinical Cancer Research. 2012; 18:17:45894599.
    [Google Scholar]
  44. Bandyopadhyay A, Raghavan S. Defining the role of integrin αvβ6 in cancer. Current Drug Targets. 2009; 10:7:645652.
    [Google Scholar]
  45. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. British Journal of Cancer. 2004; 90:3:561565.
    [Google Scholar]
  46. Vered M, Dayan D, Yahalom R, Dobriyan A, Barshack I, Bell IO, Kantola S, Salo T. Cancer-associated fibroblasts and epithelial-mesenchymal transition in metastatic oral tongue squamous cell carcinoma. International Journal of Cancer. 2010; 127:6:13561362.
    [Google Scholar]
  47. Nanda DP, Dutta K, Ganguly KK, Hajra S, Manda SS, Biswas J, Sinha D. MMP-9 as a potential biomarker for carcinoma of oral cavity: a study in eastern India. Neoplasm. 2012; 61:6:747757.
    [Google Scholar]
  48. Shruthy R, Sharada P, Swaminathan U, Nagamalini BR. Immunohistochemical expression of basement membrane laminin in histological grades of oral squamous cell carcinoma: A semiquantitative analysis. Journal of Oral and Maxillofacial Pathology. 2013; 17:2:186189.
    [Google Scholar]
  49. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cellular and Molecular Life Sciences. 2011; 68:19:31753199.
    [Google Scholar]
  50. Zygogianni AG, Kyrgias G, Karakitsos P, Psyrri A, Kouvaris J, Kelekis N, Kouloulias V. Oral squamous cell cancer: early detection and the role of alcohol and smoking. Head and Neck Oncology. 2011; 3::2.
    [Google Scholar]
  51. Sharma M, Sah P, Sharma SS, Radhakrishnan R. Molecular changes in invasive front of oral cancer. Journal of Oral and Maxillofacial Pathology. 2013; 17:2:240147.
    [Google Scholar]
  52. Mao X, Nagler AR, Farber SA, Choi EJ, Jackson LH, Leiferman KM, Ishii N, Hashimoto T, Amagai M, Zone JJ, Payne AS. Autoimmunity to desmocollin 3 in Pemphigus Vulgaris. The American Journal of Pathology. 2010; 177:6:27242730.
    [Google Scholar]
  53. Mahoney MG, Wang Z, Rothenberger K, Koch PJ, Amagai M, Stanley JR. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. Journal of Clinical Investigation. 1999; 103:4:461468.
    [Google Scholar]
  54. Tsuruta D, Ishii N, Hamada T, Ohyama B, Fukuda S, Koga H, Imamura K, Kobayashi H, Karashima T, Nakama T, Dainichi T, Hashimoto T. IgA pemphigus. Clinics in Dermatology. 2011; 29:4:437442.
    [Google Scholar]
  55. Abé T, Maruyama S, Babkair H, Yamazaki M, Cheng J, Saku T. Simultaneous immunolocalization of desmoglein 3 and IgG4 in oral pemphigus vulgaris: IgG4 predominant autoantibodies in its pathogenesis. Journal of Oral Pathology and Medicine. 2014;, doi: 10.1111/jop.12290. http://www.ncbi.nlm.nih.gov/pubmed/25401705 .
    [Google Scholar]
  56. Scully C, Muzio LL. Oral mucosal diseases: Mucous membrane pemphigoid. British Journal of Oral Maxillofacial Surgery. 2008; 46:5:358366.
    [Google Scholar]
  57. Kanwar AJ, Vinay K, Koga H, Hashimoto T. Mucous membrane pemphigoid with antibodies against β3 subunit of laminin-332: First report from India. Indian Journal of Dermatology, Venereology and Leprology. 2012; 78:4:475479.
    [Google Scholar]
  58. Dabbs D. Head and neck, ear, salivary gland, larynx and trachea. In: Zorab R, ed. Book of Diagnostic Immunohistochemistry. Philadelphia, USA: Churchill Livingstone 2002:p.201-102.
    [Google Scholar]
  59. Cox DP, Weathers DR. Leukocyte adhesion deficiency type 1: an important consideration in the clinical differential diagnosis of prepubertal periodontitis. A case report and review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008; 105:1:8690.
    [Google Scholar]
  60. Lever WF. Noninfectious vesiculobullous and vesiculopustular diseases. In: Elder D, ed. Lever's Histopathology of the Skin. 8th ed. Lippincott Williams and Wilkins 1997;:235278.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2015.7
Loading
/content/journals/10.5339/connect.2015.7
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): cell adhesion moleculescell junctionsdesmosomeshemidesmosomes and junctional complexes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error