1887
Volume 2015, Issue 1
  • ISSN: 2305-7823
  • E-ISSN:

Abstract

The heart is subject to multiple sources of stress. To maintain its normal function, and successfully overcome these stresses, heart muscle is equipped with fine-tuned regulatory mechanisms. Some of these mechanisms are inherent within the myocardium itself and are known as intrinsic mechanisms. Over a century ago, Otto Frank and Ernest Starling described an intrinsic mechanism by which the heart, even , regulates its function on a beat-to-beat basis. According to this phenomenon, the higher the ventricular filling is, the bigger the stroke volume. Thus, the Frank-Starling law establishes a direct relationship between the diastolic and systolic function of the heart. To observe this biophysical phenomenon and to investigate it, technologic development has been a pre-requisite to scientific knowledge. It allowed for example to observe, at the cellular level, a Frank-Starling like mechanism and has been termed: Length Dependent Activation (LDA).

In this review, we summarize some experimental systems that have been developed and are currently still in use to investigate cardiac biophysical properties from the whole heart down to the single myofibril. As a scientific support, investigation of the Frank-Starling mechanism will be used as a case study.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2015.10
2015-04-10
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2015/1/gcsp.2015.10.html?itemId=/content/journals/10.5339/gcsp.2015.10&mimeType=html&fmt=ahah

References

  1. Zimmer H-G. The Isolated Perfused Heart and Its Pioneers. News Physiol Sci. 1998; 13::203210.
    [Google Scholar]
  2. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914; 48:5:357379.
    [Google Scholar]
  3. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank's paper “Die Grundform des Arteriellen Pulses”. Zeitschrift fur Biologie. 1990; 22:3:253254.
    [Google Scholar]
  4. Huke S, Knollmann BC. Familial hypertrophic cardiomyopathy: is the Frank-Starling law kaput? Circ Res. 2013; 112:11:14091411.
    [Google Scholar]
  5. Brady AJ. Mechanical properties of isolated cardiac myocytes. Physiol Rev. 1991; 71:2:413428.
    [Google Scholar]
  6. Shiels HA, White E. The Frank-Starling mechanism in vertebrate cardiac myocytes. The Journal of experimental biology. 2008; 211:Pt 13:20052013.
    [Google Scholar]
  7. Roberts WC, Cohen LS. Left ventricular papillary muscles. Description of the normal and a survey of conditions causing them to be abnorma. Circulation. 1972; 46:1:138154.
    [Google Scholar]
  8. ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res. 1980; 46:5:703714.
    [Google Scholar]
  9. Krueger JW, Pollack GH. Myocardial sarcomere dynamics during isometric contraction. J Physiol. 1975; 251:3:627643.
    [Google Scholar]
  10. Allen DG, Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1982; 327::7994.
    [Google Scholar]
  11. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol. 1985; 17:9:821840.
    [Google Scholar]
  12. Kurihara S, Allen DG. Intracellular Ca++ transients and relaxation in mammalian cardiac muscle. Japanese circulation journal. 1982; 46:1:3943.
    [Google Scholar]
  13. Konhilas JP, Irving TC, de Tombe PP. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Arch. 2002; 445:3:305310.
    [Google Scholar]
  14. McDonald KS, Moss RL. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res. 1995; 77:1:199205.
    [Google Scholar]
  15. Irving TC, Konhilas J, Perry D, Fischetti R, de Tombe PP. Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium. Am J Physiol Heart Circ Physiol. 2000; 279:5:H2568H2573.
    [Google Scholar]
  16. de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol. 2010; 48:5:851858.
    [Google Scholar]
  17. Smith L, Tainter C, Regnier M, Martyn DA. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle. Biophys J. 2009; 96:9:36923702.
    [Google Scholar]
  18. Fitzsimons DP, Moss RL. Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. Circ Res. 1998; 83:6:602607.
    [Google Scholar]
  19. Witayavanitkul N, Ait Mou Y, Kuster DWD, Khairallah RJ, Sarkey J, Govindan S, Chen X, Ge Y, Rajan S, Wieczorek DF, Irving T, Westfall MV, de Tombe PP, Sadayappan S. Myocardial infarction-induced N-terminal fragment of cMyBP-C impairs myofilament function in Human myocardium. J Biol Chem. 2014; 289:13:88188827. PMID: 24509847.
    [Google Scholar]
  20. de Tombe PP, Stienen GJ. Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. Circ Res. 1995; 76:5:734741.
    [Google Scholar]
  21. Guth K, Wojciechowski R. Perfusion cuvette for the simultaneous measurement of mechanical, optical and energetic parameters of skinned muscle fibres. Pflugers Arch. 1986; 407:5:552557.
    [Google Scholar]
  22. Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J. 1995; 68:3:10271044.
    [Google Scholar]
  23. Garnier D. Attachment procedures for mechanical manipulation of isolated cardiac myocytes: a challenge. Cardiovasc Res. 1994; 28:12:17581764.
    [Google Scholar]
  24. Takahashi K, Naruse K. Stretch-activated BK channel and heart function. Progress in biophysics and molecular biology. 2012; 110:2–3:239244.
    [Google Scholar]
  25. Le Guennec JY, Peineau N, Argibay JA, Mongo KG, Garnier D. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. J Mol Cell Cardiol. 1990; 22:10:10831093.
    [Google Scholar]
  26. White E, Le Guennec JY, Nigretto JM, Gannier F, Argibay JA, Garnier D. The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol. 1993; 78:1:6578.
    [Google Scholar]
  27. Cazorla O, Pascarel C, Garnier D, Le Guennec JY. Resting tension participates in the modulation of active tension in isolated guinea pig ventricular myocytes. J Mol Cell Cardiol. 1997; 29:6:16291637.
    [Google Scholar]
  28. King NMP, Methawasin M, Nedrud J, Harrell N, Chung CS, Helmes M, Granzier H. Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells. J Gen Physiol. 2011; 137:1:8191.
    [Google Scholar]
  29. Sugiura S, Nishimura S, Yasuda S, Hosoya Y, Katoh K. Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes. Nat Protoc. 2006; 1:3:14531457.
    [Google Scholar]
  30. Iribe G, Kohl P. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models. Progress in biophysics and molecular biology. 2008; 97:2–3:298311.
    [Google Scholar]
  31. Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RA, Garny A, Morphew MK, Hoenger A, Lederer WJ, Kohl P. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res. 2009; 104:6:787795.
    [Google Scholar]
  32. Prosser BL, Ward CW, Lederer WJ. X-ROS signaling: rapid mechano-chemo transduction in heart. Science. 2011; 333:6048:14401445.
    [Google Scholar]
  33. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002; 415:6868:198205.
    [Google Scholar]
  34. Fabiato A, Fabiato F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol. 1975; 249:3:469495.
    [Google Scholar]
  35. Allen DG, Kentish JC. Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol. 1988; 407::489503.
    [Google Scholar]
  36. Ait Mou Y, le Guennec J-Y, Mosca E, de Tombe PP, Cazorla O. Differential contribution of cardiac sarcomeric proteins in the myofibrillar force response to stretch. Pflugers Arch. 2008; 457:1:2536.
    [Google Scholar]
  37. Puceat M, Clement O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G. Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res. 1990; 67:2:517524.
    [Google Scholar]
  38. Cazorla O, Szilagyi S, Le Guennec J-Y, Vassort G, Lacampagne A. Transmural stretch-dependent regulation of contractile properties in rat heart and its alteration after myocardial infarction. FASEB J. 2005; 19:1:8890.
    [Google Scholar]
  39. Tan JH, Liu W, Saint DA. Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. Exp Physiol. 2004; 89:3:237242.
    [Google Scholar]
  40. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. The American journal of physiology. 1995; 269:2 Pt 2:H571H582.
    [Google Scholar]
  41. Ait Mou Y, Reboul C, Andre L, Lacampagne A, Cazorla O. Late exercise training improves non-uniformity of transmural myocardial function in rats with ischaemic heart failure. Cardiovasc Res. 2009; 81:3:555564.
    [Google Scholar]
  42. Ait Mou Y, Toth A, Cassan Cec, Czuriga D, de Tombe PP, Papp Z, Lacampagne A, Cazorla O. Beneficial effects of SR33805 in failing myocardium. Cardiovasc Res. 2011; 91:3:412419.
    [Google Scholar]
  43. Su JB, Cazorla O, Blot Sep, Blanchard-Gutton N, Ait Mou Y, Barth\'e lemIes, Sambin L, Sampedrano CC, Gouni V, Unterfinger Y, Aguilar P, Thibaud J-L, Biz\'e A, Pouchelon J-L, Dabir\'e H, Ghaleh B, Berdeaux A, Chetboul Ver, Lacampagne A, Hittinger L. Bradykinin restores left ventricular function, sarcomeric protein phosphorylation, and e/nNOS levels in dogs with Duchenne muscular dystrophy cardiomyopathy. Cardiovasc Res. 2012; 95:1:8696.
    [Google Scholar]
  44. LeGrice IJ, Takayama Y, Holmes JW, Covell JW. Impaired subendocardial function in tachycardia-induced cardiac failure. The American journal of physiology. 1995; 268:5 Pt 2:H1788H1794.
    [Google Scholar]
  45. Betts TR, Gamble JHP, Khiani R, Bashir Y, Rajappan K. Development of a technique for left ventricular endocardial pacing via puncture of the interventricular septum. Circ Arrhythm Electrophysiol. 2014; 7:1:1722.
    [Google Scholar]
  46. Colomo F, Piroddi N, Poggesi C, te Kronnie G, Tesi C. Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog. J Physiol. 1997; 500:Pt 2:535548.
    [Google Scholar]
  47. Mateja RD, de Tombe PP. Myofilament length-dependent activation develops within 5 ms in guinea-pig myocardium. Biophys J. 2012; 103:1:L13L15.
    [Google Scholar]
  48. Cecchi G, Colomo F, Poggesi C, Tesi C. A force transducer and a length-ramp generator for mechanical investigations of frog-heart myocytes. Pflugers Arch. 1993; 423:1–2:113120.
    [Google Scholar]
  49. Colomo F, Nencini S, Piroddi N, Poggesi C, Tesi C. Calcium dependence of the apparent rate of force generation in single striated muscle myofibrils activated by rapid solution changes. Adv Exp Med Biol. 1998; 453::373381, discussion 381–372.
    [Google Scholar]
  50. Belus A, Piroddi N, Ferrantini C, Tesi C, Cazorla O, Toniolo L, Drost M, Mearini G, Carrier L, Rossi A, Mugelli A, Cerbai E, van der Velden J, Poggesi C. Effects of chronic atrial fibrillation on active and passive force generation in human atrial myofibrils. Circ Res. 2010; 107:1:144152.
    [Google Scholar]
  51. Belus A, Piroddi N, Scellini B, Tesi C, D'Amati G, Girolami F, Yacoub M, Cecchi F, Olivotto I, Poggesi C. The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol. 2008; 586:Pt 15:36393644.
    [Google Scholar]
  52. Piroddi N, Belus A, Scellini B, Tesi C, Giunti G, Cerbai E, Mugelli A, Poggesi C. Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Arch. 2007; 454:1:6373.
    [Google Scholar]
  53. Endoh M. Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J. 2008; 72:12:19151925.
    [Google Scholar]
  54. de Tombe PP, Solaro RJ. Integration of cardiac myofilament activity and regulation with pathways signaling hypertrophy and failure. Ann Biomed Eng. 2000; 28:8:9911001.
    [Google Scholar]
  55. Hamdani N, Kooij V, van Dijk S, Merkus D, Paulus WJ, Remedios CD, Duncker DJ, Stienen GJM, van der Velden J. Sarcomeric dysfunction in heart failure. Cardiovasc Res. 2008; 77:4:649658.
    [Google Scholar]
  56. Morimoto S. Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res. 2008; 77:4:659666.
    [Google Scholar]
  57. Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev. 2005; 10:3:237248.
    [Google Scholar]
  58. Hernandez OM, Housmans PR, Potter JD. Invited Review: pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation. Journal of applied physiology. 2001; 90:3:11251136.
    [Google Scholar]
  59. Cleland JGF, Nikitin N, McGowan J. Levosimendan: first in a new class of inodilator for acute and chronic severe heart failure. Expert Rev Cardiovasc Ther. 2004; 2:1:919.
    [Google Scholar]
  60. Sata M, Sugiura S, Yamashita H, Aoyagi T, Momomura S, Serizawa T. Pimobendan directly sensitizes reconstituted thin filament to slide on cardiac myosin. Eur J Pharmacol. 1995; 290:1:5559.
    [Google Scholar]
  61. Soergel DG, Georgakopoulos D, Stull LB, Kass DA, Murphy AM. Augmented systolic response to the calcium sensitizer EMD-57033 in a transgenic model with troponin I truncation. Am J Physiol Heart Circ Physiol. 2004; 286:5:H1785H1792.
    [Google Scholar]
  62. Sata M, Sugiura S, Yamashita H, Fujita H, Momomura S, Serizawa T. MCI-154 increases Ca2+ sensitivity of reconstituted thin filament. A study using a novel in vitro motility assay technique. Circ Res. 1995; 76:4:626633.
    [Google Scholar]
  63. Cazorla O, Lacampagne A, Fauconnier J, Vassort G. SR33805, a Ca2+ antagonist with length-dependent Ca2+-sensitizing properties in cardiac myocytes. Br J Pharmacol. 2003; 139:1:99108.
    [Google Scholar]
  64. Cazorla O, Le Guennec JY, White E. Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. J Mol Cell Cardiol. 2000; 32:5:735744.
    [Google Scholar]
  65. Jewell BR. A reexamination of the influence of muscle length on myocardial performance. Circ Res. 1977; 40:3:221230.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2015.10
Loading
/content/journals/10.5339/gcsp.2015.10
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error