1887
Volume 2014, Issue 1
  • EISSN: 2223-506X

Abstract

This study aims to synthesis a series of ()--(substituted benzylidene)-9-ethyl-9-carbazole-3-amines, using solvent-free fly-ash:perchloric acid catalyst under microwave irradiation. To then characterize them using analytical, physical and spectroscopic data. Solvent-free microwave assisted ()imines were adopted for the synthesis of ()--(substituted benzylidene)-9-ethyl-9-carbazole-3-amine, using fly-ash:perchloric acid as a catalyst. They were characterized by IR, NMR and mass spectroscopic data. The IR and NMR spectral data was correlated with substituent constants, F and R parameters using Hammett equation to study the effect of the substituents. The yield of the synthesized imines were more than 75%. The spectral data of these ()--(substituted benzylidene)-9-ethyl-9-carbazole-3-amines had been correlated using single and multi-regression analysis. These gave a satisfactory or fair degree of correlation, with some parameters. Easy handling, non-hazardous and an environmentally safe method had been adopted for the synthesis of ()-imines, using fly-ash:perchloric acid as catalyst, with better yields. Some of the Hammett spectral correlations were found to be satisfactory with the observed spectroscopic data.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2014.11
2014-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/connect/2014/1/connect.2014.11.html?itemId=/content/journals/10.5339/connect.2014.11&mimeType=html&fmt=ahah

References

  1. Lozier RH, Bogomolni RA, Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium . Biophys J. 1975; 15:9:955962.
    [Google Scholar]
  2. Garnovskii AD, Nivorozhkin AL, Minkin VI. Ligand environment and the structure of Schiff base adducts and tetracoordinated metal-chelates. Coord Chem Rev. 1993; 126:1-2:169.
    [Google Scholar]
  3. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002; 1:7:493502.
    [Google Scholar]
  4. Tiwari V, Meshram J, Ali P. Microwave assisted synthesis of quinolinyl thiazolidinones using zeolite as an efficient and recyclable activation surfaces: SAR and biological activity. Der Pharm Chemica. 2010; 2:3:187195.
    [Google Scholar]
  5. a) Mistry KM, Desai KR. Synthesis of novel heterocyclic 4-thiazolidinone derivatives and their antibacterial activity. E-Journal of Chemistry. 2004;1(4):189–193; b) Sayyed M, Mokle S, Bokhare M, Mankar A, Surwase S, Bhusare S, Vibhute Y. Synthesis of some new 2,3-diaryl-1,3-thiazolidin-4-ones as antibacterial agents. Arkivoc. 2006;1(ii):187–192; c) Bhatt JJ, Shah BR, Shah HP, Trivedi PB, Undavia NK, Desai NC. Synthesis of anti HIV, anticancer and antitubercular 4-oxothiazolidines, 2-imino-4-oxothiazolidines and their 5-arylidine derivatives. Indian Journal of Chemistry B. 1994;33(2):189–192.
  6. Bakibaev AA, Gorshkova VK, Arbit OV, Filimonov VD, Saratikov AS. Synthesis of benzamides and their antispasmodic and antihypoxic properties. Pharm Chem J. 1994; 28:5:335338.
    [Google Scholar]
  7. a) Patel RB, Desai PS, Desai KR, Chikhalia KH. Synthesis of pyrimidine based thiazolidinones and azetidinones: antimicrobial and antitubercular agents. Indian Journal of Chemistry B. 2006;45(3):773–778; b) Kantevari S, Yempala T, Yogeswari P, Sriram D, Sridhar B. Synthesis and antitubercular evaluation of amidoalkyl dibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones. Bioorganic and Medicinal Chemistry Letters. 2011;21(14):4316–4319.
  8. Kundu A, Shakil NA, Saxena DB, Pankaj Kumar JA, Walia S. Microwave assisted solvent-free synthesis and biological activity of novel imines (Schiff bases). J Environ Sci Health B. 2009; 44:5:428434.
    [Google Scholar]
  9. Pandey VK, Gupta VD, Upadhyaya M, Upadhyaya M, Singh VK, Tandon M. Synthesis, characterization and biological activities of 1,3,4-substituted 2-azetidinones. Indian J Chem B. 2005; 44::158162.
    [Google Scholar]
  10. Choi TA, Czerwonka R, Frohner W, Krahl MP, Reddy KR, Franzblau SG, Knolker HJ. Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis . ChemMedChem. 2006; 1::812815.
    [Google Scholar]
  11. Choi TA, Czerwonka R, Forke R, Jager A, Knoll J, Krahl MP, Krause T, Reddy KR, Franzblau SG, Knolker HJ. Transition metals in organic synthesis. Part 83. Synthesis and pharmacological potential of carbazoles. Med Chem Res. 2008; 17::374385.
    [Google Scholar]
  12. Yadav R, Srivastava SD, Srivastava SK. Synthesis, antimicrobial and anti-inflammatory activities of 4-oxothiazolidines and their 5-arylidenes. Indian J Chem B. 2005; 44:6:12621266.
    [Google Scholar]
  13. McBurney RT, Portela-Cubillo F, Walton JC. Microwave assisted radical organic syntheses. Royal Soc Chem Advan. 2012; 2:4:12641274.
    [Google Scholar]
  14. Schellenberg KA. The synthesis of secondary and tertiary amines by borohydride reduction. J Organ Chem. 1963; 28:11:32593261.
    [Google Scholar]
  15. Kuznetsov VV, Palma AR, Prostakov NS, Varlamov AV. Synthesis of spiro analogs of lilolidine alkaloids. Chem Heterocycl Compd. 1993; 29:11:12961299.
    [Google Scholar]
  16. Aly MF, Younes MI, Metwally SAM. Non-decarboxylative 1,3-dipolar cycloadditions of imines of α-amino acids as a route to proline derivatives. Tetrahedron. 1994; 50:10:31593168.
    [Google Scholar]
  17. Lodhi RS, Srivastava SD. Synthesis of 2-(substituted)-3-N9-carbazolylacetmidyl)-4-oxothiazolidines and their 5-arylidiene derivatives as antifungal agents. Indian J Chem B. 1997; 36::947950.
    [Google Scholar]
  18. Shukla YK. Synthesis of some new aryl α-(-3-substituted-carbazol-9-yl)acetates/propionates as possible anti-inflammatory and analgesic agents. Indian J Chem B. 1994; 33::799802.
    [Google Scholar]
  19. Shukla YK, Srivastava SD. Synthesis and pharmacological activity of some novel phenylesters of carbazole-9-acetic/propionic acid. Indian J Pharm Sci. 1994; 56:1:3033.
    [Google Scholar]
  20. Shukla YK, Srivastava SD. Synthesis of N-substituted mono- and tri-heterocycles as antiinflammatory, anticonvulsant and anthelmintic agents. Indian J Chem B. 1994; 33::397399.
    [Google Scholar]
  21. Das BP, Begum NA, Choudhury DN, Banerji J. Synthesis of some N-substituted carbazoles and their larvicidal studies. J Indian Chem Soc. 2005; 82:2:158160.
    [Google Scholar]
  22. a) Jain PK, Srivastava SK. Synthesis and biological evaluation of some novel N[-2-(phenoxy/bromo/nitro/substitutedphenoxy)acetyl/propionyl]carbazole. Journal of Indian Chemistry Society. 1990;67(9):775–776; b) Jain PK, Srivastava SK. Biological and pharmacological activities of new phenoxy and naphthoxyacetyl/propionyl carbazole, indole and pyrrole derivaties. Journal of Indian Chemistry Society. 1992;69(7):402–403.
  23. Rastogi SN, Anand N, Dua PR, Srimal RC. Synthesis, neuroleptic and anti-inflammatory of 4a,11a-cis- and trans-2-[γ-(p-fluorobenzoyl)propyl]-1,2,3,4,4a,5,11,11a-octahydro-6H-pyrido(4,3-b)carbazole and related derivatives. Indian J Chem B. 1987; 26::335340.
    [Google Scholar]
  24. Ellman JA, Owens TD, Tang TP. N-tert-butanesulfinyl imines: versatile intermediates for the asymmetric synthesis of amines. Acc Chem Res. 2002; 35:11:984985.
    [Google Scholar]
  25. Bode CM, Ting A, Schaus SE. A general organic catalyst for asymmetric addition of stabilized nucleophiles to acyl imines. Tetrahedron. 2006; 62:49:1149911505.
    [Google Scholar]
  26. Vazquez MA, Landa M, Reyes L, Miranda R, Tamariz J, Delgado F. Infrared irradiation: effective promoter in the formation of N-benzylideneanilines in the absence of solvent. Synth Commun. 2004; 34:15:27052718.
    [Google Scholar]
  27. Suresh R, Kamalakkannan D, Ranganathan K, Arulkumaran R, Sundararajan R, Sakthinathan SP, Vijayakumar S, Sathiyamoorthi K, Mala V, Vanangamudi G, Thirumurthy K, Mayavel P, Thirunarayanan G. Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl imines. Spectrochim Acta A. 2013; 101::239248.
    [Google Scholar]
  28. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American J Clin Pathol. 1966; 45:4:493496.
    [Google Scholar]
  29. a) Sakthinathan SP, Vanangamudi G, Thirunarayanan G. Synthesis, spectral studies and antimicrobial activities of some 2-naphthylpyrazoline derivatives. Spectrochimica Acta A. 2012;95:693–700; b) Thirunarayanan G, Vanangamudi G. Synthesis, spectral studies, antimicrobial, antioxidant and insect antifeedant activities of some 9H-fluorene-2-yl keto-oxiranes. Spectrochimica Acta A. 2011;81(1):390–396; c) Thirunarayanan G, Gopalakrishnan M, Vanangamudi G. IR and NMR spectral studies of 4-bromo-1-naphthyl chalcones-assessement of substituent effects. Spectrochimica Acta A. 2007;67(3–4):1106–1117.
  30. a) Jovanovic BZ, Misic-Vukovic M, Marinkovic AD, Vajs V. Effect of substituents on the 13C chemical shifts of the azomethine carbon atom of N-(phenyl substituted)pyridine-3- and -2-aldimines. Journal of Molecular Structure. 2002;642(1–3):113–118; b) Jovanovic BZ, Misic-Vukovic M, Marinkovic AD, Vajs V. Effect of substituents on the 13C chemical shifts of the azomethine carbon atom of N-(phenyl substituted)pyridine-4-aldimines. Journal of Molecular Structure. 1999;482(1):375–378; c) Jovanovic BZ, Marinkovic AD, Assaleh FH, Csanadi J. Effect of substituents on the 13C chemical shifts of the azomethine carbon atoms of N-(substituted phenylmethylene)-3- and -4-aminobenzoic acids. Journal of Molecular Structure. 2005;744–747:411–416.
  31. a) Drmanic SZ, Marinkovic AD, Nikolic JB, Jovanovic BZ. The substituent effects on the 13C chemical shifts of the azomethine carbon atom of N-(phenyl substituted)salycilaldimines. Journal of the Serbian Chemical Society. 2002;77:1–13; b) Echevarria AMD, Nascimento MG, Geronimo V, Miller J, Giesbrecht A. NMR spectroscopy, Hammett correlation and biological activity of some Schiff's bases derived from piperonal. Journal of the Brazilian Chemical Society. 1999;10:60–64; c) Fadhil GF, Essa AH. Substituent effects in the 13C NMR chemical shifts of para-(para-substituted benzylidene amino)benzonitrile and para-(ortho-substituted benzylidene amino)benzonitrile. Journal of the Iranian Chemical Society. 2009;6(4):808–811.
  32. Swain CG, Lupton EC. Field and resonance components of substituent effects. J Am Chem Soc. 1968; 90:16:43284337.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2014.11
Loading
/content/journals/10.5339/connect.2014.11
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error