1887
Volume 2020 Number 1
  • EISSN: 2223-506X

Abstract

In this study, we characterized 30 date palm trees of Khalas cultivar from the GCC countries, along with seven male trees from Qatar, using 14 microsatellite loci. The results showed that the microsatellites [(GA)n] in the date palm cultivar Khalas varied considerably in allele size (range = 120–322 bp, mean = 189.78), which revealed a high degree of gene diversity (range = 0.66–0.85, mean = 0.75) and distinguished all the individual Khalas trees within and among the GCC countries. The extent of polymorphism microsatellite loci was dependent on individual loci itself, which was positively correlated with the number of repeats at the corresponding microsatellite loci. The estimates of the skewness and kurtosis of the allelic distributions showed that none of the distribution of 14 microsatellite loci was considered normal (skewness = 0, kurtosis = 3), which suggested that the shape of the allelic distribution of these loci varied by chance. In the majority of the cases, the microsatellite allele size of the most frequent allele (mode) was very close to the median ( ± 2 bp or ± (GA)1), which indicated that the most frequent allele was the ancestral allele. Nearly half of the allelic distributions of the 14 microsatellite loci were positively skewed and the other half was negatively skewed, which indicated that the alleles evolved respectively by gaining and losing of (GA)n repeats from the ancestral allele, resulting in intra-cultivar variability in Khalas cultivar over the generations. Based on this analysis, we conclude that the Khalas variety did not evolve independently at multiple origins, but rather it evolved from a single origin and, subsequently, the clones were distributed across the GCC countries. The accumulated mutations of these clones over time resulted in drastic changes among them at the microsatellite loci.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2020.3
2020-05-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/connect/2020/1/connect.2020.3.html?itemId=/content/journals/10.5339/connect.2020.3&mimeType=html&fmt=ahah

References

  1. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al.  De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology. 2011; 29: 521527. https://doi.org/10.1038/nbt.1860.
    [Google Scholar]
  2. Jubrael JMS, Udupa SM, Baum M. Assessment of AFLP-based genetic relationships among date palm (Phoenix dactylifera L.) varieties of Iraq. Journal of the American Society for Horticultural Science. 2005; 130:3: 442447.
    [Google Scholar]
  3. Jaradat AA. Biodiversity of date palm. In: Encyclopedia of life support systems: Land use, land cover and soil sciences. Oxford, UK: Eolss Publishers; 2011. pp. 1-31.
  4. Al-Khayri JM, Jain SM, Johnson DV. Date palm genetic resources and utilization. Vol. 1. Africa and the Americas. Berlin: Springer; 2015. 546 p.
  5. Khierallah HSM. Applications of molecular markers in date palm genome analysis and breeding. In: Taški-Ajduković K, editor. Applications of molecular markers in plant genome analysis and breeding. Kerala, India: Research Signpost; 2015. pp. 47-90.
  6. Hamza H, Ben Abderrahim MA, Elbekkay M, Ferdaous G, Triki T, Ferchichi A. Investigation of genetic variation in Tunisian date palm (Phoenix dactylifera L.) cultivars using ISSR maker systems and their relation with fruit characteristics. Turkish Journal of Biology. 2012; 36:: 449458.
    [Google Scholar]
  7. Elshibli S. Genetic diversity and adaptation of date palm (Phoenix dactylifera). Academic Dissertation, University of Helsinki, Finland, September; 2009. Retrieved from: https://www.doria.fi/bitstream/handle/10024/50632/geneticd.
  8. Yusuf AO, Culham A, Aljuhani W, Ataga CD, Hamza AM, Odewale JO, et al.. Genetic diversity of Nigerian date palm (Phoenix dactylifera) germplasm based on microsatellite markers. International Journal of Bio-Science and Bio-Technology. 2015; 7:(1): 121132.
    [Google Scholar]
  9. Ahmed TA, Al-Qaradawi AY. Molecular phylogeny of Qatari date palm genotypes using simple sequence repeats markers. Biotechnology. 2009; 8:1: 126131.
    [Google Scholar]
  10. Chao CT, Devanand PS. Not all ‘Medjool’ date plants grown in California are the same. Plant Genetic Resources Department of Botany and Plant Sciences, UC Riverside, USA; 2012.
  11. Akkak A, Scariot V, Torello Marinoni D, Boccacci P, Beltramo C, Botta R. Development and evaluation of microsatellite markers in Phoenix dactylifera L. and their transferability to other Phoenix species. Biologia Plantarum.  2009; 53:1: 164166.
    [Google Scholar]
  12. Arabnezhad H, Bahar M, Mohammadi HR, Latifian M. Development, characterization and use of microsatellite markers for germplasm analysis in date palm (Phoenix dactylifera L.). Scientia Horticulturae. 2012; 134:: 150156.
    [Google Scholar]
  13. Jan HU, Rabbani MA, Shinwari ZK. Estimation of genetic variability in turmeric (Curcuma longa L.) germplasm using agro-morphological traits. Pakistan Journal of Botany. 2012; 44:SI1: 231238.
    [Google Scholar]
  14. Khanam S, Sham A, Bennetzen JL, Aly MAM. Analysis of molecular marker-based characterization and genetic variation in date palm (Phoenix dactylifera L.). Australian Journal of Crop Science. 2012; 6(8): 12361244.
  15. Zehdi S, Sakka H, Rhouma A, Salem AOM, Marrakchi M, Trifi M. Analysis of Tunisian date palm germplasm using simple sequence repeat primers. African Journal of Biotechnology. 2004; 3:4: 215219.
    [Google Scholar]
  16. Elshibli S, Korpelainen H. Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan. Genetica. 2008; 134:: 251260.
    [Google Scholar]
  17. Al-Ruqaishi IA, Davey M, Alderson P, Mayes S. Genetic relationships and genotype tracing in date palms (Phoenix dactylifera L.) in Oman, based on microsatellite markers. Plant Genetic Resources. 2008; 6:1: 7072.
    [Google Scholar]
  18. Bodian A, El Houmaizi MA, Ndoye Ndir K, Hasnaoui A, Nachtigall M, Wehling P. Genetic diversity analysis of date palm (Phoenix dactylifera L.) cultivars from Figuig oasis (Morocco) using SSR markers. International Journal of Science and Advanced Technology. 2012; 2:: 96104.
    [Google Scholar]
  19. Elmeer K, Mattat I. Genetic diversity of Qatari date palm using SSR markers. Genetics and Molecular Research. 2015; 14:1: 16241635.
    [Google Scholar]
  20. Al-Faifi SA, Migdadi HM, Algamdi SS, Khan MA, Ammar MH, Al-Obeed RS. et al. Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L.) cultivars. Electronic Journal of Biotechnology. 2016; 21:: 1825.
    [Google Scholar]
  21. Asif MI, Al-Ghamdi AS, Al-Tahir OA, Latif RAA. Studies on the date palm cultivars of Al-Hassa Oasis. In: Proceedings of the second symposium on date palm in Saudi Arabia. Al-Hassa, Saudi Arabia: King Faisal University; 1986. pp. 405413.
  22. Billotte N, Marseillac N, Brottier P, Noyer J, Jacquemoud-Collet J, Moreau C, et al.. Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): Characterization and utility across the genus Phoenix and in other palm genera. Molecular Ecology Notes. 2004; 4:2: 256258.
    [Google Scholar]
  23. Liu K, Muse SV. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics. 2005; 21:9: 21282129.
    [Google Scholar]
  24. Hammer Ø, Harper DAT, Ryan PD. PAST - PAlaeontological STatistics, ver. 1.89. Palaeontologia Electronica. 2001; 4:: 19.
    [Google Scholar]
  25. Peakall R, Smouse PE. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes. 2006; 6:1: 288295.
    [Google Scholar]
  26. Elmeer K, Sarwath H, Malek J, Baum M, Hamwieh A. New microsatellite markers for assessment of genetic diversity in date palm (Phoenix dactylifera L.). 3 Biotech. 2011; 1:: 9197.
    [Google Scholar]
  27. Khierallah HSM, Bader SM, Baum M, Hamwieh A. Genetic diversity of Iraqi date palms revealed by microsatellite polymorphism. Journal of the American Society for Horticultural Science. 2011; 136:4: 282287.
    [Google Scholar]
  28. Racchi ML, Bove A, Turchi A, Bashir G, Battaglia M, Camussi A. Genetic characterization of Libyan date palm resources by microsatellite markers. 3 Biotech. 2014; 4:1: 2132.
    [Google Scholar]
  29. Udupa SM, Baum M. High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Molecular Genetics and Genomics. 2001; 265:: 10971103.
    [Google Scholar]
  30. Marriage TN, Hudman S, Mort ME, Orive ME, Shaw RG, Kelly JK. Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity. 2009; 103:4: 310317.
    [Google Scholar]
  31. Levinson G, Gutman GA. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution. 1987; 4:3: 203221.
    [Google Scholar]
  32. Klekowski EJ Jr, Godfrey PJ. Ageing and mutation in plants. Nature. 1989; 340:: 389391.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2020.3
Loading
/content/journals/10.5339/connect.2020.3
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): intra-cultivar variationKhalas cultivarmicrosatellites and mutation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error