1887
Volume 6 (2025) Number 2
  • EISSN: 2708-0463

Abstract

نُفذتْ الدراسة في مخبر التقانات الحيوية النباتية، التابع للهيئة العامة للتقانة الحيوية، وفي مزارع أبي جرش، كلية الزراعة، جامعة دمشق خلال المدة من عام 2022 حتى عام 2024، بهدف تقييم تأثير الإجهاد الملحي في بعض الصفات المورفولوجية، والبيوكيميائية، لثلاثة أصناف: بطاطا (سفاري، سفنجا، تاروس)، وست سلالات ناتجة من كالس هذه الأصناف ومكاثرة خضرياً بالأنسجة (سفنجا S3، سفنجا S6 ، سفاري SF3، تاروس T1، تاروس T2، تاروس T5)، وتحديد مدى تحملها لهذه الظروف. بعد تقسية الأصناف والسلالات، زُرعت في الحقل، ثم عوملت النباتات بتراكيز مختلفة من ملح كلوريد الصوديوم (0،50،100،150 ميلي مول)، وبمعدل مرة كل ثلاثة أيام، وذلك لمدة شهر. وأظهرت النتائج تباين الأصناف والسلالات المدروسة في استجابتها للإجهاد الملحي، حيث سبّبت الملوحة انخفاضاً في جميع مؤشرات النمو بالمقارنة مع الشاهد. ولُوحظ تَفَوُّق سفنجا على الصنفين سفاري وتاروس في معظم مؤشرات النمو الخضري والجذري. وكان متوسط طول النباتات الأعلى معنوياً لدى الصنف سفاري (55.1 سم)، والسلالة سفنجا S3 (92.27 سم)، ومتوسط المساحة الورقية، فقد كان الصنف سفنجا (21477.66 مم2) وسلالته S6 الأعلى معنوياً (66.26 مم2)، أما عن عدد الجذور، فقد وجدنا تفوق الصنف سفاري (2.11 جذر. نبات-1) والسلالة تاروس T1 (19.24 جذر. نبات-1). كما سبّبت زيادة مستوى الإجهاد الملحي تراجعاً معنوياً في بعض الصفات البيوكيميائية (محتوى الأوراق من اليخضور والكاروتينات)، وازدياداً في بعضها الآخر (البرولين) بالمقارنة مع الشاهد، حيث كان متوسط محتوى الأوراق من البرولين الأعلى معنوياً لدى الصنف سفنجا (1.39 مغ. غ-1) والسلالة تاروس T5 (0.48 مغ. غ-1).

This study was conducted in the plant biotechnology laboratory of the National Commission for Biotechnology, and in Abu Jerash farms, Faculty of Agriculture, University of Damascus during the period from 2022 to 2024. The aim was evaluating the effect of salt stress on Some morphological and biochemical traits of three potato varieties (Safari, Svenga, Tarus) and six potato clones issued from callus culture by micropropagation (Svenga S3, Svenga S6, Safari SF3, Taros T1, Taros T2, Taros T5), also to determine the extent of their tolerance to these conditions. After the acclimatization of these varieties and clones, they were planted in the field. Then the plants were treated with different concentrations of sodium chloride salt (0, 50, 100, 150 mM) at a rate of once every three days for a month. The results showed that the studied varieties and clones were varied in in their response to salt stress, as salinity caused a decrease in all growth indicators compared to the control. It was observed that Svenga was superior to the two Safari and Tarus varieties in most vegetative and root growth indicators. The main plant height was significantly higher for variety Safari (55.1 cm) and clones Svenja S3 (92.27 cm). As for the leaf area, variety Svenga (21477.66 mm2) and its strain S6 was significantly higher (66.26 mm 2). As for the number of roots, we find that variety Safari (2.11 root. Plant -1) and strain Tarus T1 (19.24 root. Plant -1). the increasing level of salt stress caused a significant decline in some biochemical characteristics (leaf chlorophyll content, and carotenoids) and an increase in others (proline) compared with control. The mean leaf content of proline was significantly higher in the variety Svenga (1.39 mg. g-1) and strain Tarus T5 (0.48 mg. g-1).

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2025.12
2025-10-30
2025-12-07

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2025/2/AJSR.2025.issue2.12.html?itemId=/content/journals/10.5339/ajsr.2025.12&mimeType=html&fmt=ahah

References

  1. Gebrechristos HY, Chen W. Utilization of potato peel as eco-friendly productse A review. Food Science and Nutrition. 2018; 6:(6): 1352–1356. https://doi.org/10.1002/fsn3.691
    [Google Scholar]
  2. Basera M, Chandra A, Kumar VA, Kumar A. Effect of brassinosteroids on in vitro proliferation and vegetative growth of potato. Pharma Innovation journal. 2018; 7:(4): 4–9.
    [Google Scholar]
  3. Watanabe K. Potato genetics, genomics, and applications. Breeding Science. 2015; 65:(1): 53–68. https://doi.org/10.1270/jsbbs.65.53
    [Google Scholar]
  4. Du Y, Hu Y, San L, Tian J. Research on Potato Appearance Quality Detection Based on Computer Vision. In 2019 5th International Conference on Control, Automation and Robotics (ICCAR). 2019; 286–289. 10.1109/ICCAR.2019.8813453
    [Google Scholar]
  5. Katerji N, Van Hoorn JW, Handy A, Mastrorilli M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management. 2000; 43: 99–109. https://doi.org/10.1016/S0378-3774(99)00048-7
    [Google Scholar]
  6. Park YB, Noh JS. Effect of soil organic matter content and nutrition elements on yield of potato. Korean Journal of Soil Science and Fertilizer. 2011; 44: 303–305. https://doi.org/10.7745/KJSSF.2011.44.2.303
    [Google Scholar]
  7. Bilski JJ, Nelson DC, Conlon RL. The response of four potato cultivars to chloride salinity, sulfate salinity and calcium in pot experiments. American Potato Journal. 1988; 65:85-90.
    [Google Scholar]
  8. Altaf MA, Behera B, Mangal V, Singhal RK, Kumat R, More S, Naz S, Mandal S, Dey A, Saqib M, et al.. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. Functional Plant Biology. 2022; 51: https://doi.org/10.1071/FP221581
    [Google Scholar]
  9. Ren C, Kong C, Liu Z, Zhong Z, Yang J, Wang X, Qin S. A perspective on developing a plant 'holobiont' for future saline agriculture. Frontiers in Microbiology. 2022;13. https://doi.org/10.3389/fmicb.2022.763014
    [Google Scholar]
  10. Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD. Feonomics of salt-induced land degradation and restoration. Natural Resources Forum. 2014; 38:(4):282–95. https://doi.org/10.1111/1477-8947.12054
    [Google Scholar]
  11. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 2015; 22:(2):123–3. https://doi.org/10.1016/j.sjbs.2014.12.001
    [Google Scholar]
  12. Samy MM. Effect of irrigation with saline water on the growth and production of some potato cultivars. Scientia. 2015; 5:(4):1151–63.
    [Google Scholar]
  13. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962; 15:(3):473–97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
    [Google Scholar]
  14. Lichtenthaler H K, Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. In: Current protocols in food analytical chemistry. 2001; 1:(1), F4-3. https://doi.org/10.1002/0471142913.faf0403s01
    [Google Scholar]
  15. Bates L S, Walgreen RP, Teare ID. Rapid determination of free proline for water stress studies. Plant and soil. 1973; 39:(1):205–207. https://doi.org/10.1007/BF00018060
    [Google Scholar]
  16. Khalil A, Jari A, Ibrahim M. Acclimatization of plants of three varieties of potato, Solanum tuberosum L. vulgaris, ex vivo in vitro under conditions of salt stress. Basra Research Journal. 2016; 42:(1):372–386.
    [Google Scholar]
  17. Girma T. Effect of variety and earthing up frequency on growth, yield and quality of potato (Solanum tuberosum L.) at Bure, northwestern Ethiopia [master's thesis]. Jimma (ET): Jimma University College of Agriculture and Veterinary Medicine; 2012. p. 24–45.
    [Google Scholar]
  18. Asefa G, Mohammed W, Abebe T. Genetic variability studies in potato (Solanum tuberosum L.) genotypes in Bale highlands, southeastern Ethiopia. Journal of Biology, Agriculture and Healthcare. 2016; 6:(3):117–119.
    [Google Scholar]
  19. Cisse A, Arshad A, Wang X, Yattara F, Hu Y. Contrasting impacts of long-term application of biofertilizers and organic manure on grain yield of winter wheat in north China plain. Agronomy. 2019; 9:(6):312. https://doi.org/10.3390/agronomy9060312
    [Google Scholar]
  20. Lu S, Chen C, Wang Z, Guo Z, Li H. Physiological responses of somaclonal variants of triploid bermudagrass (Cynodon transvaalensis × Cynodon dactylon) to drought stress. Plant Cell Reports. 2009;28:517–526. https://doi.org/10.1007/s00299-008-0649-z
    [Google Scholar]
  21. Rahman SL, Mackay AW, Quebedeaux B, Nawata E, Sakuratani T, Mesbahuddin ASM. Superoxide dismutase activity, leaf water potential, relative water content, growth and yield of a drought-tolerant and a drought-sensitive tomato (Lycopersicon esculentum Mill.) cultivars. Subtropical Plant Science. 2002;54:16–22.
    [Google Scholar]
  22. Rzepka-Plevnes D, Kulpa D, Smolik M, Glowka M. Somaclonal variation in tomato L. pennelli and L. peruvianum f. glandulosum characterized in respect to salt tolerance. Journal of Food, Agriculture and Environment. 2007; 5:(2):194–201. http://www.isfae.org/scientificjournal.php
    [Google Scholar]
  23. Amini F, Ehsanpour AA. Response of tomato (Lycopersicon esculentum Mill.) cultivars to MS, water agar and salt stress in in vitro culture. Pakistan Journal of Biological Sciences. 2006; 9:(1):170–175. http://www.ansinet.org/pjbs
    [Google Scholar]
  24. Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, et al.. Does proline accumulation play an active role in stress‐induced growth reduction? The Plant Journal. 2002; 31:(6):699–712. https://doi.org/10.1046/j.1365-313X.2002.01389.x
    [Google Scholar]
  25. Hwang EW, Shin SJ, Yu BK, Byun MO, Kwon HB. miR171 family members are involved in drought response in Solanum tuberosum. Journal of Plant Biology. 2011; 54:(1):43–48. https://doi.org/10.1007/s12374-010-9141-8
    [Google Scholar]
  26. Scarano A, Olivieri F, Gerardi C, Liso M, Chiesa M, Chieppa M, et al.. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. Journal of the Science of Food and Agriculture. 2020; 100:(6):2791–2799. https://doi.org/10.1002/jsfa.10312
    [Google Scholar]
  27. Wang Z, Hong Y, Li Y, Shi H, Yao J, Liu X, Wang F, Huang S, Zhu G, Zhu JK. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication. Plant biotechnology Journal. 2021 19:(1): 20–22. https://doi.org/10.1111/pbi.13443
    [Google Scholar]
  28. Najla S. Effect of adding potassium chloride to the media of five accessions of tissue-grown potatoes. Hama University Journal. 2022; 3:(5):29–44.
    [Google Scholar]
  29. Ranalli P, Di Candilo M, Ruaro G, Marino A. Drought effects on chlorophyll fluorescence and canopy temperature. In: 14th Triennial Conference of the European Association for Potato Research, May 1996, Sorrento, Italy. 1996; p.605–606.
    [Google Scholar]
  30. Ahmed N. Effect of Grafting Two Hybrids on Two Rootstocks of Tomato cultivated in Green House Under Salinity Stress. Thesis. Faculty of Agriculture. Damascus University, page 124,2022.
  31. أحمد، نجوى. تأثير تطعيم هجينين على أصلين من البندورة المزروعة في البيوت المحمية تحت ظروف الإجهاد الملحي. رسالة ماجستير. كلية الزراعة. جامعة دمشق. 2022 ص 124
/content/journals/10.5339/ajsr.2025.12
Loading
/content/journals/10.5339/ajsr.2025.12
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error