1887
Volume 2014, Issue 1
  • EISSN: 2223-506X

Abstract

Urgent need to reduce the amount of toxic mercury compounds in the wastewater of industries and subsequent reuse of metal ions, has led to an increasing interest in microbial bioremediation. Two strains, namely, isolate CH07 and isolate Bro12, and a genetically engineered strain (KT 2442 ::73) were used to study the kinetics of mercury removal from liquid M9 medium, considering the potential of the bacteria in volatilizing ionic mercury to its gaseous form. The strains were further used to remove toxic mercury from synthetic wastewater in fixed-bed, continuous upflow reactors and thereafter to recover the toxic metal from the reactor beds. We also studied the effect of sodium chloride on the kinetics of mercury removal by the isolate CH07 from marine sediment, as well as the other two non-marine bacteria. After a successful run of over a month, the bioreactors were able to retain the toxic metal, which resulted in a recovery of approximately 64% of the influent mercury. No major alteration in the retention capacity of the bioreactors occurred during drastic changes in concentration of inflowing metals or salt concentration.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2014.17
2014-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/connect/2014/1/connect.2014.17.html?itemId=/content/journals/10.5339/connect.2014.17&mimeType=html&fmt=ahah

References

  1. Nascimento AMA, Chartone-Souza E. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res. 2003; 2::92101.
    [Google Scholar]
  2. Clarkson TW, Laszlo M. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006; 36:8:609662.
    [Google Scholar]
  3. De J, Ramaiah N, Bhosle NB, Garg A, Vardanyan L, Nagle VL, Fukami K. Potential of mercury-resistant marine bacteria for detoxification of chemicals of environmental concern. Microbes Environ. 2007; 22:4:336345.
    [Google Scholar]
  4. Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D. Sources and remediation for mercury contamination in aquatic systems-a literature review. Environ Pollut. 2004; 131:2:323336.
    [Google Scholar]
  5. Mindlin S, Minakhin L, Petrova M, Kholodii G, Minakhina S, Gorlenko Z, Nikiforov V. Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Res Microbiol. 2005; 156:10:9941004.
    [Google Scholar]
  6. Barkay T, Wagner-Döbler I. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol. 2005; 57::152.
    [Google Scholar]
  7. De J, Ramaiah N, Vardanyan L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol (NY). 2008; 10:4:471477.
    [Google Scholar]
  8. De J, Dash HR, Das S. Mercury pollution and bioremediation–a case study on biosorption by a mercury-resistant marine bacterium. Microbial Biodegradation and Bioremediation. Elsevier Inc. 2014;:137166. DOI: 10.1016/B978-0-12-800021-2.00006-6.
    [Google Scholar]
  9. Gadd GM, White C. Microbial treatment of metal pollution–a working biotechnology? Trends Biotechnol. 1993; 11:8:353359.
    [Google Scholar]
  10. De J, Ramaiah N. Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistance to toxic chemicals. Ecol Indic. 2007; 7:3:511520.
    [Google Scholar]
  11. Summers AO, Silver S. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J Bacteriol. 1972; 112:3:12281236.
    [Google Scholar]
  12. Kannan SK, Krishnamoorthy R. Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury – a case study in Pulicat Lake North of Chennai, South East India. Sci Total Environ. 2006; 367::341353.
    [Google Scholar]
  13. Barkay T, Gillman M, Turner RR. Effects of dissolved carbon and salinity on bioavailability of mercury. Appl Environ Microbiol. 1997; 63:11:42674271.
    [Google Scholar]
  14. Wagner-Döbler I. Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol. 2003; 62:2-3:124133.
    [Google Scholar]
  15. Williams JW, Silver S. Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol. 1984; 6:12:530537.
    [Google Scholar]
  16. Summers AO. The hard stuff: metals in bioremediation. Curr Opin Biotech. 1992; 3:3:271276.
    [Google Scholar]
  17. Deckwer WD, Becker FU, Ledakowicz S, Wagner-Döbler I. Microbial removal of ionic mercury in a three-phase fluidized bioreactor. Environ Sci Technol. 2004; 38:6:18581865.
    [Google Scholar]
  18. Głuszcz P, Zakrzewska K, Wagner-Döbler I, Ledakowicz S. Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon. Chem Pap. 2008; 62:3:232238.
    [Google Scholar]
  19. Canstein VH, Li Y, Timmis KN, Deckwer WD, Wagner-Döbler I. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol. 1999; 65:12:52795284.
    [Google Scholar]
  20. Brunke M, Deckwer WD, Fritschmuth JM, Horn H, Lunsdorf M, Rhode M, Rohricht M, Timmis KN, Weppen P. Microbial retention of mercury from waste systems in a laboratory column containing merA gene bacteria. FEMS Microbiol Rev. 1993; 11::4552.
    [Google Scholar]
  21. Chang JS, Law WS. Development of microbial mercury detoxification processes using mercury-hyperresistant strain of Pseudomonas aeruginoasa PU21. Biotechnol Bioeng. 1998; 57:4:462470.
    [Google Scholar]
  22. Canstein VH, Li Y, Wagner-Döbler I. Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnol Bioeng. 2001; 74:3:212219.
    [Google Scholar]
  23. Chang JS, Hong J. Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnol Bioeng. 1994; 44:8:9991006.
    [Google Scholar]
  24. Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol. 2001; 60:1-4:193207.
    [Google Scholar]
  25. Volesky B, Holan ZR. Biosorption of heavy metals. Biotechnol Progr. 1995; 11:3:235250.
    [Google Scholar]
  26. Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP. Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotech. 1995; 43:6:11121117.
    [Google Scholar]
  27. Essa AM, Macaskie LE, Brown NL. Mechanisms of mercury bioremediation. Biochem Soc Trans. 2002; 30:4:672674.
    [Google Scholar]
  28. Fuhrmann M, Heiser J, Kalb PD. Brookhaven Science Associates, Llc. Mercury contamination extraction. Patent US7589248 B2. 2009. Sep.
  29. Kiyono M, Omura H, Omura T, Murata S, Hou-Pan H. Removal of inorganic and organic mercurials by immobilized bacteria having mer-ppk fusion plasmids. Appl Microbiol Biotech. 2003; 62:2-3:274278.
    [Google Scholar]
  30. Chen S, Wilson DB. Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation. 1997; 8:2:97103.
    [Google Scholar]
  31. Brim H, McFarlan SC, Fredrickson JK, Minton K, Zhai M, Wackett LP, Daly MJ. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol. 2000; 18::8590.
    [Google Scholar]
  32. Bizily SP, Rugh CL, Summers AO, Meagher RB. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Nat Acad Sci USA. 1999; 96:12:68086813.
    [Google Scholar]
  33. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB. Mercuric ion reduction and the resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene. Proc Nat Acad Sci USA. 1996; 93:8:31823187.
    [Google Scholar]
  34. Heaton AC, Rugh CL, Kim T, Wang NJ, Meagher RB. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem. 2003; 22:12:29402947.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2014.17
Loading
/content/journals/10.5339/connect.2014.17
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): bioreactorbioremediationMercurypumice granules and sodium chloride
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error