1887
Volume 2012, Issue 1
  • EISSN: 2223-506X

Abstract

Abstract

The operational feasibility temperature range of chemical looping combustion (CLC) and chemical looping reforming (CLR) of the fuels methane, propane, iso-octane and ethanol was explored using the common sulphates Na SO , CaSO  and MgSO  as oxygen carriers. The chemical reaction equations for each oxygen carrier and fuel were formulated and fed into the Chemical Equations module of HSC Chemistry 5.1 software to obtain the Gibbs free energy change (G) of the chemical reaction within the temperature range (200–1200C). The CLC and CLR process operational feasibility temperature range for the fuel-oxygen carrier combination was mapped excluding the undesirable formation of SO  in CLC and H S and S in CLR. Na SO  and CaSO  were found to be suitable for all CLC and CLR systems. MgSO  was not found to be a suitable candidate for CLC or CLR processes irrespective of the fuel considered. Methane was found to be better than the other fuels studied as the operational temperature range of CLC and CLR processes were wide for all the sulphates. This short cut methodology presented in this paper can be used to predict the operational feasibility of CLC and CLR processes of different fuels and oxygen carriers.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2012.1
2012-01-27
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/connect/2012/1/connect.2012.1.html?itemId=/content/journals/10.5339/connect.2012.1&mimeType=html&fmt=ahah

References

  1. Teyssie, G., Leion, H., Schwebel, G.L., Lyngfelt, A., & Mattisson, T. (2011). Influence of lime addition to ilmenite in chemical-looping combustion (CLC) with solid fuels. Energy & Fuels, 25:, 38433853.
    [Google Scholar]
  2. Johansson, E., Mattisson, T., lyngfelt, A., & Thunman, H. (2006). Combustion of syngas and natural gas in a 300 W chemical-looping combustor. Trans IChemE, Part A, Chem. Eng. Res. Des, 84:, 819827.
    [Google Scholar]
  3. Kuusik, R., Trikkel, A., Lyngfelt, A., & Mattisson, T. (2009). High temperature behavior of NiO-based oxygen carriers for chemical looping combustion. Energy Procedia, 1:, 38853892.
    [Google Scholar]
  4. Kuusik, R., Trikkel, A., Lyngfelt, A., & Mattisson, T. (2010). Investigation of NiO-based mixed oxides in a 300-W chemical-looping combustor. Chem. Eng. Res. Des., 88:, 661672.
    [Google Scholar]
  5. Mattisson, T., Johansson, M., & Lyngfelt, A. (2006). The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel, 85:, 736747.
    [Google Scholar]
  6. Leion, H., Lyngfelt, A., & Mattisson, T. (2009). Solid fuels in chemical-looping combustion using a NiO-based oxygen carrier. Chem. Eng. Res. Des, 87:, 15431550.
    [Google Scholar]
  7. Pimenidou, P., Rickett, G., Dupont, V., & Twigg, M.V. (2010). Chemical looping reforming of waste cooking oil in packed bed reactor. Bioresour. Technol., 101:, 63896397.
    [Google Scholar]
  8. de Diego, L.F., Ortiz, M., Labiano, F.G., Adanez, J., Abad, A., & Gayan, P. (2009). Synthesis gas generation by chemical-looping reforming using a Ni based oxygen carrier. Energy Procedia, 1:, 310.
    [Google Scholar]
  9. de Diego, L.F., Ortiz, M., Labiano, F.G., Adanez, J., Abad, A., & Gayan, P.  Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers. J. Power Sources, 192:(1), 2734.
    [Google Scholar]
  10. Johannes, B.N., Proll, T., Kolbitsch, P., & Hermann, H. Performance of a NiO-based oxygen carrier for chemical looping combustion and reforming in a 120 kW unit. GHGT-9 2009;1;19–25.
  11. Johannes, B.N., Proll, T., Kolbitsch, P., & Hermann, H. (2010). Syngas and a separate nitrogen/argon stream via chemical looping reforming—A 140 kW pilot plant study. Fuel, 89:, 12491256.
    [Google Scholar]
  12. Ortiz, M., de Diego, L.F., Abad, A., Francisco, G.L., Gayan, P., & Adanez, J. (2010). Hydrogen production by auto-thermal chemical-looping reforming in a pressurized fluidized bed reactor using Ni-based oxygen carriers. Int. J. Hydrogen Energy, 35:, 151160.
    [Google Scholar]
  13. Ryden, M., Johansson, M., Lyngfelt, A., & Mattisson, T. (2009). NiO supported on Mg- ZrO 2 as oxygen carrier for chemical-looping combustion and chemical-looping reforming. Energy Environ. Sci., 2:, 970981.
    [Google Scholar]
  14. de Diego, L.F., Ortiz, M., Adanez, J., Labiano, G., Francisco, G.L., Abad, A., & Gayan, P. (2008). Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem. Eng. J., 144:, 289298.
    [Google Scholar]
  15. Ryden, M., Lyngfelt, A., & Mattisson, T. (2008). Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers. Energy Fuels, 22:, 25852597.
    [Google Scholar]
  16. Sturzenegger, M., D’Souza, L., Struis, R.P.W.J., & Stucki, S. (2006). Oxygen transfer and catalytic properties of nickel iron oxides for steam reforming of methane. Fuel, 10–11:, 15991602.
    [Google Scholar]
  17. Abad, A., Adánez, J., Labiano, F.G., de Diego, L.F., & Gayán, P. (2010). Modelling of the chemical-looping combustion of methane using a Cu-based oxygen carrier. Combust. Flame, 157:, 602615.
    [Google Scholar]
  18. Forero, C.R., Gayan, P., Labiano, F.G., de Diego, L.F., Abad, A., & Adanez, J. (2010). Effect of gas composition in chemical-looping combustion with copper-based oxygen carriers: fate of sulphur. Int. J Greenhouse Gas Control, 5:, 7505836.
    [Google Scholar]
  19. Gayan, P., Forero, C.R., de Diego, L.F., Abad, A., Labiano, F.G., & Adanez, J. (2010). Effect of gas composition in chemical-looping combustion with copper-based oxygen carriers: fate of light hydrocarbons. Int. J Greenhouse Gas Control, 4:, 1322.
    [Google Scholar]
  20. Forero, C.R., Gayan, P., de Diego, L.F., Abad, A., Labiano, F.G., & Adanez, J. (2009). Syngas combustion in a 500 Wth chemical-looping combustion system using an impregnated Cu-based oxygen carrier. Fuel Process. Technol., 90:, 14711479.
    [Google Scholar]
  21. De Diego, L.F., García-Labiano, F., Adanez, J., Gayan, P., Abad, A., Corbella, B.M., & Palacios, J.M. (2004). Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel, 83:(13), 17491757.
    [Google Scholar]
  22. Abad, A., Adanez, J., Labiano, F.G., de Diego, L.F., & Gayan, P. (2010). Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combust. Flame, 157:, 602615.
    [Google Scholar]
  23. Dennis, J.S., & Scott, S.A. (2010). In situ gasification of a lignite coal and CO 2 separation using chemical looping with a Cu-based oxygen carrier. Fuel, 89:, 16231640.
    [Google Scholar]
  24. Chuang, S.Y., Dennis, J.S., Hayhurst, A.N., & Scott, S.A. (2008). Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combust. Flame, 154:, 109121.
    [Google Scholar]
  25. Real, S.R., Seok, G.K., & Done, K.S. (2009). Thermo gravimetric analysis of copper oxide for chemical-looping hydrogen generation. Ind. Eng. Chem. Res, 48:, 380387.
    [Google Scholar]
  26. Xiao, R., Song, Q., Song, M., Lu, Z., Zhang, S., & Shen, L. (2010). Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier. Combust. Flame, 157:, 11401153.
    [Google Scholar]
  27. Mattisson, T., Lyngfelt, A., & Cho, P. (2001). The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO 2. Fuel, 80:, 19531962.
    [Google Scholar]
  28. Leion, H., Jerndal, E., Steenari, B.M., Hermansson, S., Israelsson, M., Jansson, E., Johnsson, M., Thunberg, R., Vadenbo, A., Mattisson, T., & Lyngfelt, A. (2009). Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel, 88:, 19451954.
    [Google Scholar]
  29. Rubel, A., Liu, K., Neathery, J., & Taulbee, D. (2009). Oxygen carriers for chemical looping combustion of solid fuels. Fuel, 88:, 876884.
    [Google Scholar]
  30. Cormos, C.C. (2010). Evaluation of iron based chemical looping for hydrogen and electricity co-production by gasification process with carbon capture and storage. Int. J. Hydrogen Energy, 22782289.
    [Google Scholar]
  31. Abad, A., Mattisson, T., Lyngfelt, A., & Johansson, M. (2007). The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel, 86:, 10211035.
    [Google Scholar]
  32. Chiesa, P., Lozza, G., Malandrino, A., Romano, M., & Piccolo, V. (2008). Three-reactor chemical looping process for hydrogen production. Int. J. Hydrogen Energy, 33:, 22332245.
    [Google Scholar]
  33. Go, K.S., Son, S.R., Kim, S.D., Kang, K.S., & Park, C.S. (2009). Hydrogen production from two-step steam methane reforming in a fluidized bed reactor. Int. J. Hydrogen Energy, 34:, 13011309.
    [Google Scholar]
  34. Abad, A., Mattisson, T., Lyngfelt, A., & Ryden, M. (2006). Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, 85:, 11741185.
    [Google Scholar]
  35. Fang, H., Yonggang, W., Haibin, L., & Hua, W. (2009). Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides. Energy Fuels, 23:, 20952102.
    [Google Scholar]
  36. Cho, P., Mattisson, T., & Lyngfelt, A. (2004). Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel, 83:, 12151225.
    [Google Scholar]
  37. Tian, H.J., & Guo, Q.J. (2009). Investigation into the behavior of reductive decomposition of calcium sulfate by carbon monoxide in chemical-looping combustion. Industrial & Engineering Chemistry Research, 48:, 56245632.
    [Google Scholar]
  38. Wang, B.W., Yan, R., Zheng, Y., Zhao, H., & Zheng, C.G. Simulation of sulfur distribution in chemical looping combustion (CLC) using CaSO 4 as oxygen carrier. Proceedings Of The 6th International Symposium On Coal Combustion, 2007;693–699.
  39. Jerndal, E., Mattisson, T., & Lyngfelt, A. (2006). Thermal analysis of chemical-looping combustion. Chemical Engineering Research & Design, 84:, 795806.
    [Google Scholar]
  40. Zheng, M., Shen, L., & Xiao, J. (2010 September). Reduction of CaSO 4 oxygen carrier with coal in chemical-looping combustion: effects of temperature and gasification intermediate. Int. J. Greenhouse Gas Control, 4:(5), 716728.
    [Google Scholar]
  41. Deng, Z., Xiao, R., Jin, B., & Song, Q. (2009). Numerical simulation of chemical looping combustion process with CaSO 4oxygen carrier. Int. J. Greenhouse Gas Control, 3:, 368375.
    [Google Scholar]
  42. Shen, L., Zheng, M., Xiao, J., & Xiao, R. (2008). A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion. Combust. Flame, 154:, 489506.
    [Google Scholar]
  43. Baosheng, J., Rui, X., Zhongyi, D., & Song, Q. (2009). Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier. Int. J. Chem. Reactor Eng, 7:, A19
    [Google Scholar]
  44. Song, Q.L., Xiao, R., Deng, Z., Shen, L., & Zhang, M.Y. (2009). Reactivity of a CaSO 4-oxygen carrier in chemical-looping combustion of methane in a fixed bed reactor. Korean J. Chem. Eng., 26:, 592602.
    [Google Scholar]
  45. Song, Q.L., Xiao, R., Deng, Z.Y., Zheng, W.G., Shen, L.H., & Xiao, J. (2008). Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO 4 oxygen carrier in a fluidized bed reactor. Energy Fuels, 22:, 36613672.
    [Google Scholar]
  46. Tian, H.J., Guo, Q.J., & Chang, J. (2008). Investigation into Decomposition Behavior of CaSO 4 in chemical-looping combustion. Energy Fuels, 22:, 39153921.
    [Google Scholar]
  47. Song, Q.L., Xiao, R., Deng, Z.Y., Zheng, W.G., Shen, L.H., & Xiao, J. (2008). Effect of temperature on reduction of CaSO 4 oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor. Ind. Eng. Chem. Res., 47:, 81488159.
    [Google Scholar]
  48. Song, Q.L., Xiao, R., Deng, Z.Y., Zheng, W.G., Shen, L.H., & Xiao, J. (2008). Chemical-looping combustion of methane with CaSO 4 oxygen carrier in a fixed bed reactor. Energy Convers. Manage, 49:, 31783187.
    [Google Scholar]
  49. Tian, H.J., & Guo, Q.J. (2011). Thermodynamic investigation into carbon deposition and sulfur evolution in a Ca-based chemical-looping combustion system. Chemical Engineering Research & Design, 89:, 15241532.
    [Google Scholar]
  50. Solunke, R.D., & Veser, G. (2009). Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas. Energy & Fuels, 23:, 47874796.
    [Google Scholar]
  51. Perry, R.H., & Green, D.W. (1997). Perry’s Chemical Engineers’ Handbook. 7th Edition, McGraw-Hill
    [Google Scholar]
  52. HSC Chemistry [software], Version 5.1. Pori; Outokumpu Research Oy, 2002.
  53. Kale, G.R., Kulkarni, B.D., & Joshi, A.R. (2010). Thermodynamic study of combining chemical looping combustion and combined reforming of propane. Fuel, 89:, 31413146.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2012.1
Loading
/content/journals/10.5339/connect.2012.1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error