1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

Rod-shaped antimony sulphoiodide (SbSI) crystals were grown by utilizing elemental components of the compound. The material was characterized by X-ray diffraction (XRD), Raman and surface morphology by SEM. Electrical conductivity was measured on the pallets of powdered SbSI by the four-probe technique in the temperature range of 4–300K, and by the two-probe technique in the temperature range of 300–550K. SbSI shows semiconducting behavior in the temperature range of 300–550K and metallic below 300K. Activation energy of an electrical conduction between 300–550K, is 1.87 eV.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.40
2014-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.40.html?itemId=/content/journals/10.5339/connect.2013.40&mimeType=html&fmt=ahah

References

  1. Kikuchi A, Oka Y, Sawaguchi E. Crystal Structure Determination of SbSI. J Phys Soc Jpn. 1967; 23:2:337354.
    [Google Scholar]
  2. Palaniappan L, Shanmugham M, Gnanam FD, Ramasamy P. Growth and electrical characterization of SbSI and SbSOI crystals. J Cryst Growth. 1986; 79:1-3:519521.
    [Google Scholar]
  3. Kichambare P, Sharon M. Synthesis, structure and conductivity of new quaternary chalcogenide SnBi4Te4Se4. Solid State Ionics. 1993; 62:1-2:2126.
    [Google Scholar]
  4. Özdemir S, Fırat T, Mamedov A. Trapping parameters of repulsive centers in SbSI single crystals. Mater Res Bull. 2004; 39:7-8:10651073.
    [Google Scholar]
  5. Imai K, Kawada S, Ida M. Anomalous pyroelectric properties of SbSI single crystals. J Phys Soc Jpn. 1966; 21:10:18551860.
    [Google Scholar]
  6. Nitsche R, Merz WJ. Photoconduction in ternary V-VI-VII compounds. J Phys Chem Solids. 1960; 13:1-2:154155.
    [Google Scholar]
  7. Fridkin VM. Current saturation and photoferroelectric effect in SbSI. Appl Phys Lett. 1967; 10:12:354.
    [Google Scholar]
  8. Berlincourt D, Jaffe H, Merz WJ, Nitsche R. Piezoelectric effect in the ferroelectric range in SbSI. Appl Phys Lett. 1964; 4:3:61.
    [Google Scholar]
  9. Kidawa A. The preparation of polycrystalline ceramic SbSI by the Czochralski method and some of its piezoelectric properties. Mater Sci Eng. 1982; 52:3:263266.
    [Google Scholar]
  10. Babaev AA, Kamilov IK, Kallaev CN, Sultanov SB, Amirova AA, Dzhabrailov AM. Features of photoluminescence and dielectric properties of glass – ferroelectric SbSI. J Optoelectron Adv Mater. 2003; 5:3:791794.
    [Google Scholar]
  11. Dziuba Z. Crystallization of SbSI crystal from the vapour phase. J Cryst Growth. 1976; 35:3:340342.
    [Google Scholar]
  12. Raman G, Gnanam FD, Ramasamy P. Growth of antimony sulphoiodide in gel. J Cryst Growth. 1984; 69:2-3:404406.
    [Google Scholar]
  13. Nassau K, Shiever JW, Kowalchik M. The growth of large SbSI crystals: Control of needle morphology. J Cryst Growth. 1970; 7:2:237245.
    [Google Scholar]
  14. Ishikawa K, Tomoda W, Toyoda K. Crystal growth of SbSI from the vapour phase. J Cryst Growth. 1984; 69:2-3:399403.
    [Google Scholar]
  15. Agrawal D, Perry C. Long-wavelength optical phonons and phase transitions in SbSI. Phys Rev B. 1971; 4:6:18931902.
    [Google Scholar]
  16. Gomonnai AV, Voynarovych IM, Solomon AM, Azhniuk YM, Kikineshi AA, Pinzenik VP, Kis-Varga M, Daroczy L, Lopushansky VV. X-ray diffraction and Raman scattering in SbSI nanocrystals. Mater Res Bull. 2003; 38:13:17671772.
    [Google Scholar]
  17. Fatuzzo E, Harbeke G, Merz W, Nitsche R, Roetschi H, Ruppel W. Ferroelectricity in SbSI. Phys Rev. 1962; 127:6:20362037.
    [Google Scholar]
  18. Palaniappan L, Gnanam FD, Ramasamy P. An electrical conductivity study of an SbSI ingot at low temperature. Semicond Sci Technol. 1987; 2:12:790792.
    [Google Scholar]
  19. Mansingh A, Rao TS. Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films. J Appl Phys. 1985; 58:9:3530.
    [Google Scholar]
  20. Szperlich P, Nowak M, Bober L, Szala J, Stroz D. Ferroelectric properties of ultrasonochemically prepared SbSI ethanogel. Ultrason Sonochem. 2009; 16:3:398401.
    [Google Scholar]
  21. Audzijonis A, Žaltauskas R, Žigas L, Vinokurova F IV, arberovich OV, Pauliukas A, Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Phys B Conden Matter. 2006; 371:1:6873.
    [Google Scholar]
  22. Cho I, Min BK, Woo Joo S, Sohn Y. One-dimensional single crystalline antimony sulfur iodide, SbSI. Mater Lett. 2012; 86::132135.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.40
Loading
/content/journals/10.5339/connect.2013.40
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): chemical vapour deposition (CVD)electrical conductivityRaman spectroscopySbSI and semiconductors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error