1887
Volume 2015, Issue 3
  • ISSN: 2305-7823
  • EISSN:

Abstract

One of the most intriguing aspects of cell biology is the state of pluripotency, where the cell is capable of self-renewal for as many times as deemed “necessary”, then at a specified time can differentiate into any type of cell. This fundamental process is required during organogenesis in foetal life and importantly during tissue repair in health and disease. Pluripotency is very tightly regulated, as any dysregulation can result in congenital defects, inability to repair damage, or cancer. Fuelled by the relatively recent interest in stem cell biology and tissue regeneration, the molecules implicated in regulating pluripotency have been the subject of extensive research. One of the important molecules involved in pluripotency, is NaNog, the subject of this article.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.36
2015-10-15
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/3/gcsp.2015.36.html?itemId=/content/journals/10.5339/gcsp.2015.36&mimeType=html&fmt=ahah

References

  1. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003; 113:5:643655 , doi:10.1016/S0092-8674(03)00392-1 .
    [Google Scholar]
  2. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003; 113:5:631642, doi:10.1016/S0092-8674(03)00393-3 .
    [Google Scholar]
  3. Cavaleri F, Schöler HR. Nanog: A new recruit to the embryonic stem cell orchestra. Cell. 2003; 113:5:551552, doi:10.1016/S0092-8674(03)00394-5 .
    [Google Scholar]
  4. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998; 95:3:379391, doi:10.1016/S0092-8674(00)81769-9 .
    [Google Scholar]
  5. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003; 17:1:126140, doi:10.1101/gad.224503 .
    [Google Scholar]
  6. Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 2002; 16:20:26502661, doi:10.1101/gad.1020502 .
    [Google Scholar]
  7. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988; 336:6200:684687, doi:10.1038/336684a0 .
    [Google Scholar]
  8. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998; 12:13:20482060, doi:10.1101/gad.12.13.2048 .
    [Google Scholar]
  9. Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 1999; 18:15:42614269, doi:10.1093/emboj/18.15.4261 .
    [Google Scholar]
  10. Kim Y, Nirenberg M. Drosophila NK-homeobox genes. Proc Natl Acad Sci U S A. 1989; 86:20:77167720, doi:10.1073/pnas.86.20.7716 .
    [Google Scholar]
  11. Nettersheim D, Biermann K, Gillis AJM, Steger K, Looijenga LHJ, Schorle H. NANOG promoter methylation and expression correlation during normal and malignant human germ cell development. Epigenetics. 2011; 6:1:114122, doi:10.4161/epi.6.1.13433 .
    [Google Scholar]
  12. Rodda DJ, Chew JL, Lim LH, Wang B, Ng HH, Robson P. Transcriptional regulation of Nanog by OCT4 and SOX2. J Biol Chem. 2005; 280:26:2473124737, doi:10.1074/jbc.M502573200 .
    [Google Scholar]
  13. Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol. 2005; 25:6:24752485, doi:10.1128/MCB.25.6.2475-2485.2005 .
    [Google Scholar]
  14. Booth HAF, Holland PWH. Eleven daughters of NANOG. Genomics. 2004; 84:2:229238, doi:10.1016/j.ygeno.2004.02.014 .
    [Google Scholar]
  15. McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell. 1984; 37:2:403408, doi:10.1016/0092-8674(84)90370-2 .
    [Google Scholar]
  16. Scott MP, Weiner AJ. Structural relationships among genes that control development: sequence homology between the Antennapedia. Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci U S A. 1984; 81:13:41154119, doi:10.1073/pnas.81.13.4115 .
    [Google Scholar]
  17. Pan GJ, Pei DQ. Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog. Cell Res. 2003; 13:6:499502, doi:10.1038/sj.cr.7290193 .
    [Google Scholar]
  18. Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn. 2004; 230:1:187198, doi:10.1002/dvdy.20034 .
    [Google Scholar]
  19. Pan GJ, Chang ZY, Schöler HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res. 2002; 12:5-6:321329, doi:10.1038/sj.cr.7290134 .
    [Google Scholar]
  20. Pan G, Pei D. The stem cell pluripotency factor NANOG activates transcription with two unusually potent subdomains at its C terminus. J Biol Chem. 2005; 280:2:14011407, doi:10.1074/jbc.M407847200 .
    [Google Scholar]
  21. Mullin NP, Yates A, Rowe AJ, Nijmeijer B, Colby D, Barlow PN, Walkinshaw MD, Chambers I. The pluripotency rheostat Nanog functions as a dimer. Biochem J. 2008; 411:2:227231, doi:10.1042/BJ20080134 .
    [Google Scholar]
  22. Wang J, Levasseur DN, Orkin SH. Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A. 2008; 105:17:63266331, doi:10.1073/pnas.0802288105 .
    [Google Scholar]
  23. Ramakrishna S, Suresh B, Lim K-H, Kim KS, Baek KH. PEST Motif Sequence Regulating Human NANOG for Proteasomal Degradation. Stem Cells Dev. 2011; 20:9:15111519, doi:10.1089/scd.2010.0410 .
    [Google Scholar]
  24. Rossant J, Tam PPL. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development. 2009; 136:5:701713, doi:10.1242/dev.017178 .
    [Google Scholar]
  25. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A. Nanog Is the Gateway to the Pluripotent Ground State. Cell. 2009; 138:4:722737, doi:10.1016/j.cell.2009.07.039 .
    [Google Scholar]
  26. Theunissen TW, Silva JCR. Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Trans R Soc Lond B Biol Sci. 2011; 366:1575:22222229, doi:10.1098/rstb.2011.0003 .
    [Google Scholar]
  27. Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W. Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH, The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006; 38:4:431440, doi:10.1038/ng1760 .
    [Google Scholar]
  28. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000; 24:4:372376, doi:10.1038/74199 .
    [Google Scholar]
  29. Chazaud C, Rossant J. Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development. 2006; 133:17:33793387, doi:10.1242/dev.02523 .
    [Google Scholar]
  30. Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006; 34:5, doi:10.1093/nar/gkl050.
    [Google Scholar]
  31. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis A-K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development. 2008; 135:18:30813091, doi:10.1242/dev.021519 .
    [Google Scholar]
  32. Gartler SMX-Chromosome, Inactivation. eLS. 2001;:16.
    [Google Scholar]
  33. Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: Epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet. 2011; 130:2:265280, doi:10.1007/s00439-011-1024-7 .
    [Google Scholar]
  34. Minkovsky A, Patel S, Plath K. Concise review: Pluripotency and the transcriptional inactivation of the female mammalian X chromosome. Stem Cells. 2012; 30:1:4854, doi:10.1002/stem.755 .
    [Google Scholar]
  35. Stefan Barakat T, Gribnau J. X chromosome inactivation and embryonic stem cells. Adv Exp Med Biol. 2010; 695::132154, doi:10.1007/978-1-4419-7037-4_10.
    [Google Scholar]
  36. Rastan S, Robertson EJ. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol. 1985; 90::379388.
    [Google Scholar]
  37. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006; 126:4:663676, doi:10.1016/j.cell.2006.07.024 .
    [Google Scholar]
  38. Messerschmidt DM, Kemler R. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev Biol. 2010; 344:1:129137, doi:10.1016/j.ydbio.2010.04.020 .
    [Google Scholar]
  39. Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005; 5:5:639646, doi:10.1016/j.modgep.2005.03.001 .
    [Google Scholar]
  40. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448:7151:313317, doi:10.1038/nature05934 .
    [Google Scholar]
  41. Wernig M, Meissner A, Foreman R, Brambrink T, Ku3 M, Hochedlinger K, Bernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007; 448:7151:318324, doi:10.1038/nature05944 .
    [Google Scholar]
  42. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen1 TW, Orkin SH. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006; 444:7117:364368, doi:10.1038/nature05284 .
    [Google Scholar]
  43. Orkin SH, Wang J, Kim J, Rao CS. The transcriptional network controlling pluripotency in ES cells. In Cold Spring Harbor Symposia on Quantitative Biology. Vol 73. 2008;:195202, doi:10.1101/sqb.2008.72.001 .
    [Google Scholar]
  44. Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K. Role of the Murine Reprogramming Factors in the Induction of Pluripotency. Cell. 2009; 136:2:364377, doi:10.1016/j.cell.2009.01.001 .
    [Google Scholar]
  45. Schwarz B a , Bar-Nur O, Silva JCR, Hochedlinger K. Nanog is dispensable for the generation of induced pluripotent stem cells. Curr Biol. 2014; 24:3:347350, doi:10.1016/j.cub.2013.12.050 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.36
Loading
/content/journals/10.5339/gcsp.2015.36
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error