Carbon Capture and Storage Workshop, Texas A&M University in Qatar

Abstract

Abstract

In this contribution, we present an overview of the contribution made by the shipping sector to global CO  emissions. We review the currently proposed technology options for mitigating these emissions, and propose a new option for the control of greenhouse gas emissions from shipping.

Loading

Article metrics loading...

/content/journals/10.5339/stsp.2012.ccs.19
2012-12-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/stsp/2012/2/stsp.2012.ccs.19.html?itemId=/content/journals/10.5339/stsp.2012.ccs.19&mimeType=html&fmt=ahah

References

  1. Buhaug Ø.  et al.Second IMO GHG Study. International Maritine Organisation (IM), London. 2009.
    [Google Scholar]
  2. Harrould-Kolieb E.  Shipping impacts on climate: a source with solutions. Oceana. 2008.
    [Google Scholar]
  3. Harrould-Kolieb E. and Savitz J.  Shipping solutions: Technological and operational methods available to reduce CO 2 . Oceana. 2010.
    [Google Scholar]
  4. DECC. http://www.theccc.org.uk/carbon-budgets/path-to-2050. [Online] [Cited: 15 March 2012].
  5. Kollamthodi S.  Greenhouse gas emissions from shipping: trends, projections and abatement potential. AEA Energy and Environment. 2008.
    [Google Scholar]
  6. Mac Dowell N., Florin N., Buchard A., Hallett J.P., Galindo A., Jackson G., Adjiman C.S., Williams C.K., Shah N. and Fennell P.S. An overview of CO 2  capture technologies. Energy and Environmental Science, 2010; 3:16451669.
    [Google Scholar]
  7. Green Erin H., Winebreak James J. and Corbett J.J. Opportunities for Reducing Greenhouse Gas Emissions from Ships. Clean Air Task Force, Boston. 2008.
    [Google Scholar]
  8. Faltinsen O.M.  et al. Prediction of resistance and propulsion of a ship in a seaway. Proceedings of the 13th Symposium on Naval Hydrodynamics. 2005; Tokyo, Japan. 505529.
    [Google Scholar]
  9. Matsumoto K.  et al. BEAK-BOW to reduce the wave added resistance at sea. Proceedings of the 7th Int. Symp. on Practical Design of Ships and Mobile Units. 1998. The Hague, The Netherlands.
    [Google Scholar]
  10. Green M.A.  Third generation photovoltaics: Solar cells for 2020 and beyond. Physica E. 2002; 14::6570.
    [Google Scholar]
  11. Opdal O.A. and Fjell Hojem J.  Biofuels in ships: A project report and feasibility study into the use of biofuels. ZERO report. 2007.
    [Google Scholar]
  12. Ollus R. and Juoperi K.  Alternative fuels experiences for medium-speed diesel engines. Proceedings of the 25th CIMAC World Congress on Combustion Engine Technology. 2007. Vienna, Austria.
    [Google Scholar]
  13. Matsuzaki S.  The application of the waste oil as a bio-fuel in a high-speed diesel engine. Proceedings of the 24th CIMAC World Congress on Combustion Engine Technology. 2004. Kyoto, Japan.
    [Google Scholar]
  14. Well-to-wheels analysis of future automotive fuels and powertrains in the Eurpoean Context. 2009.
  15. Hook R.J.  An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind. Eng. Chem. Res. 1997; 36::17791790.
    [Google Scholar]
  16. Mac Dowell N., Llovell F., Adjiman C.S., Jackson G. and Galindo A.  Modelling the fluid phase behaviour of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind. Eng. Chem. Res. 2010; 49::4, 18831899.
    [Google Scholar]
  17. Ravner H. and Blachly C.H. Studies on Monoethanolamine (MEA). The present status of chemical research in atmospherepurification and control on nuclear-powered submarines. Naval Research Laboratory, Washington, DC. 1962.
    [Google Scholar]
  18. Gustafson P.R., Miller R.R. and Piatt V.R. eds., CO 2  Absorption Properties of Some New Amines. The Present Status of Chemical Research in Atmosphere Purification and Control on Nuclear-Powered Submarines. 1968.
    [Google Scholar]
  19. Resnik K.P., Yeh J.T. and Pennline H.W.  Aqua ammonia process for simultaneous remocal of CO 2 , SO 2  and NO x . Int. J. Environ. Tech. Manag. 2004; 4::1/2, 89104.
    [Google Scholar]
  20. Yeh A.C. and Bai H.  Comparison of ammonia and monoethanolamine solvents to reduce CO 2  greenhouse gas emissions. The Science of the Total Environment. 1999; 228::121133.
    [Google Scholar]
  21. Mac Dowell N.  et al. Transferable SAFT-VR Models for the Calculation of the Fluid Phase Equilibria in Reactive Mixtures of Carbon Dioxide, Water, and n-Alkylamines in the Context of Carbon Capture. J. Phys. Chem. B. 2011; 115::81558168.
    [Google Scholar]
  22. Llovell F.  et al. Modelling the absorption of weak electrilytes and acid gases with ionic liquids using the soft-SAFT approach. J. Phys. Chem. B. 2012. (submitted)
    [Google Scholar]
  23. Shiflett M.B.  et al. Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate. Energy Fuels. 24::57815789.
    [Google Scholar]
  24. Kember M.R.  et al. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew. Chem. Int. Ed. 48::5, 931933.
    [Google Scholar]
  25. Ozaki M. and Ohsumi T. CCS from multiple sources to offshore storage site complex via ship transport, 2011;4, 2992–2999.
  26. Ship Transport of CO 2 . IEA Greenhouse Gas R&D Programme, 2004. Report No.PH4/30.
http://instance.metastore.ingenta.com/content/journals/10.5339/stsp.2012.ccs.19
Loading
/content/journals/10.5339/stsp.2012.ccs.19
Loading

Data & Media loading...

Keyword(s): CO 2 transportCO 2 captureammoniaco-polymerisationionic liquids and shipping

Most Cited Most Cited RSS feed