1887
Volume 2014, Issue 1
  • EISSN: 2223-506X

Abstract

Presently various carbon-based materials are used to achieve different surface functions and coatings for anti-corrosion and electrochemical application. These are in the form of homogeneous composite materials and chemically modified polymers, with many patent pending in this field. However, association of performing anticorrosion, adherence crosslinking and hydrophobic solutions with other surface functions are more often required, including additional simultaneous tribologic, antiwear, electrochemical, optical and optoelectronic properties. Among the wide range of diamond-like and related coating materials, tetrahedral amorphous carbon (ta-C), combines many interesting, simultaneous and superior material properties compared with first generation hard carbon coatings. Especially when ta-C can be modified and adapted for its properties to a specific application by doping with multilayer and gradient configuration, thus offering many new and interesting perspectives of application. We review and discuss common coatings, by comparison and deduction. The corresponding updated and recently developed fundamentals are also considered to show the potential for better performing and up-scaled anti-corrosion and electrochemical solutions.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2014.8
2014-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/connect/2014/1/connect.2014.8.html?itemId=/content/journals/10.5339/connect.2014.8&mimeType=html&fmt=ahah

References

  1. Neuville S, Matthews A. A perspective on the optimisation of hard carbon and related coatings for engineering applications. Thin Solid Films. 2007; 515:17:66196653.
    [Google Scholar]
  2. Neuville S. Quantum electronic mechanisms of atomic rearrangements during growth of hard carbon films. Surf Coat Tech. 2011; 206:4:703726.
    [Google Scholar]
  3. Scheibe H-J, Klaffke D. Tribological characterization of hard carbon films prepared by Laser-Arc evaporation. Surf Coat Tech. 1993; 57:2-3:111115.
    [Google Scholar]
  4. McKenzie DR, Muller E, Kravtchinskaia E, Segal D, Cockayne DJH, Amaratunga G, Silva R. Synthesis, structure and applications of amorphous diamond. Thin Solid Films. 1991; 206:1-2:198203.
    [Google Scholar]
  5. Anders S, Ager Ph III JW, arr GM, Tsui TY, Brown IG. Heat treatment of cathodic arc deposited amorphous hard carbon films. Thin Solid Films. 1997; 308-309::186190.
    [Google Scholar]
  6. Shi X, Tay BK, Lau SP. The double bend filtered cathodic arc technology and its applications. Int J Mod Phys B. 2000; 14:02-03:136153.
    [Google Scholar]
  7. Weissmantel S, Reisse G, Rost D. Preparation of superhard amorphous carbon films with low internal stress. Surf Coat Tech. 2004; 188-189::268273.
    [Google Scholar]
  8. Charitidis CA. Nanomechanical and nanotribological properties of carbon-based thin films: a review. Int J Refract Met Hard Mater. 2010; 28:1:5170.
    [Google Scholar]
  9. Haubold L, Becker M, Schuelke T, Kleemann SH, Hinueber C, Friedrichs R, Hoefing E, Baumann M. Diamond-like carbon coatings for biomedical implants. 51st Annual Technical Conference Proceedings, Society of Vacuum Coaters, 2008.
  10. VDI 2840. Carbon films Verein Deutscher Ingenieure. VDI Richtlinien: 2005. Available athttp://www.vdi.de/uploads/tx_vdirili/pdf/9656068.pdf (accessed 29 November 2013).
  11. Robertson J. Mechanical properties and structure of diamond-like carbon. Diamond Relat Mater. 1992; 1:5-6:397406.
    [Google Scholar]
  12. Lee CH, Lim KS. Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p-i-n solar cells. Appl Phys Lett. 1998; 72:1:106.
    [Google Scholar]
  13. Neuville S. The enhancement of interconnected sp3 sites by chemical effects during ta-C film growth. Diamond Relat Mater. 2002; 11:10:17211730.
    [Google Scholar]
  14. Khun NW, Liu E, Zeng XT. Corrosion behavior of nitrogen doped diamond-like carbon thin films in NaCl solutions. Corros Sci. 2009; 51:9:21582164.
    [Google Scholar]
  15. Liu A, Ren Q, Xu T, Yuan M, Tang W. Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation. Sens Actuators, B Chem. 2012; 162:1:135142.
    [Google Scholar]
  16. Kwok SCH, Wang J, Chu PK. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond Relat Mater. 2005; 14:1:7885.
    [Google Scholar]
  17. Subramanian V, Karabacak T, Masarapu C, Teki R, Lu T-M, Wei B. Low hydrogen containing amorphous carbon films—Growth and electrochemical properties as lithium battery anodes. J Power Sources. 2010; 195:7:20442049.
    [Google Scholar]
  18. Holloway BC, Kraft O, Shuh DK, Kelly MA, Nix WD, Pianetta P, Hagström S. Interpretation of x-ray photoelectron spectra of elastic amorphous carbon nitride thin films. Appl Phys Lett. 1999; 74:22:3290.
    [Google Scholar]
  19. Robertson J. The deposition mechanism of diamond-like a-C and a-C: H. Diamond Relat Mater. 1994; 3:4-6:361368.
    [Google Scholar]
  20. Donnet C, Erdemir A. Tribology of diamond-like carbon films. New York, USA: Springer 2008.
    [Google Scholar]
  21. Bachmann PK, van Enckevort W. Diamond deposition technologies. Diamond Relat Mater. 1992; 1:10-11:10211034.
    [Google Scholar]
  22. Buckley-Golder IM, Collins AT. Active electronic applications for diamond. Diamond Relat Mater. 1992; 1:10-11:10831101.
    [Google Scholar]
  23. Robertson J. Hard amorphous (diamond-like) carbons. Prog Solid State Chem. 1991; 21:4:199333.
    [Google Scholar]
  24. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep. 2005; 409:2:4799.
    [Google Scholar]
  25. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Phys Rep. 2009; 473:5-6:5187.
    [Google Scholar]
  26. Ferrari AC. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond Relat Mater. 2002; 11:3-6:10531061.
    [Google Scholar]
  27. Neuville S. Extension of fundamentals on sp3 growth mechanisms, and stress optimization in hard carbon coating engineering. JPJ Solids Struct. 2009; 3:3:117212.
    [Google Scholar]
  28. Neuville S. Antiwear material criteria. JPJ Solids Struct. 2009; 3:1:3342.
    [Google Scholar]
  29. Gröning O, Küttel OM, Schaller E, Gröning P, Schlapbach L. Vacuum arc discharges preceding high electron field emission from carbon films. Appl Phys Lett. 1996; 69:4:476.
    [Google Scholar]
  30. Hurkmans A, Lewis DB, Münz WD. Runner-Up Magnetron Sputtered CrNx Coatings as Alternative to Electroplated Hard Chromium. Surf Eng. 2003; 19:3:205210.
    [Google Scholar]
  31. Xu FY, Mackay CJ, Lad PB, McMackin IM, Truskett VN, Martin WD, Fletcher EB, Wang DC, Stacey NA, Watts MPC, Molecular DA, Molecular Imprints, Inc. Uniform etch characteristics coating. Patent US7939131, 2011 May.
  32. Isabelle Marie Marguerite Muller-Frischinger. Huntsman International Llc. Curable protective anti-corrosion coating. Patent US7786223. 2010 Aug.
  33. Jean Pinson, Olivier Fagebaume, Fetah Podvorica. Universite Paris 7-Denis Diderot. Anti-corrosive and adhesive metal surface treatment. Patent US7364648. 2008 Apr.
  34. Maul R, Kiehl A, Gordon OW, Donders K. Eckart and GmbH and Co. Kg. UV protective coating for wood cellulose substrates. Patent US7387830. 2008 Jun.
  35. Kenji Omi. Minebea Co., Ltd. Erosion resistant coatings for gas turbine. Patent US7083385 2006 Aug.
  36. Francisco Blangetti, Harald Reiss. Alstom Technology Ltd. Condensation heat–transfer device with DLC and polymers. Patent US 6942022. 2005 Sep.
  37. Pierre Strübin, René Chuat, Yoland Grosjean. Method and device for connecting tubes made out of thermoplastic material. US20120003411 A1. 2011 Sep.
  38. Yunzhang Wang, Daniel T. McBride, Randolph S. Kohlman. Milliken & Company. Adhesion of fluoro-silicone rubber. Patent US779987. 2010 Sep.
  39. Hideo Takahashi, Toshihiko Akamatsu, Yuji Shigeno. Ishihara Sangyo Kaisha, Ltd. Adhesion on titanium dioxides. Patent US7144838. 2006 Dec.
  40. Alexandra Atzesdorfer, Rainer Müller, Klaus Heckmann, Friederike Bauer. Infineon Technologies Ag. Adhesion promoter for anti-corrosion polymer coatings on metallic substrates. Patent US6787242 2004.
  41. Stephan Schwarte, Egon Wegner, Harald Angermüller. Basf Coatings Ag. Crosslinking of coloured sub-layers of a multilayer decorative coating. Patent US7855266. 2010 Dec.
  42. Frank Y. Xu. Molecular Imprints, Inc. Crosslinking properties for adhesive interlayer. Patent US7759407. 2010 Jul.
  43. Roelof Buter, Josephina Johanna Hendrika, Maria Raben-Schlief, Hendrik Meijer, Geertje Marte Kuiken, Rienk Hettema, Jamie MacLiver Roy, Bart Bouma. Polyurethane dispersant resin with hydrophilic properties. Patent US8017686. 2011. Sep.
  44. Perry AJ. Scratch adhesion testing: A Critique. Surf Eng. 1986; 2:3:183190(8).
    [Google Scholar]
  45. Burnett PJ, Rickerby DS. The relationship between hardness and scratch adhession. Thin Solid Films. 1987; 154:1-2:403416.
    [Google Scholar]
  46. Neuville S, Taggliaferro A, Bounouh Y, Vallon S, Etemadi R, Perrin J. Dehydrogenation and sp3 enhancement in PECVD a-C:H by catylytic selective etchng of H. Journal of the Proceedings of CIP 95. Antibes Le Vide: Science, Techniques et Applications. Société Française du Vide, Paris, France. 1995; 275:64.
    [Google Scholar]
  47. Neuville S Thesis Ecole Polytechnique Palaiseau France. 1996.
  48. Neuville S. An approach for erosion-resistant coatings by the use of sandwich a-C:H/ta-CNx. Surf Coat Tech. 1998; 106:2-3:277281.
    [Google Scholar]
  49. Liberman MA, Lichtenberg J. Principle of Plasma Discharges and Material Processing. New York: Wiley & Sons 1994.
    [Google Scholar]
  50. Ricard A. Reactive Plasmas. Société française du vide, Paris, France. 1996.
  51. Thomas Anthony Ryan, Julian Wright. Kh Technology Corp, Thomas Anthony Ryan, Sutcliffe Speakman Carbons Ltd, Julian Wright. Hydrophobic coatings for loudspeaker improvement. Patent WO03013183A3. 2003 Sep.
  52. Stephan Eufinger, Dominique Neerinck, Marc Sercu. Bekaert Sa Nv. A doped diamond-like carbon coating. WO2000075394 A1. 2000 Dec.
  53. Francisco Blangetti, Harald Reiss. Alstom Switzerland Ltd, Francisco Blangetti, Harald Reiss. Condensation heat exchanger multilayer DLC/polymer coating. Patent WO0240934A1. 2002 May.
  54. Bo Ki Hong, Sae Hoon Kim, Kwang Ryeol Lee, Myoung Woon Moon. Korea Institute of Science and Technology, Hyundai Motor Company. Porous medium with increased hydrophobicity and method of manufacturing the same. Patent US20120276335 A1. 2012 Nov.
  55. Frédéric CLABAU, Stéphanie CAPDEVILLE, Martin Melcher. Saint-Gobain Glass France. Hydrophobic coating on glass. Patent WO2011070293A1. 2011 Jun.
  56. Paul Branlard, Martial Deruelle, Yves Giraud, Nadia Martin. Rhodia Chimie. Waterproof hydrophobic breathable coating. Patent US7972705. 2011 Jul.
  57. Nazim Muradov. University of Central Florida Research Foundation, Inc. Hydrophobic filaments for oil slurry removal in hydrocarbon. Patent US7914683. 2011 Mar.
  58. Oliver Van Emden, Chris Carr. Lightex Limited. Breathable water impermeable clothing textile Patent US7682994. 2010 Mar.
  59. Rahul A. Ranade, Mark S. Garrison. Avon Products, Inc. Hydrophobic properties of cosmetics Patent WO2009111128A1. 2009 Sep.
  60. Kahp-Yang Suh, Hoon-Eui Jeong. Seoul National University Industry Foundation. Hydrophobic anti-adherence for nano-pattern moulding. Patent US7632417. 2009 Dec.
  61. Karlheinz Haubennestel, Alfred Bubat, Hans-Willi Boegershausen, Wolfgang Griesel, Ulrich Nolte. Byk-Chemie Gmbh. Anti-adhesion hydrophobic additives for thermoplastics and coatings. Patent US7504469. 2009 Mar.
  62. Robert Angelo Mercuri, Thomas William Weber. Graftech Inc. Hydrophobic fuel cell electrode. WO2002069415 A1. 2002 Sep.
  63. Byung Jin Choi, Frank Y. Xu, Nicholas A. Stacey Van Xuan Hong Truskett, Michael P.C. Watts Molecular Imprints, Inc, University Of Texas Systems. Anti-adherent hydrophobic coatings for patterned molds. Patent US7157036. 2007 Jan.
  64. Andreas Thünemann, Helmut Lochhaas Nanogate Technologies Gmbh. Complex for anti-adhesion anti-soiling of surface. Patent US6486245. 2002 Nov.
  65. Helmut Lochhaas, Andreas Thunemann. Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Antifouling anti-adherent coating complex agent. Patent EP1029005B1. 2002 Feb.
  66. David R Lambert, Paul N Segit. Lydall Inc. Hydrophobic, porous, electrically conducting textile for fuel cells. Patent WO0222952A2. 2002 Mar.
  67. Lawrence J. Gestaut. Diamond Shamrock Corporation. Conductive Carbon black hydrophobicity enhancement for gas electrodes. Patent US4278525. 1981 Jul.
  68. Giorgio Agostini. The Goodyear Tire & Rubber Company. Modified and metal treated carbon black with high density, a rubber composition comprising it and a tyre comprising said rubber composition. EP1293542 A1. 2003 Mar.
  69. Takamura T. Chemistry, electrochemistry, electrochemical applications: Carbon. Encyclopedia Electrochem Power Sources. 2009; 1::709743.
    [Google Scholar]
  70. Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources. 2010; 195:9:24192430.
    [Google Scholar]
  71. Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science. 2013; 341:6145:534537.
    [Google Scholar]
  72. Liu DG, Tu JP, Hong CF, Gu CD, Mao SX. Two-phase nanostructured carbon nitride films prepared by direct current magnetron sputtering and thermal annealing. Surf Coat Tech. 2010; 205:1:152157.
    [Google Scholar]
  73. Grill A. Electrical and optical properties of diamond-like carbon. Thin Solid Films. 1999; 355-356::189193.
    [Google Scholar]
  74. Nimmagadda RR, Joshi A, Hsu WL. Role of microstructure on the oxidation behavior of microwave plasma synthesized diamond and diamond-like carbon films. J Materials Res. 1990; 5:11:24452450.
    [Google Scholar]
  75. Kobashi K, Nishimura K, Miyata K, Kawate Y, Glass JT, Williams BE. Surface Morphology And Defect Structures In Microwave CVD Diamond Films. In: Feldman A, Holly S, eds. Diamond Optics. SPIE – International Society for Optical Engineering; 1989:159-167.
  76. Wang XH, Ma G-HM, Zhu W, Glass JT, Bergman L, Turner KF, Nemanich RJ. Effects of boron doping on the surface morphology and structural imperfections of diamond films. Diamond Relat Mater. 1992; 1:7:828835.
    [Google Scholar]
  77. Amaratunga GAJ, Veerasamy VS, Davis CA, Milne WI, McKenzie DR, Yuan J, Weiler M. Doping of highly tetrahedral amorphous carbon. J Non-Cryst Solids. 1993; 164-166::11191122.
    [Google Scholar]
  78. Bachmann PK, Wiechert DU. Optical characterization of diamond. Diamond Relat Mater. 1992; 1:5-6:422433.
    [Google Scholar]
  79. Neuville S. Correlation between electronic orbital activation and selective properties and growth of carbon nanotubes and related materials. JPJ Solids Struct. 2008; 2:1:143.
    [Google Scholar]
  80. Lifshitz Y. Tetrahedral amorphous carbon (ta-C). The Physics of diamond. Proceedings of the International School of Physics ‘Enrico Fermi’ 135, 1997;:209253.
  81. Beeman D, Silverman J, Lynds R, Anderson MR. Modeling studies of amorphous carbon. Phys Rev B. 1984; 30::870.
    [Google Scholar]
  82. Robertson J, O'Reilly EP. The nature of the electronic gap. Amorphous Hydrogen Carbon Films. EMRS Symposia Proceedings Volume XVII, Edited by P.Koidl and P.Oelhafen. Les Editions de la Physique. 1987;17:259.
  83. Lettington AH, Smith C. Optical properties and applications of diamond-like carbon coatings. Diamond Relat Mater. 1992; 1:7:805809.
    [Google Scholar]
  84. Beeman JW, Nyaiesh AR, Haller EE, Hansen WL, Garwin EL. Diamond-like antireflective coatings for infrared photoconductor. Amorphous Hydrogen Carbon Films. EMRS Symposia Proceedings Volume XVII, Edited by P. Koidl and P. Oelhafen. Les Editions de la Physique. 1987: 71.
  85. Horprathum M, Eiamchai P, Chindaudom P, Pokaipisit A, Limsuwan P. Oxygen partial pressure dependence of the properties of TiO2 thin films deposited by dc reactive magnetron sputtering. Procedia Eng. 2012; 32::676682.
    [Google Scholar]
  86. Borodin A, Reichling M. Characterizing TiO2(110) surface states by their work function. Phys Chem Chem Phys. 2011; 13:34:1544215447.
    [Google Scholar]
  87. Yang P, Kwok SCH, Fu RKY, Leng XY, Wang J, Wan GJ, Huang N, Leng Y, Chu PK. Structure and properties of annealed amorphous hydrogenated carbon (a-C:H) films for biomedical applications. Surf Coat Tech. 2004; 177-178::747751.
    [Google Scholar]
  88. Sikora A, Berkesse A, Bourgeois O, Garden JL, Guerret-Piécourt C, Loir AS, Garrelie F, Donnet C. Electrical properties of boron-doped diamond-like carbon thin films deposited by femtosecond pulsed laser ablation. Appl Phys A. 2009; 94:1:105109.
    [Google Scholar]
  89. Meyerson B, Smith F. Chemical modification of the electrical properties of hydrogenated amorphous carbon films. Solid State Commun. 1980; 34:7:531534.
    [Google Scholar]
  90. Koeberle H, Memming R. Electrical conductivity and structure of metal containing hydrogenated carbon films. Amorphous Hydrogen Carbon Films. EMRS Symposia Proceedings Volume XVII, Edited by P. Koidl and P. Oelhafen. Les Editions de la Physique. 1987;485.
  91. Montasser K, Hattori S, Morita S. Characterization of hard transparent B–C–N–H thin films formed by plasma chemical-vapor deposition at room temperature. J Appl Phys. 1985; 58:8:3185.
    [Google Scholar]
  92. Grischke M, Brauer A, Benndorf C, Memming R, Thieme F. Evidence for the formation of carbidic carbon in Ta-doped c-C:H layers. Amorphous Hydrogen Carbon Films. EMRS Symposia Proceedings Volume XVII, Edited by P. Koidl and P. Oelhafen. Les Editions de la Physique. 1987:491.
  93. Alakoski E, Kiuru M, Tiainen V, Anttila A. Adhesion and quality test for tetrahedral amorphous carbon coating process. Diamond Relat Mater. 2003; 12:12:21152118.
    [Google Scholar]
  94. Shriver DF, Atkins PW, Langford CH. Inorganic Chemistry. New York: Oxford University Press 1990:p.337.
    [Google Scholar]
  95. Fischer-Cripps A. Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Tech. 2006; 200:14-15:41534165.
    [Google Scholar]
  96. Korsunsky AM, McGurk MR, Bull SJ, Page TF. On the hardness of coated systems. Surf Coat Tech. 1998; 99:1-2:171183.
    [Google Scholar]
  97. Stoney GG. The tension of metallic films deposited by electrolysis. Proc R Soc A Lond. 1909; 82:553:172.
    [Google Scholar]
  98. Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000; 246:1-2:111.
    [Google Scholar]
  99. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Materials Res. 1992; 7:06:15641583.
    [Google Scholar]
  100. Escobar Galindo R, Gago R, Duday D, Palacio C. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES. Anal Bioanal Chem. 2010; 396:8:27252740.
    [Google Scholar]
  101. Wang H, Xu M, Kwok DT, Jiang J, Wu Z, Chu PK. Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone. Biomaterials. 2010; 31:32:81818187.
    [Google Scholar]
  102. Fabisiak K, Marciniak W, Orzeszko S, Rozploch F. Some physical properties of diamond films grown by d.c.-glow discharge-enhanced hot-filament assisted chemical vapour deposition. Diamond Relat Mater. 1992; 1:2-4:8388.
    [Google Scholar]
  103. Bounouh Y, Chahed L, Sadki A, Thàye ML, Cardinaud C, Zarrabian M, von Bardeleben J, Zellama K, Cernogora J, Fave J-L. Network connectivity and structural defects in a-C:H films. Diamond Relat Mater. 1995; 4:4:492498.
    [Google Scholar]
  104. Wild C, Koidl P. Network structure and thermal decomposition of plasma depositied a-C:H films studied by gas effusion spectrometry. Amorphous Hydrogen Carbon Films. EMRS Symposia Proceedings Volume XVII, Edited by P.Koidl and P.Oelhafen. Les Editions de la Physique. 1987:207.
  105. Siegbahn K, Nordling C, Fahlmann A, Nordberg R, Hamrin K, Hedman J, Johansson G, Bergmark T, Karlsson SE, Lindgren I, Lindberg B. ESCA (Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy. Ser. IV, volume 20, Ser. IV, volume 20) Almqvist & Wiksells Boktryckeri, Bocktryckeri Ali, Uppsala;1967.
  106. Tolstogouzov A, Daolio S, Pagura C. Evaluation of inelastic energy losses for low-energy Ne+ ions scattered from aluminum and silicon surfaces. Surf Sci. 1999; 441:1:213222.
    [Google Scholar]
  107. Oechsner H. Process controlled microstructural and binding properties of hard physical vapor desposition films. JVSTA. 1998; 16:3:1956.
    [Google Scholar]
  108. Wagner J, Ramsteiner M, Wild C, Koidl P. EMRS Conference Strasbourg Proceedings. Koidl P, Oelhafen P (Eds.). Les Editions de la Physique. 1987:219.
  109. Fayette L, Marcus B, Mermoux M, Tourillon G, Laffon K, Parent P, Le Normand F. Local order in CVD diamond films/: Comparative Raman, x-ray-diffraction, and x-ray-absorption near-edge studies. Phys Rev B. 1998; 57:22:1412314132.
    [Google Scholar]
  110. Neuville S. Necessity of new carbon engineering Raman nomenclature. E-MRS Spring Meeting 2014 Lille Symposium E oral cession.
  111. Tamor MA, Vassell WC, Carduner KR. Atomic constraint in hydrogenated “‘diamond-like’” carbon. Appl Phys Lett. 1991; 58:6:592.
    [Google Scholar]
  112. Le Normand F, Hommet J, Szörényi T, Fuchs C, Fogarassy E. XPS study of pulsed laser deposited CNx films. Phys Rev B. 2001; 64:23.
    [Google Scholar]
  113. Dischler B. XVII EMRS Conference Strasbourg Proceedings. Les Editions de Physique, Les Ulis France; 1987:189.
  114. Casiraghi C, Piazza F, Ferrari AC, Grambole D, Robertson J. Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diamond Relat Mater. 2005; 14:3-7:10981102.
    [Google Scholar]
  115. McNamara KM, Gleason KK, Vestyck DJ, Butler JE. Evaluation of diamond films by nuclear magnetic resonance and Raman spectroscopy. Diamond Relat Mater. 1992; 1:12:11451155.
    [Google Scholar]
  116. Demichelis F, Pirri CF, Tagliaferro A. Determination ofsp3/sp2 ratio in diamond-like films of a-C:H. Diamond Relat Mater. 1992; 1:2-4:298300.
    [Google Scholar]
  117. Scheuerlein C, Taborelli M, Hilleret N, Brown A, Baker M, An AES. study of the room temperature conditioning of technological metal surfaces by electron irradiation. Appl Surf Sci. 2002; 202:1-2:5767.
    [Google Scholar]
  118. Rats D, Vandenbulcke L, Boher C, Farges G. Tribological study of diamond coatings on titanium alloys. Surf Coat Tech. 1997; 94-95::555560.
    [Google Scholar]
  119. Nabhan W, Broniatowski A, de Rosny G, Equer B. Design and implementation of a Kelvin microprobe for contact potential measurements at the submicron scale. Microsc Microanal M. 1994; 5:4-6:509517.
    [Google Scholar]
  120. Park J-S, Chae H, Chung HK, Lee SI. Thin film encapsulation for flexible AM-OLED: a review. Semicond Sci Tech. 2011; 26:3:034001.
    [Google Scholar]
  121. Martha SK, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D, Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M, Kovacheva D, Saliyski N. A short review on surface chemical aspects of Li batteries: A key for a good performance. J Power Sources. 2009; 189:1:288296.
    [Google Scholar]
  122. Braun A, Bärtsch M, Merlo O, Schnyder OB, Schaffner B, Kötz R, Haas O, Wokaun A. Exponential growth of electrochemical double layer capacitance in glassy carbon during thermal oxidation. Carbon. 2003; 41:4:759765.
    [Google Scholar]
  123. Jongwannasiri C, Moolsradoo N, Khantachawana A, Kaewtatip P, Watanabe S. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films. Adv Materials Sci Eng. 2012; 2012::18.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2014.8
Loading
/content/journals/10.5339/connect.2014.8
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error