1887
Volume 2013, Issue 1
  • ISSN: 2305-7823
  • EISSN:

Abstract

Atherosclerotic vascular disease (AVD), a leading cause of morbidity and mortality, is increasing in prevalence in the developing world. We describe an approach to establish a biorepository linked to medical records with the eventual goal of facilitating discovery of biomarkers for AVD. The Vascular Disease Biorepository at Mayo Clinic was established to archive DNA, plasma, and serum from patients with suspected AVD. AVD phenotypes, relevant risk factors and comorbid conditions were ascertained by electronic medical record (EMR)-based electronic algorithms that included diagnosis and procedure codes, laboratory data and text searches to ascertain medication use. Up to December 2012, 8800 patients referred for vascular ultrasound examination and non-invasive lower extremity arterial evaluation were approached, of whom 5268 consented. The mean age of the initial 2182 patients recruited was 70.4 ± 11.2 years, 62.6% were men and 97.6% were whites. The prevalences of AVD phenotypes were: carotid artery stenosis 48%, abdominal aortic aneurysm 21% and peripheral arterial disease 38%. Positive predictive values for electronic phenotyping algorithms were>0.90 for cases (and>0.95 for controls) for each AVD phenotype, using manual review of the EMR as the gold standard. The prevalences of risk factors and comorbidities were as follows: hypertension 78%, diabetes 29%, dyslipidemia 73%, smoking 70%, coronary heart disease 37%, heart failure 12%, cerebrovascular disease 20% and chronic kidney disease 19%. Our study demonstrates the feasibility of establishing a biorepository of plasma, serum and DNA, with relatively rapid annotation of clinical variables using EMR-based algorithms.

Loading

Article metrics loading...

/content/journals/10.5339/gcsp.2013.10
2013-07-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/gcsp/2013/1/gcsp.2013.10.html?itemId=/content/journals/10.5339/gcsp.2013.10&mimeType=html&fmt=ahah

References

  1. Ding K, Kullo IJ. Genome-wide association studies for atherosclerotic vascular disease and its risk factors. Circ Cardiovasc Genet. 2009; 2:1:6372
    [Google Scholar]
  2. Hochholzer W, Morrow DA, Giugliano RP. Novel biomarkers in cardiovascular disease: update 2010. Am Heart J. 2010; 160:4:583594
    [Google Scholar]
  3. Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, CG . Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. J Am Med Inform Assoc. 2011; 17:5:568574
    [Google Scholar]
  4. Manolio TA. Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI's office of population genomics. Pharmacogenomics. 2009; 10:2:235241
    [Google Scholar]
  5. Rzhetsky A, Wajngurt D, Park N, Zheng T. Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci USA. 2007; 104:28:11,694699
    [Google Scholar]
  6. Savova GK, Ogren PV, Duffy PH, Buntrock JD, Chute CG. Mayo clinic NLP system for patient smoking status identification. J Am Med Inform Assoc. 2008; 15:1:2528
    [Google Scholar]
  7. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J. Heart disease and stroke statistics–2011 update: a report from the american heart association. Circulation. 2011; 123:4:e18e209
    [Google Scholar]
  8. Perret F, Bovet P, Shamlaye C, Paccaud F, Kappenberger L. High prevalence of peripheral atherosclerosis in a rapidly developing country. Atherosclerosis. 2000; 153:1:921
    [Google Scholar]
  9. Smith BH, Campbell H, Blackwood D, Connell J, Connor M, Deary IJ, Dominiczak AF, Fitzpatrick B, Ford I, Jackson C, Haddow G, Kerr S, Lindsay R, McGilchrist M, Morton R, Murray G, Palmer CN, Pell JP, Ralston SH, St Clair D, Sullivan F, Wolf R, Wright A, Porteous D, Morris AD. Generation Scotland: the Scottish family health study; a new resource for researching genes and heritability. BMC Med Genet. 2006; 7::74
    [Google Scholar]
  10. Palmer LJ. UK Biobank: bank on it. Lancet. 2007; 369:9578:19801982
    [Google Scholar]
  11. Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jäääskeläinen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsäter A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemelä M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008; 40:2:217224
    [Google Scholar]
  12. Plant SR, Samsa GP, Shah SH, Goldstein LB. Exploration of a hypothesized independent association of a common 9p21.3 gene variant and ischemic stroke in patients with and without angiographic coronary artery disease. Cerebrovasc Dis. 2011; 31:2:117122
    [Google Scholar]
  13. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, Dungan J, Newby LK, Hauser ER, Ginsburg GS, Newgard CB, Kraus WE. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010; 3:2:207214
    [Google Scholar]
  14. Koontz JI, Haithcock D, Cumbea V, Waldron A, Stricker K, Hughes A, Nilsson K, Sun A, Piccini JP, Kraus WE, Pitt GS, Shah SH, Hranitzky P. Rationale and design of the Duke Electrophysiology Genetic and Genomic Studies (EPGEN) biorepository. Am Heart J. 2009; 158:5:719725
    [Google Scholar]
  15. Collins FS. The case for a US prospective cohort study of genes and environment. Nature. 2004; 429:6990:475477
    [Google Scholar]
  16. Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, Pulley JM, Basford MA, Brown-Gentry K, Balser JR, Masys DR, Haines JL, Roden DM. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet. 2010; 86:4:560572
    [Google Scholar]
  17. McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, Li R, Masys DR, Ritchie MD, Roden DM, Struewing JP, Wolf WA. The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2011; 4::13
    [Google Scholar]
  18. Wilke RA, Berg RL, Peissig P, Kitchner T, Sijercic B, McCarty CA, McCarty DJ. Use of an electronic medical record for the identification of research subjects with diabetes mellitus. Clin Med Res. 2007; 5:1:17
    [Google Scholar]
  19. Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med Care. 2005; 43:5:480485
    [Google Scholar]
  20. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR, Roden DM, Crawford D. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010; 26:9:12051210
    [Google Scholar]
  21. Savova GK, Fan J, Ye Z, Murphy SP, Zheng J, Chute CG, Kullo IJ. Discovering peripheral arterial disease cases from radiology notes using natural language processing. AMIA Annu Symp Proc. 2010; 2010::722726
    [Google Scholar]
  22. Tirschwell DL, Longstreth WT Jr.  Validating administrative data in stroke research. Stroke. 2002; 33:10:24652470
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/gcsp.2013.10
Loading
/content/journals/10.5339/gcsp.2013.10
Loading

Data & Media loading...

Supplements

Supplementary File 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error