Volume 2017, Issue 1

Abstract

Helicopter emergency medical services (HEMS) and ground EMS (GEMS) are both integral parts of out-of-hospital transport systems for patients with ST-elevation myocardial infarction (STEMI) undergoing emergency transport for primary percutaneous coronary intervention (PPCI). There are firm data linking time savings for PPCI transports with improved outcome. A previous pilot analysis generated preliminary estimates for potential HEMS-associated time savings for PPCI transports. This non-interventional multicenter study conducted over the period 2012–2014 at six centers in the USA and in the State of Qatar assessed a consecutive series of HEMS transports for PPCI; at one center consecutive GEMS transports of at least 15 miles were also assessed if they came from sites that also used HEMS (dual-mode referring hospitals). The study assessed time from ground or air EMS dispatch to transport a patient to a cardiac center, through to the time of patient arrival at the receiving cardiac unit, to determine proportions of patients arriving within accepted 90- and 120-minute time windows for PPCI. Actual times were compared to “route-mapping” GEMS times generated using geographical information software. HEMS' potential time savings were calculated using program-specific aircraft characteristics, and the potential time savings for HEMS was translated into estimated mortality benefit. The study included 257 HEMS and 27 GEMS cases. HEMS cases had a high rate of overall transport time (from dispatch to receiving cardiac unit arrival) that fell within the predefined windows of 90 minutes (67.7% of HEMS cases) and 120 minutes (91.1% of HEMS cases). As compared to the calculated GEMS times, HEMS was estimated to accrue a median time saving of 32 minutes (interquartile range, 17–46). The number needed to transport for HEMS to get one additional case to PPCI within 90 minutes was 3. In the varied contexts of this multicenter study, the number of lives saved by HEMS, solely through time savings, was calculated as 1.34 per 100 HEMS PPCI transports. In this multicenter study, HEMS PPCI transport was found to be appropriate as defined by meeting predefined time windows. The overall estimate for lives saved through time savings alone was consistent with previous pilot data and was also generally consistent with favorable cost-effectiveness. Further research is necessary to confirm these findings, but judicious HEMS deployment for PPCI transports is justified by these data.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2017.8
2017-09-19
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2017/1/jemtac.2017.8.html?itemId=/content/journals/10.5339/jemtac.2017.8&mimeType=html&fmt=ahah

References

  1. Varon J, Fromm R, Marik P. Hearts in the air. Chest. 2003; 124::16361637.
    [Google Scholar]
  2. Selmer R, Halvorsen S, Myhre KI, Wisloff TF, Kristiansen IS. Cost-effectiveness of primary percutaneous coronary intervention versus thrombolytic therapy for acute myocardial infarction. Scand Cardiovasc J. 2005; 39::276285.
    [Google Scholar]
  3. Straumann E, Yoon S, Naegeli B. Hospital transfer for primary coronary angioplasty in high risk patients with acute myocardial infarction. Heart. 1999; 82::415419.
    [Google Scholar]
  4. Grines C, Westerhausen D, Grines L. A randomized trial of transfer for primary angioplasty versus on-site thrombolysis in patients with high-risk myocardial infarction (Air PAMI trial). J Am Coll CarD. 2002; 39::17131719.
    [Google Scholar]
  5. McMullan JT, Hinckley W, Bentley J, Davis T, Fermann GJ, Gunderman M, Hart KW, Knight WA, Lindsell CJ, Miller C, Shackleford A, Gibler WB. Ground emergency medical services requests for helicopter transfer of ST-segment elevation myocardial infarction patients decrease medical contact to balloon times in rural and suburban settings. Acad Emerg Med. 2012; 19::153160.
    [Google Scholar]
  6. Palmer C, McMullan J, Knight W, Gunderman M, Hinckley W. Helicopter scene response for a STEMI patient transported directly to the cardiac catheterization laboratory. Air Med J. 2011; 30::289292.
    [Google Scholar]
  7. Blankenship JC, Haldis TA, Wood GC, Skelding KA, Scott T, Menapace FJ. Rapid triage and transport of patients with ST-elevation myocardial infarction for percutaneous coronary intervention in a rural health system. Am J Cardiol. 2007; 100::944948.
    [Google Scholar]
  8. Phillips M, Arthur AO, Chandwaney R, Hatfield J, Brown B, Pogue K, Thomas M, Lawrence M, McCarroll M, McDavid M, Thomas SH. Helicopter transport effectiveness of patients for primary percutaneous coronary intervention. Air Med J. 2013; 32::144152.
    [Google Scholar]
  9. Nallamothu BK, Bradley EH, Krumholz HM. Time to treatment in primary percutaneous coronary intervention. New Eng J Med. 2007; 357::16311638.
    [Google Scholar]
  10. Huang RL, Thomassee EJ, Park JY, Scott C, Maron DJ, Fredi JL. Clinical pathway: Helicopter scene STEMI protocol to facilitate long-distance transfer for primary PCI. Crit Pathw Cardiol. 2012; 11::193198.
    [Google Scholar]
  11. Knudsen L, Stengaard C, Hansen TM, Lassen JF, Terkelsen CJ. Earlier reperfusion in patients with ST-elevation myocardial infarction by use of helicopter. Scand J Trauma Resusc Emerg Med. 2012; 20::70.
    [Google Scholar]
  12. Dickson R, Nedelcut A, Seupaul R, Hamzeh M. STOP STEMI(c)-a novel medical application to improve the coordination of STEMI care: A brief report on door-to-balloon times after initiating the application. Crit Pathw Cardiol. 2014; 13::8588.
    [Google Scholar]
  13. Dorsch MF, Greenwood JP, Priestley C, Somers K, Hague C, Blaxill JM, Wheatcroft SB, Mackintosh AF, McLenachan JM, Blackman DJ. Direct ambulance admission to the cardiac catheterization laboratory significantly reduces door-to-balloon times in primary percutaneous coronary intervention. Am Heart J. 2008; 155::10541058.
    [Google Scholar]
  14. Pinto DS, Kirtane AJ, Nallamothu BK, Murphy SA, Cohen DJ, Laham RJ, Cutlip DE, Bates ER, Frederick PD, Miller DP, Carrozza JP Jr, Antman EM, Cannon CP, Gibson CM. Hospital delays in reperfusion for ST-elevation myocardial infarction: Implications when selecting a reperfusion strategy. Circulation. 2006; 114::20192025.
    [Google Scholar]
  15. Soulek JJ, Arthur AO, Williams E, Schieche C, Banister N, Thomas SH. Geographic information software programs' accuracy for interfacility air transport distances and time. Air Med J. 2014; 33::165171.
    [Google Scholar]
  16. Meyer MT, Gourlay DM, Weitze KC, Ship MD, Drayna PC, Werner C, Lerner EB. Helicopter interfacility transport of pediatric trauma patients: Are we overusing a costly resource? J Trauma Acute Care Surg. 2016; 80::313317.
    [Google Scholar]
  17. Soulek JJ, Arthur A, Wang A, Reimer AP, Simmons M, Brunko M, Thomas SH. HEMS transport time savings for ST-elevated myocardial infarctions (abstract). Circulation. 2014; 130::A13837.
    [Google Scholar]
  18. Cone DC, Landman AB. New tools for estimating the EMS transport interval: Implications for policy and patient care. Acad Emerg Med. 2014; 21:1:7678.
    [Google Scholar]
  19. Widener MJ, Ginsberg Z, Schleith D, Floccare DJ, Hirshon JM, Galvagno S. Ground and helicopter emergency medical services time tradeoffs assessed with geographic information. Aerosp Med Hum Perform. 2015; 86::620627.
    [Google Scholar]
  20. Walcott BP, Coumans JV, Mian MK, Nahed BV, Kahle KT. Interfacility helicopter ambulance transport of neurosurgical patients: Observations, utilization, and outcomes from a quaternary care hospital. PLoS One. 2011; 6::e26216.
    [Google Scholar]
  21. Rathore SS, Curtis JP, Chen J, Wang Y, Nallamothu BK, Epstein AJ, Krumholz HM. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. BMJ. 2009; 338::b1807.
    [Google Scholar]
  22. Rathore SS, Curtis JP, Nallamothu BK, Wang Y, Foody JM, Kosiborod M, Masoudi FA, Havranek EP, Krumholz HM. Association of door-to-balloon time and mortality in patients > or = 65 years with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol. 2009; 104::11981203.
    [Google Scholar]
  23. Dauerman HL, Bates ER, Kontos MC, Li S, Garvey JL, Henry TD, Manoukian SV, Roe MT. Nationwide analysis of patients with ST-segment-elevation myocardial infarction transferred for primary percutaneous intervention: Findings from the American heart association mission: Lifeline program. Circ Cardiovasc Interv. 2015; 8::pii: e002450.
    [Google Scholar]
  24. Stowens JC, Sonnad SS, Rosenbaum RA. Using EMS dispatch to trigger STEMI alerts decreases door-to-balloon times. West J Emerg Med. 2015; 16::472480.
    [Google Scholar]
  25. Adeoye O, Albright KC, Carr BG, Wolff C, Mullen MT, Abruzzo T, Ringer A, Khatri P, Branas C, Kleindorfer D. Geographic access to acute stroke care in the United States. Stroke. 2014; 45::30193024.
    [Google Scholar]
  26. Arthur A, Wold R, Wanahita A, Irfan FB, Pathan S, Akhtar N, Bhutta Z, Schuaib A, Thomas SH. Use of geographical information software to demonstrate clinically important time savings magnitude for air transport of ischemic stroke patients. Cerebrovasc Dis. 2016; 41::35.
    [Google Scholar]
  27. Doumouras AG, Gomez D, Haas B, Boyes DM, Nathens AB. Comparing methodologies for evaluating emergency medical services ground transport access to time-critical emergency services: A case study using trauma center care. Acad Emerg Med. 2012; 19::E1099E1108.
    [Google Scholar]
  28. Garner AA, Mann KP, Fearnside M, Poynter E, Gebski V. The Head Injury Retrieval Trial (HIRT): A single-centre randomised controlled trial of physician prehospital management of severe blunt head injury compared with management by paramedics only. EMJ. 2015; 32:11:869875.
    [Google Scholar]
  29. Brown JB, Gestring ML, Stassen NA, Forsythe RM, Billiar TR, Peitzman AB, Sperry JL. Geographic variation in outcome benefits of helicopter transport for trauma in the United States: A retrospective cohort study. Ann Surg. 2016; 263::406412.
    [Google Scholar]
  30. van der Pols H, Mencl F, de Vos R. The impact of an emergency motorcycle response vehicle on prehospital care in an urban area. Eur J Emerg Med. 2011; 18::328333.
    [Google Scholar]
  31. Svenson J, O'Connor J, Lindsay M. Is air transport faster? A comparison of air versus ground transport times for interfacility transfers in a regional referral system. Air Med J. 2006; 24::170172.
    [Google Scholar]
  32. Brown L, Arthur A, Keeling C, Yuhas C, Thomas SH. Establishing benchmarks for helicopter EMS patient stabilization times in interfacility transport for primary percutaneous coronary intervention. Int J Clin Med. 2012; 3::765768.
    [Google Scholar]
  33. Shatney C, Homan J, Sherck J, Ho C-C. The utility of helicopter transport of trauma patients from the injury scene in an urban trauma system. J Trauma. 2002; 53::817822.
    [Google Scholar]
  34. Thomas SH, Arthur AO. Helicopter EMS: Research endpoints and potential benefits. Emerg Med Int. 2012; 2012::698562.
    [Google Scholar]
  35. Thomas SH, Schwamm LH, Lev MH. Case records of the Massachusetts General Hospital. Case 16-2006. A 72-year-old woman admitted to the emergency department because of a sudden change in mental status. N Engl J Med. 2006; 354::22632271.
    [Google Scholar]
  36. Delgado MK, Staudenmayer KL, Wang NE, Spain DA, Weir S, Owens DK, Goldhaber-Fiebert JD. Cost-effectiveness of helicopter versus ground emergency medical services for trauma scene transport in the United States. Ann Emerg Med. 2013; 62::351364, e19.
    [Google Scholar]
  37. Nichol G, Huszti E, Birnbaum A, Mahoney B, Weisfeldt M, Travers A, Christenson J, Kuntz K, PAD Investigators . Cost-effectiveness of lay responder defibrillation for out-of-hospital cardiac arrest. Ann Emerg Med. 2009; 54::226235, e1-2.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jemtac.2017.8
Loading
/content/journals/10.5339/jemtac.2017.8
Loading

Data & Media loading...

Keyword(s): Air medical transporthelicopter EMSlogistics and STEMI

Most Cited Most Cited RSS feed