1887
Volume 2012, Issue 1
  • EISSN: 2223-506X

Abstract

Abstract

: Attempts to optimize the synthetic yield of known macrocyclic phosphonates resulted in the discovery of two new macrocyclic bisphosphonate dimers. : An attempt was carried out to optimize the yield of a known macrocyclic bisphosphonate dimer, , over the yield of monomers and , using the Mitsunobu protocol in the macrocyclization step. Cyclization reactions were carried out at 0.003 M, 0.004 M, 0.005 M, 0.008 M and 0.02 M, compared to 0.002 M in our initial report of the synthesis of monomers. : In this attempt to optimize the production of dimer , two new macrocyclic diastereomers of , namely 28-membered bisphosphonates and , were isolated in yields of 3% and 2%, respectively, and characterized by FTIR, LC-MS, , and NMR as well as by X-ray crystallography. : The results described herein further illustrate the utility of the Mitsunobu macrocyclization (ring-closing) reaction toward the synthesis of macrocyclic phosphonates. The X-ray crystallographic characterization of the three bisphosphonate dimers, together with correlations to specific and NMR resonances allowed for the assignments of relative stereochemistries between the various dimers.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2012.10
2012-09-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/connect/2012/1/connect.2012.10.html?itemId=/content/journals/10.5339/connect.2012.10&mimeType=html&fmt=ahah

References

  1. (a)Tramontano, A., Janda, K.D., & Lerner, R.A. (1986). Science, 234, 1566.
    [Google Scholar]
  2. (b)Pollack, S.J., Jacobs, J.W., & Schultz, P.G. (1986). Science, 234, 1570.
    [Google Scholar]
  3. (c)Blackburn, G.M., Datta, A., Denham, H., & Wentworth, P. (1998). Adv. Phys. Org. Chem., 31, 249.
    [Google Scholar]
  4. Hanson, J.E., Kaplan, A.P., & Bartlett, P.A. (1989). Biochemistry, 28:, 6294.
    [Google Scholar]
  5. Bosbach, D., Coveney, P.V., Griffin, J.L.W., Putnis, A., Risthaus, P., Stackhouse, S., & Whiting, A. (2002). J. Chem. Soc., Perkin Trans., 2:, 1238.
    [Google Scholar]
  6. (a)Liu, Y., Zhao, S., Chen, W., Hu, F., Zhu, L., Zhang, Q., & Zhao, Y. (2012). Clin. Breast Cancer, May 22. epub ahead of print.
    [Google Scholar]
  7. (b)Poole, K.E., & Compston, J.E. (2012). Br. Med. J., 344, 3211.
    [Google Scholar]
  8. (c)Eriksen, E.F., Halse, J., & Moen, M.H. (2012). Acta Obstet. Gynecol. Scand., May 31. epub ahead of print. doi:10.1111/j.1600-0412.2012.01473
    [Google Scholar]
  9. Herm, M., & Schrader, T. (2000). Chem. Eur. J., 6:, 47.
    [Google Scholar]
  10. Pungente, M.D., & Weiler, L. (2001). Org. Lett., 3:, 643.
    [Google Scholar]
  11. Pungente, M.D., Weiler, L., & Ziltener, H. (2002). Can. J. Chem., 80:, 1643.
    [Google Scholar]
  12. Yeh, J., Tamarkina, E., Khalique, N.A., Raju, L., & Pungente, M.D. (2012). QScience CONNECT, 2:, accepted
    [Google Scholar]
  13. Mitsunobu, O. (1981). Synthesis, 1:,
    [Google Scholar]
  14. Pungente, M.D., & Weiler, L. (2012). QScience CONNECT, 2:, [CrossRef].
    https://doi.org/10.5339/connect.2012.2 [Google Scholar]
  15. Fuoss, R.M., & Edelson, D. (1951). Bolaform Electrolytes. I. J. Am. Chem. Soc., 73:, 269.
    [Google Scholar]
  16. Menger, F.M., & Wrenn, S.J. (1974). Phys. Chem., 78:, 1387.
    [Google Scholar]
  17. Yiv, S., Kale, K.M., Lang, J., & Zana, R. (1976). J. Phys. Chem., 80:, 2651.
    [Google Scholar]
  18. Fuhrhop, J.H., David, H.H., Mathieu, J., Liman, U., Winter, H.J., & Boekema, E. (1986). J. Am. Chem. Soc., 108:, 1785.
    [Google Scholar]
  19. Fuhrhop, J.H., & Fritsch, D. (1986). Acc. Chem. Res., 19:, 130.
    [Google Scholar]
  20. Nagarajan, R. (1987). Chem. Eng. Commun., 55:, 251.
    [Google Scholar]
  21. Fuhrhop, J.H., & Wang, T.Y. (2004). Chem. Rev., 104:, 2901.
    [Google Scholar]
  22. Benvegnu, T., Brard, M., & Plusquellec, D. (2004). Curr. Opin. Colloid Interface Sci., 8:, 469.
    [Google Scholar]
  23. Meister, A., & Blume, A. (2007). Curr. Opin. Colloid Interface Sci., 12:, 138.
    [Google Scholar]
  24. Kunitake, T., Okahata, Y., Shimomura, M., Yasunami, S., & Takarabe, K. (1981). J. Am. Chem. Soc., 103:, 5401.
    [Google Scholar]
  25. Duivenvoorde, F.L., Feiters, M.C., van der Gaast, S.J., & Engberts, J.B. (1997). F. N. Langmuir, 13:, 3737.
    [Google Scholar]
  26. Oda, R., Huc, I., Schmutz, M., Candau, S.J., & MacKintosh, F.C. (1999). Nature, 399:, 566.
    [Google Scholar]
  27. Brizard, A., Aimé, C., Labrot, T., Huc, I., Berthier, D., Artzner, F., & Desbat, B. (2007). Oda, R. J. Am. Chem. Soc., 129:, 3754.
    [Google Scholar]
  28. Israelachvili, J.N. (1992). Intermolecular and Surface Forces. Academic Press, Boston.
    [Google Scholar]
  29. Okahata, Y., & Kunitake, T. (1979). J. Am. Chem. Soc., 101:, 5231.
    [Google Scholar]
  30. Wang, X.F., Shen, Y.Z., Pan, Y., & Liang, Y.Q. (2001). Langmuir, 17:, 3162.
    [Google Scholar]
  31. Masuda, M., & Shimizu, T. (2004). Langmuir, 20:, 5969.
    [Google Scholar]
  32. Song, B., Wang, Z.Q., Chen, S.L., Zhang, X., Fu, Y., Smet, M., & Dehaen, W. (2005). Angew. Chem., Int. Ed., 44:, 4731.
    [Google Scholar]
  33. Gao, P., & Liu, M.H. (2006). Langmuir, 22:, 6727.
    [Google Scholar]
  34. Prehm, M., Liu, F., Zeng, X.B., Ungar, G., & Tschierske, C. (2008). J. Am. Chem. Soc., 130:, 14922.
    [Google Scholar]
  35. Xiao, F.P., Misdrahi, M.F., Zhang, J., Yin, P.C., Hao, J., Lv, C.L., Xiao, Z.C., Liu, T.B., & Wei, Y.G. (2011). Chem.-Eur. J., 17:, 12006.
    [Google Scholar]
  36. Wu, G, Verwilst, P, Xu, J, Xu, H, Wang, R, Smet, M, Dehaen, W, Faul, CF, Wang, Z, & Zhang, X. (2012). Langmuir, 28:, 5023.
    [Google Scholar]
  37. Köhler, K., Förster, G., Hauser, A., Dobner, B., Heiser, U.F., Ziethe, F., Richter, W., Steiniger, F., Drechsler, M., Stettin, H., & Blume, A. (2004). Angew. Chem., Int. Ed., 43:, 245.
    [Google Scholar]
  38. Ray, S., Das, A.K., & Banerjee, A. (2007). Chem. Mater., 19:, 1633.
    [Google Scholar]
  39. Englert, J.M., Röhrl, J., Schmidt, C.D., Graupner, R., Hundhausen, M., Hauke, F., & Hirsch, A. (2009). Adv. Mater., 21:, 4265.
    [Google Scholar]
  40. Shao, H., Seifert, J., Romano, N.C., Gao, M., Helmus, J.J., Jaroniec, C.P., & Modarelli, D.A. (2010). Parquette, J. R. Angew. Chem., Int. Ed., 49:, 7688.
    [Google Scholar]
  41. Wang, T.Y., Jiang, J., Liu, Y., Li, Z.B., & Liu, M.H. (2010). Langmuir, 26:, 18694.
    [Google Scholar]
  42. Voronin, M.A., Gabdrakhmanov, D.R., Semenov, V.E., Valeeva, F.G., Mikhailov, A.S., Nizameev, I.R., Kadirov, M.K., Zakharova, L.Y., Reznik, V.S., & Konovalov, A.I. (2011). ACS Appl. Mater. Interfaces, 3:, 402.
    [Google Scholar]
  43. Rzuczek, S.G., Pilch, D.S., Liu, A., Liu, L., LaVoie, E.J., & Rice, J.E. (2010). J. Med. Chem., 53:, 3632.
    [Google Scholar]
  44. (a)Darrow, J.W., & Drueckhammer, D.G. (1994). J. Org. Chem., 59, 2976.
    [Google Scholar]
  45. (b)Darrow, J.W., & Drueckhammer, D.G. (1996). Bioorg. Med. Chem., 4, 1341.
    [Google Scholar]
  46. (c)Hanessian, S., Galéotti, N., Rosen, P., Oliva, G., & Babu, S. (1994). Bioorg. Med. Chem. Lett., 4, 2763.
    [Google Scholar]
  47. (d)Harvey, T.C., Simiand, C., Weiler, L., & Withers, S.G. (1997). J. Org. Chem., 62, 6722.
    [Google Scholar]
  48. (a)Gorenstein, D.G. (1987). Chem. Rev., 87, 1047.
    [Google Scholar]
  49. (b)Chang, J.W., & Gorenstein, D.G. (1987). Tetrahedron, 43, 5187.
    [Google Scholar]
  50. Perrin, D.D., & Armarego, W.L.F. (1988). Purification of Laboratory Chemicals. 3rd ed., Permagon, New York, NY.
    [Google Scholar]
  51. Still, W.C., Kahn, M., & Mitra, A. (1978). J. Org. Chem., 43:, 2923.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2012.10
Loading
/content/journals/10.5339/connect.2012.10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error