1887
Volume 2011, Issue 1
  • ISSN: 2220-2730
  • EISSN:

Abstract

Abstract

Aortic valve stenosis is the most common form of acquired valvular disease, with a prevalence of 1% to 2% in people over the age of 65 years. Untreated, the presence of severe symptoms is associated with a life expectancy of less than 5 years. Relatively little is known about the role of the cells within the valve or the regulatory pathways that are involved in the onset and progression of the disease. The aim of this article is to review the role played by valve interstitial and endothelial cells and highlight the role of pathways and individual mediators that have been implicated in playing a role in the disease process. This includes mediators that regulate pro- and anti-calcification mechanisms. The clinical significance of calcium within the valve is discussed, as are the therapeutic opportunities that may allow for development of a medical therapy for aortic stenosis. Understanding the molecular and cellular mechanism of valve calcification will allow development of alternative therapies to surgical replacement of the valve and improve prognosis of patients with aortic stenosis.

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.4
2011-04-14
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/1/ahcsps.2011.4.html?itemId=/content/journals/10.5339/ahcsps.2011.4&mimeType=html&fmt=ahah

References

  1. Agmon Y, Khandheria BK, Meissner I, Sicks JR, O’Fallon WM, Wiebers DO, Whisnant JP, Seward JB and Tajik AJ. Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study. J Am Coll Cardiol. 2001; 38::827834.
    [Google Scholar]
  2. Lindroos M, Kupari M, Heikkila J and Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993; 21::12201225.
    [Google Scholar]
  3. Ross J Jr. and Braunwald E. Aortic stenosis. Circulation. 1968; 38::6167.
    [Google Scholar]
  4. Rosenhek R, Zilberszac R, Schemper M, Czerny M, Mundigler G, Graf S, Bergler-Klein J, Grimm M, Gabriel H and Maurer G. Natural history of very severe aortic stenosis. Circulation. 2010; 121::151156.
    [Google Scholar]
  5. Yacoub MH and Cohn LH. Novel approaches to cardiac valve repair: from structure to function: Part II. Circulation. 2004; 109::10641072.
    [Google Scholar]
  6. Yacoub MH and Cohn LH. Novel approaches to cardiac valve repair: from structure to function: Part I. Circulation. 2004; 109::942950.
    [Google Scholar]
  7. Yacoub MH and Takkenberg JJ. Will heart valve tissue engineering change the world?. Nat Clin Pract Cardiovasc Med. 2005; 2::6061.
    [Google Scholar]
  8. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW and Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997; 29::630634.
    [Google Scholar]
  9. Ix JH, Shlipak MG, Katz R, Budoff MJ, Shavelle DM, Probstfield JL, Takasu J, Detrano R and O’Brien KD. Kidney function and aortic valve and mitral annular calcification in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis. 2007; 50::412420.
    [Google Scholar]
  10. Katz R, Wong ND, Kronmal R, Takasu J, Shavelle DM, Probstfield JL, Bertoni AG, Budoff MJ and O’Brien KD. Features of the metabolic syndrome and diabetes mellitus as predictors of aortic valve calcification in the Multi-Ethnic Study of Atherosclerosis. Circulation. 2006; 113::21132119.
    [Google Scholar]
  11. Mohler ER III, Gannon F, Reynolds C, Zimmerman R, Keane MG and Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001; 103::15221528.
    [Google Scholar]
  12. Osman L, Yacoub MH, Latif N, Amrani M and Chester AH. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation. 2006; 114::I547I552.
    [Google Scholar]
  13. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M and Weissleder R. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007; 115::377386.
    [Google Scholar]
  14. Yoshioka M, Yuasa S, Matsumura K, Kimura K, Shiomi T, Kimura N, Shukunami C, Okada Y, Mukai M, Shin H, Yozu R, Sata M, Ogawa S, Hiraki Y and Fukuda K. Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis. Nat Med. 2006; 12::11511159.
    [Google Scholar]
  15. Muller AM, Cronen C, Kupferwasser LI, Oelert H, Muller KM and Kirkpatrick CJ. Expression of endothelial cell adhesion molecules on heart valves: up-regulation in degeneration as well as acute endocarditis. J Pathol. 2000; 191::5460.
    [Google Scholar]
  16. Toutouzas K, Drakopoulou M, Synetos A, Tsiamis E, Agrogiannis G, Kavantzas N, Patsouris E, Iliopoulos D, Theodoropoulos S, Yacoub M and Stefanadis C. In vivo aortic valve thermal heterogeneity in patients with nonrheumatic aortic valve stenosis the: first in vivo experience in humans. J Am Coll Cardiol. 2008; 52::758763.
    [Google Scholar]
  17. Otto CM, Kuusisto J, Reichenbach DD, Gown AM and O’Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994; 90::844853.
    [Google Scholar]
  18. Thubrikar MJ, Aouad J and Nolan SP. Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. Am J Cardiol. 1986; 58::304308.
    [Google Scholar]
  19. O’Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE and Otto CM. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995; 92::21632168.
    [Google Scholar]
  20. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO and Spelsberg T. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003; 107::21812184.
    [Google Scholar]
  21. O’Brien KD, Shavelle DM, Caulfield MT, McDonald TO, Olin-Lewis K, Otto CM and Probstfield JL. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation. 2002; 106::22242230.
    [Google Scholar]
  22. Della RF, Sartore S, Guidolin D, Bertiplaglia B, Gerosa G, Casarotto D and Pauletto P. Cell composition of the human pulmonary valve: a comparative study with the aortic valve–the VESALIO Project. Vitalitate Exornatum Succedaneum Aorticum labore Ingegnoso Obtinebitur. Ann Thorac Surg. 2000; 70::15941600.
    [Google Scholar]
  23. Lester W, Rosenthal A, Granton B and Gotlieb AI. Porcine mitral valve interstitial cells in culture. Lab Invest. 1988; 59::710719.
    [Google Scholar]
  24. Messier RH Jr., Bass BL, Aly HM, Jones JL, Domkowski PW, Wallace RB and Hopkins RA. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res. 1994; 57::121.
    [Google Scholar]
  25. Mulholland DL and Gotlieb AI. Cell biology of valvular interstitial cells. Can J Cardiol. 1996; 12::231236.
    [Google Scholar]
  26. Taylor PM, Allen SP and Yacoub MH. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis. 2000; 9::150158.
    [Google Scholar]
  27. Taylor PM, Allen SP, Dreger SA and Yacoub MH. Human cardiac valve interstitial cells in collagen sponge: a biological three-dimensional matrix for tissue engineering. J Heart Valve Dis. 2002; 11::298306.
    [Google Scholar]
  28. Taylor PM, Batten P, Brand NJ, Thomas PS and Yacoub MH. The cardiac valve interstitial cell. Int J Biochem Cell Biol. 2003; 35::113118.
    [Google Scholar]
  29. Sappino AP, Schurch W and Gabbiani G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest. 1990; 63::144161.
    [Google Scholar]
  30. Smith RS, Smith TJ, Blieden TM and Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 1997; 151::317322.
    [Google Scholar]
  31. Roy A, Brand NJ and Yacoub MH. Molecular characterization of interstitial cells isolated from human heart valves. J Heart Valve Dis. 2000; 9::459464.
    [Google Scholar]
  32. Brand NJ, Roy A, Hoare G, Chester A and Yacoub MH. Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. Int J Biochem Cell Biol. 2006; 38::3042.
    [Google Scholar]
  33. Rattazzi M, Iop L, Faggin E, Bertacco E, Zoppellaro G, Baesso I, Puato M, Torregrossa G, Fadini GP, Agostini C, Gerosa G, Sartore S and Pauletto P. Clones of interstitial cells from bovine aortic valve exhibit different calcifying potential when exposed to endotoxin and phosphate. Arterioscler Thromb Vasc Biol. 2008; 28::21652172.
    [Google Scholar]
  34. Chen JH, Yip CY, Sone ED and Simmons CA. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol. 2009; 174::11091119.
    [Google Scholar]
  35. Durbin AD and Gotlieb AI. Advances towards understanding heart valve response to injury. Cardiovasc Pathol. 2002; 11::6977.
    [Google Scholar]
  36. Zacks S, Rosenthal A, Granton B, Havenith M, Opas M and Gotlieb AI. Characterization of Cobblestone mitral valve interstitial cells. Arch Pathol Lab Med. 1991; 115::774779.
    [Google Scholar]
  37. Chester AH and Taylor PM. Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci. 2007; 362::14371443.
    [Google Scholar]
  38. Butcher JT, Penrod AM, Garcia AJ and Nerem RM. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol. 2004; 24::14291434.
    [Google Scholar]
  39. Simmons CA, Grant GR, Manduchi E and Davies PF. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 2005; 96::792799.
    [Google Scholar]
  40. Butcher JT, Simmons CA and Warnock JN . Mechanobiology of the aortic heart valve. J Heart Valve Dis. 2008; 17::6273.
    [Google Scholar]
  41. Poggianti E, Venneri L, Chubuchny V, Jambrik Z, Baroncini LA and Picano E. Aortic valve sclerosis is associated with systemic endothelial dysfunction. J Am Coll Cardiol. 2003; 41::136141.
    [Google Scholar]
  42. Vanhoutte PM, Shimokawa H, Tang EH and Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf). 2009; 196::193222.
    [Google Scholar]
  43. Yip CY, Chen JH, Zhao R and Simmons CA. Calcification by Valve Interstitial Cells Is Regulated by the Stiffness of the Extracellular Matrix. Arterioscler Thromb Vasc Biol. 2009;
    [Google Scholar]
  44. El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra P, Taylor PM, Yoganathan AP and Chester AH. Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. J Am Coll Cardiol. 2009; 53::14481455.
    [Google Scholar]
  45. Chester AH, Misfeld M and Yacoub MH. Receptor-mediated contraction of aortic valve leaflets. J Heart Valve Dis. 2000; 9::250254.
    [Google Scholar]
  46. Chester AH. Endothelin-1 and the aortic valve. Curr Vasc Pharmacol. 2005; 3::353357.
    [Google Scholar]
  47. Chester AH, Kershaw JD, Sarathchandra P and Yacoub MH. Localisation and function of nerves in the aortic root. J Mol Cell Cardiol. 2008; 44::10451052.
    [Google Scholar]
  48. Gu X and Masters KS. Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J Biomed Mater Res A. 2010; 93::16201630.
    [Google Scholar]
  49. Osman L, Chester AH, Amrani M, Yacoub MH and Smolenski RT. A novel role of extracellular nucleotides in valve calcification — A potential target for atorvastatin. Circulation. 2006; 114::I566I572.
    [Google Scholar]
  50. Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R and Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J. 2010; 31::19751984.
    [Google Scholar]
  51. Weiss RM, Ohashi M, Miller JD, Young SG and Heistad DD. Calcific aortic valve stenosis in old hypercholesterolemic mice. Circulation. 2006; 114::20652069.
    [Google Scholar]
  52. Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarikoc A, Kilic R, Brueckmann M, Lang S, Zahn I, Vahl C, Hagl S and Dempfle CE. Borggrefe M: Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol. 2004; 36::5766.
    [Google Scholar]
  53. Drolet MC, Arsenault M and Couet J. Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol. 2003; 41::12111217.
    [Google Scholar]
  54. Rajamannan NM, Subramaniam M, Caira F, Stock SR and Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the LRP5 receptor pathway. Circulation. 2005; 112::I229I234.
    [Google Scholar]
  55. Franceschi RT and Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003; 88::446454.
    [Google Scholar]
  56. Greenberg G and Boyde A. Novel method for stereo imaging in light microscopy at high magnifications. Neuroimage. 1993; 1::121128.
    [Google Scholar]
  57. Gordon KJ and Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008; 1782::197228.
    [Google Scholar]
  58. Jian B, Narula N, Li QY, Mohler ER III and Levy RJ. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg. 2003; 75::457465.
    [Google Scholar]
  59. Kennedy JA, Hua X, Mishra K, Murphy GA and Rosenkranz AC. Horowitz JD: Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors. Eur J Pharmacol. 2009; 602::2835.
    [Google Scholar]
  60. Clark-Greuel JN, Connolly JM, Sorichillo E, Narula NR, Rapoport HS, Mohler ER III, Gorman JH III, Gorman RC and Levy RJ. Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg. 2007; 83::946953.
    [Google Scholar]
  61. Walker GA, Masters KS, Shah DN, Anseth KS and Leinwand LA. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004; 95::253260.
    [Google Scholar]
  62. Balachandran K, Sucosky P, Jo H and Yoganathan AP. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol. 2010; 177::4957.
    [Google Scholar]
  63. Sucosky P, Balachandran K, Elhammali A, Jo H and Yoganathan AP. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol. 2009; 29::254260.
    [Google Scholar]
  64. Somers P, Knaapen M, Kockx M, van CP, Bortier H and Mistiaen W. Histological evaluation of autophagic cell death in calcified aortic valve stenosis. J Heart Valve Dis. 2006; 15::4347.
    [Google Scholar]
  65. Lee YS and Chou YY. Pathogenetic mechanism of senile calcific aortic stenosis: the role of apoptosis. Chin Med J (Engl). 1998; 111::934939.
    [Google Scholar]
  66. Khan R and Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology. 2006; 118::1024.
    [Google Scholar]
  67. Lu Q, Harrington EO, Jackson H, Morin N, Shannon C and Rounds S. Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. J Appl Physiol. 2006; 101::375384.
    [Google Scholar]
  68. Hoodless PA and Wrana JL. Mechanism and function of signaling by the TGF beta superfamily. Curr Top Microbiol Immunol. 1998; 228::235272.
    [Google Scholar]
  69. Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev. 1992; 32::160167.
    [Google Scholar]
  70. Xiao YT, Xiang LX and Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun. 2007; 362::550553.
    [Google Scholar]
  71. Somi S, Buffing AA, Moorman AF and Van Den Hoff MJ. Dynamic patterns of expression of BMP isoforms 2, 4, 5, 6, and 7 during chicken heart development. Anat Rec A Discov Mol Cell Evol Biol. 2004; 279::636651.
    [Google Scholar]
  72. Kaden JJ, Bickelhaupt S, Grobholz R, Vahl CF, Hagl S, Brueckmann M, Haase KK, Dempfle CE and Borggrefe M. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis. 2004; 13::560566.
    [Google Scholar]
  73. Komiya Y and Habas R. Wnt signal transduction pathways. Organogenesis. 2008; 4::6875.
    [Google Scholar]
  74. Armstrong EJ and Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004; 95::459470.
    [Google Scholar]
  75. Hruska KA, Mathew S and Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005; 97::105114.
    [Google Scholar]
  76. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP and Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005; 115::12101220.
    [Google Scholar]
  77. Towler DA. Oxidation, inflammation, and aortic valve calcification peroxide paves an osteogenic path. J Am Coll Cardiol. 2008; 52::851854.
    [Google Scholar]
  78. Latif N, Sarathchandra P, Thomas PS, Antoniw J, Batten P, Chester AH, Taylor PM and Yacoub MH. Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis. 2007; 16::5666.
    [Google Scholar]
  79. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005; 280::3313233140.
    [Google Scholar]
  80. Pandur P, Maurus D and Kuhl M. Increasingly complex: new players enter the Wnt signaling network. Bioessays. 2002; 24::881884.
    [Google Scholar]
  81. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der HD, Landewe R, Lacey D, Richards WG and Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007; 13::156163.
    [Google Scholar]
  82. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ and Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999; 13::24122424.
    [Google Scholar]
  83. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ and Penninger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999; 397::315323.
    [Google Scholar]
  84. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF and Siebenlist U. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 1997; 11::34823496.
    [Google Scholar]
  85. Nanes MS . Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene. 2003; 321::115.
    [Google Scholar]
  86. Riancho JA, Gonzalez-Marcias J, Amado JA, Olmos JM and Fernandez-Luna JL. Interleukin-4 as a bone regulatory factor: effects on murine osteoblast-like cells. J Endocrinol Invest. 1995; 18::174179.
    [Google Scholar]
  87. Yeh LC, Zavala MC and Lee JC. Osteogenic protein-1 and interleukin-6 with its soluble receptor synergistically stimulate rat osteoblastic cell differentiation. J Cell Physiol. 2002; 190::322331.
    [Google Scholar]
  88. Postiglione L, Domenico GD, Montagnani S, Spigna GD, Salzano S, Castaldo C, Ramaglia L, Sbordone L and Rossi G. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the osteoblastic differentiation of the human osteosarcoma cell line SaOS-2. Calcif Tissue Int. 2003; 72::8597.
    [Google Scholar]
  89. Deyama Y, Takeyama S, Suzuki K, Yoshimura Y, Nishikata M and Matsumoto A. Inactivation of NF-kappaB involved in osteoblast development through interleukin-6. Biochem Biophys Res Commun. 2001; 282::10801084.
    [Google Scholar]
  90. Wittrant Y, Lamoureux F, Mori K, Riet A, Kamijo A, Heymann D and Redini F. RANKL directly induces bone morphogenetic protein-2 expression in RANK-expressing POS-1 osteosarcoma cells. Int J Oncol. 2006; 28::261269.
    [Google Scholar]
  91. Forstermann U and Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol. 1995; 352::351364.
    [Google Scholar]
  92. Gimbrone MA Jr., Cybulsky MI, Kume N, Collins T and Resnick N. Vascular endothelium. An integrator of pathophysiological stimuli in atherogenesis. Ann N Y Acad Sci. 1995; 748::122131.
    [Google Scholar]
  93. Ngo DT, Heresztyn T, Mishra K, Marwick TH and Horowitz JD. Aortic stenosis is associated with elevated plasma levels of asymmetric dimethylarginine (ADMA). Nitric Oxide. 2007; 16::197201.
    [Google Scholar]
  94. Ngo DT, Stafford I, Kelly DJ, Sverdlov AL, Wuttke RD, Weedon H, Nightingale AK, Rosenkranz AC, Smith MD, Chirkov YY, Kennedy JA and Horowitz JD. Vitamin D(2) supplementation induces the development of aortic stenosis in rabbits: interactions with endothelial function and thioredoxin-interacting protein. Eur J Pharmacol. 2008; 590::290296.
    [Google Scholar]
  95. Chenevard R, Bechir M, Hurlimann D, Ruschitzka F, Turina J, Luscher TF and Noll G. Persistent endothelial dysfunction in calcified aortic stenosis beyond valve replacement surgery. Heart. 2006; 92::18621863.
    [Google Scholar]
  96. Matsumoto Y, Adams V, Jacob S, Mangner N, Schuler G and Linke A. Regular exercise training prevents aortic valve disease in low-density lipoprotein-receptor-deficient mice. Circulation. 2010; 121::759767.
    [Google Scholar]
  97. Kanno Y, Into T, Lowenstein CJ and Matsushita K. Nitric oxide regulates vascular calcification by interfering with TGF- signalling. Cardiovasc Res. 2008; 77::221230.
    [Google Scholar]
  98. Saura M, Zaragoza C, Herranz B, Griera M, ez-Marques L, Rodriguez-Puyol D and Rodriguez-Puyol M. Nitric oxide regulates transforming growth factor-beta signaling in endothelial cells. Circ Res. 2005; 97::11151123.
    [Google Scholar]
  99. Bozbas H, Pirat B, Yildirir A, Simsek V, Sade E, Eroglu S, Atar I, Altin C, Demirtas S, Ozin B and Muderrisoglu H. Coronary flow reserve is impaired in patients with aortic valve calcification. Atherosclerosis. 2008; 197::846852.
    [Google Scholar]
  100. Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J Jr., Pomerantzeff PM and Laurindo FR. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol. 2008; 28::463470.
    [Google Scholar]
  101. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Pena-Silva R and Heistad DD. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol. 2008; 52::843850.
    [Google Scholar]
  102. Heistad DD, Wakisaka Y, Miller J, Chu Y and Pena-Silva R. Novel aspects of oxidative stress in cardiovascular diseases. Circ J. 2009; 73::201207.
    [Google Scholar]
  103. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008; 5::338349.
    [Google Scholar]
  104. Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007; 87::245313.
    [Google Scholar]
  105. Selemidis S, Dusting GJ, Peshavariya H, Kemp-Harper BK and Drummond GR. . Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res. 2007; 75::349358.
    [Google Scholar]
  106. Peltonen T, Taskinen P, Napankangas J, Leskinen H, Ohtonen P, Soini Y, Juvonen T, Satta J, Vuolteenaho O and Ruskoaho H. Increase in tissue endothelin-1 and ET Areceptor levels in human aortic valve stenosis. Eur Heart J. 2009; 30::242249.
    [Google Scholar]
  107. Misfeld M, Morrison K, Sievers H, Yacoub MH and Chester AH. Localization of immunoreactive endothelin and characterization of its receptors in aortic cusps. J Heart Valve Dis. 2002; 11::472476.
    [Google Scholar]
  108. Gallagher JA and Buckley KA. Expression and function of P2 receptors in bone. J Musculoskelet Neuronal Interact. 2002; 2::432439.
    [Google Scholar]
  109. Romanello M, Codognotto A, Bicego M, Pines A, Tell G and D’Andrea P. Autocrine/paracrine stimulation of purinergic receptors in osteoblasts: contribution of vesicular ATP release. Biochem Biophys Res Commun. 2005; 331::14291438.
    [Google Scholar]
  110. Ohta A and Sitkovsky M . Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001; 414::916920.
    [Google Scholar]
  111. El-Hamamsy I and Yacoub MH. A measured approach to managing the aortic root in patients with bicuspid aortic valve disease. Curr Cardiol Rep. 2009; 11::94100.
    [Google Scholar]
  112. Garg V. Molecular genetics of aortic valve disease. Curr Opin Cardiol. 2006; 21::180184.
    [Google Scholar]
  113. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD and Srivastava D. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437::270274.
    [Google Scholar]
  114. Lee TC, Zhao YD, Courtman DW and Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000; 101::23452348.
    [Google Scholar]
  115. Sage AP, Tintut Y and Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010; 7::528536.
    [Google Scholar]
  116. Steadman CD, Ray S, Ng LL and McCann GP. Natriuretic peptides in common valvular heart disease. J Am Coll Cardiol. 2010; 55::20342048.
    [Google Scholar]
  117. Peltonen TO, Taskinen P, Soini Y, Rysa J, Ronkainen J, Ohtonen P, Satta J, Juvonen T, Ruskoaho H and Leskinen H. Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis. Circulation. 2007; 116::12831289.
    [Google Scholar]
  118. Droogmans S, Cosyns B, D’haenen H, Creeten E, Weytjens C, Franken PR, Scott B, Schoors D, Kemdem A, Close L, Vandenbossche JL, Bechet S and Van CG. Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. Am J Cardiol. 2007; 100::14421445.
    [Google Scholar]
  119. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB and Roth BL. 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol. 2003; 63::12231229.
    [Google Scholar]
  120. Droogmans S, Roosens B, Cosyns B, Degaillier C, Hernot S, Weytjens C, Garbar C, Caveliers V, Pipeleers-Marichal M, Franken PR, Lahoutte T, Schoors D and Van CG. Cyproheptadine prevents pergolide-induced valvulopathy in rats: an echocardiographic and histopathological study. Am J Physiol Heart Circ Physiol. 2009; 296::H1940H1948.
    [Google Scholar]
  121. Droogmans S, Franken PR, Garbar C, Weytjens C, Cosyns B, Lahoutte T, Caveliers V, Pipeleers-Marichal M, Bossuyt A, Schoors D and Van CG. In vivo model of drug-induced valvular heart disease in rats: pergolide-induced valvular heart disease demonstrated with echocardiography and correlation with pathology. Eur Heart J. 2007; 28::21562162.
    [Google Scholar]
  122. Droogmans S, Roosens B, Cosyns B, Degaillier C, Hernot S, Weytjens C, Garbar C, Caveliers V, Pipeleers-Marichal M, Franken PR, Bossuyt A, Schoors D, Lahoutte T and Van CG. Dose dependency and reversibility of serotonin-induced valvular heart disease in rats. Cardiovasc Toxicol. 2009; 9::134141.
    [Google Scholar]
  123. Rothman RB and Baumann MH. Serotonergic drugs and valvular heart disease. Expert Opin Drug Saf. 2009; 8::317329.
    [Google Scholar]
  124. Steffee CH, Singh HK and Chitwood WR. Histologic changes in three explanted native cardiac valves following use of fenfluramines. Cardiovasc Pathol. 1999; 8::245253.
    [Google Scholar]
  125. Melina G, Scott MJ, Cunanan CM, Rubens MB and Yacoub MH. In-vitro verification of the electron beam tomography method for measurement of heart valve calcification. J Heart Valve Dis. 2002; 11::402407.
    [Google Scholar]
  126. Feuchtner GM, Muller S, Grander W, Alber HF, Bartel T, Friedrich GJ, Reinthaler M, Pachinger O, zur ND and Dichtl W. Aortic valve calcification as quantified with multislice computed tomography predicts short-term clinical outcome in patients with asymptomatic aortic stenosis. J Heart Valve Dis. 2006; 15::494498.
    [Google Scholar]
  127. Messika-Zeitoun D, Aubry MC, Detaint D, Bielak LF, Peyser PA, Sheedy PF, Turner ST, Breen JF, Scott C, Tajik AJ and Enriquez-Sarano M. Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation. 2004; 110::356362.
    [Google Scholar]
  128. Cueff C, Serfaty JM, Cimadevilla C, Laissy JP, Himbert D, Tubach F, Duval X, Iung B, Enriquez-Sarano M, Vahanian A and Messika-Zeitoun D. Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction. Heart. 2010;
    [Google Scholar]
  129. Pai RG, Varadarajan P and Razzouk A. Survival benefit of aortic valve replacement in patients with severe aortic stenosis with low ejection fraction and low gradient with normal ejection fraction. Ann Thorac Surg. 2008; 86::17811789.
    [Google Scholar]
  130. Miller JD, Weiss RM, Serrano KM, Castaneda LE, Brooks RM, Zimmerman K and Heistad DD. Evidence for Active Regulation of Pro-Osteogenic Signaling in Advanced Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 2010;
    [Google Scholar]
  131. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO and Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002; 105::26602665.
    [Google Scholar]
  132. Shavelle DM, Takasu J, Budoff MJ, Mao S, Zhao XQ and O’Brien KD. HMG CoA reductase inhibitor (statin) and aortic valve calcium. Lancet. 2002; 359::11251126.
    [Google Scholar]
  133. Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB and Boon NA. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005; 352::23892397.
    [Google Scholar]
  134. Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerdts E, Gohlke-Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber CA, Ray S, Skjaerpe T, Wachtell K and Willenheimer R. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008; 359::13431356.
    [Google Scholar]
  135. O’Brien KD, Probstfield JL, Caulfield MT, Nasir K, Takasu J, Shavelle DM, Wu AH, Zhao XQ and Budoff MJ. Angiotensin-converting enzyme inhibitors and change in aortic valve calcium. Arch Intern Med. 2005; 165::858862.
    [Google Scholar]
  136. Elmariah S and Mohler ER III. The Pathogenesis and treatment of the valvulopathy of aortic stenosis: Beyond the SEAS. Curr Cardiol Rep. 2010; 12::125132.
    [Google Scholar]
  137. Adami S, Braga V, Guidi G, Gatti D, Gerardi D and Fracassi E. Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol. J Bone Miner Res. 2000; 15::599604.
    [Google Scholar]
  138. Suda T, Udagawa N, Nakamura I, Miyaura C and Takahashi N. Modulation of osteoclast differentiation by local factors. Bone. 1995; 17::87S-91S87S-91S.
    [Google Scholar]
  139. Osman L, Chester AH, Sarathchandra P, Latif N, Meng WF, Taylor PM and Yacoub MH. A novel role of the sympatho-adrenergic system in regulating valve calcification. Circulation. 2007; 116::I282I287.
    [Google Scholar]
  140. Marron K, Yacoub MH, Polak JM, Sheppard MN, Fagan D, Whitehead BF, de Leval MR, Anderson RH and Wharton J. Innervation of human atrioventricular and arterial valves. Circulation. 1996; 94::368375.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ahcsps.2011.4
Loading
/content/journals/10.5339/ahcsps.2011.4
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): aortic valve stenosis and calcification
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error