1887
Volume 2014, Issue 1
  • E-ISSN: 2223-506X

Abstract

This study aims to synthesis a series of ()--(substituted benzylidene)-9-ethyl-9-carbazole-3-amines, using solvent-free fly-ash:perchloric acid catalyst under microwave irradiation. To then characterize them using analytical, physical and spectroscopic data. Solvent-free microwave assisted ()imines were adopted for the synthesis of ()--(substituted benzylidene)-9-ethyl-9-carbazole-3-amine, using fly-ash:perchloric acid as a catalyst. They were characterized by IR, NMR and mass spectroscopic data. The IR and NMR spectral data was correlated with substituent constants, F and R parameters using Hammett equation to study the effect of the substituents. The yield of the synthesized imines were more than 75%. The spectral data of these ()--(substituted benzylidene)-9-ethyl-9-carbazole-3-amines had been correlated using single and multi-regression analysis. These gave a satisfactory or fair degree of correlation, with some parameters. Easy handling, non-hazardous and an environmentally safe method had been adopted for the synthesis of ()-imines, using fly-ash:perchloric acid as catalyst, with better yields. Some of the Hammett spectral correlations were found to be satisfactory with the observed spectroscopic data.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2014.11
2014-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/connect/2014/1/connect.2014.11.html?itemId=/content/journals/10.5339/connect.2014.11&mimeType=html&fmt=ahah

References

  1. [1]. Lozier   RH., , Bogomolni   RA., , Stoeckenius   W. . Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. . Biophys J . 1975; ;15: 9 : 955– 962 .
    [Google Scholar]
  2. [2]. Garnovskii   AD., , Nivorozhkin   AL., , Minkin   VI. . Ligand environment and the structure of Schiff base adducts and tetracoordinated metal-chelates. . Coord Chem Rev . 1993; ;126: 1-2 : 1– 69 .
    [Google Scholar]
  3. [3]. Capdeville   R., , Buchdunger   E., , Zimmermann   J., , Matter   A. . Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. . Nat Rev Drug Discov . 2002; ;1: 7 : 493– 502 .
    [Google Scholar]
  4. [4]. Tiwari   V., , Meshram   J., , Ali   P. . Microwave assisted synthesis of quinolinyl thiazolidinones using zeolite as an efficient and recyclable activation surfaces: SAR and biological activity. . Der Pharm Chemica . 2010; ;2: 3 : 187– 195 .
    [Google Scholar]
  5. [5]. a) Mistry KM, Desai KR. Synthesis of novel heterocyclic 4-thiazolidinone derivatives and their antibacterial activity. E-Journal of Chemistry. 2004;1(4):189–193; b) Sayyed M, Mokle S, Bokhare M, Mankar A, Surwase S, Bhusare S, Vibhute Y. Synthesis of some new 2,3-diaryl-1,3-thiazolidin-4-ones as antibacterial agents. Arkivoc. 2006;1(ii):187–192; c) Bhatt JJ, Shah BR, Shah HP, Trivedi PB, Undavia NK, Desai NC. Synthesis of anti HIV, anticancer and antitubercular 4-oxothiazolidines, 2-imino-4-oxothiazolidines and their 5-arylidine derivatives. Indian Journal of Chemistry B. 1994;33(2):189–192 .
  6. [6]. Bakibaev   AA., , Gorshkova   VK., , Arbit   OV., , Filimonov   VD., , Saratikov   AS. . Synthesis of benzamides and their antispasmodic and antihypoxic properties. . Pharm Chem J . 1994; ;28: 5 : 335– 338 .
    [Google Scholar]
  7. [7]. a) Patel RB, Desai PS, Desai KR, Chikhalia KH. Synthesis of pyrimidine based thiazolidinones and azetidinones: antimicrobial and antitubercular agents. Indian Journal of Chemistry B. 2006;45(3):773–778; b) Kantevari S, Yempala T, Yogeswari P, Sriram D, Sridhar B. Synthesis and antitubercular evaluation of amidoalkyl dibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones. Bioorganic and Medicinal Chemistry Letters. 2011;21(14):4316–4319 .
  8. [8]. Kundu   A., , Shakil   NA., , Saxena   DB., , Pankaj Kumar   JA., , Walia   S. . Microwave assisted solvent-free synthesis and biological activity of novel imines (Schiff bases). . J Environ Sci Health B . 2009; ;44: 5 : 428– 434 .
    [Google Scholar]
  9. [9]. Pandey   VK., , Gupta   VD., , Upadhyaya   M., , Upadhyaya   M., , Singh   VK., , Tandon   M. . Synthesis, characterization and biological activities of 1,3,4-substituted 2-azetidinones. . Indian J Chem B . 2005; ;44: : 158– 162 .
    [Google Scholar]
  10. [10]. Choi   TA., , Czerwonka   R., , Frohner   W., , Krahl   MP., , Reddy   KR., , Franzblau   SG., , Knolker   HJ. . Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis. . ChemMedChem.   2006; ;1: : 812– 815 .
    [Google Scholar]
  11. [11]. Choi   TA., , Czerwonka   R., , Forke   R., , Jager   A., , Knoll   J., , Krahl   MP., , Krause   T., , Reddy   KR., , Franzblau   SG., , Knolker   HJ. . Transition metals in organic synthesis. Part 83. Synthesis and pharmacological potential of carbazoles. . Med Chem Res . 2008; ;17: : 374– 385 .
    [Google Scholar]
  12. [12]. Yadav   R., , Srivastava   SD., , Srivastava   SK. . Synthesis, antimicrobial and anti-inflammatory activities of 4-oxothiazolidines and their 5-arylidenes. . Indian J Chem B . 2005; ;44: 6 : 1262– 1266 .
    [Google Scholar]
  13. [13]. McBurney   RT., , Portela-Cubillo   F., , Walton   JC. . Microwave assisted radical organic syntheses. . Royal Soc Chem Advan . 2012; ;2: 4 : 1264– 1274 .
    [Google Scholar]
  14. [14]. Schellenberg   KA. . The synthesis of secondary and tertiary amines by borohydride reduction. . J Organ Chem . 1963; ;28: 11 : 3259– 3261 .
    [Google Scholar]
  15. [15]. Kuznetsov   VV., , Palma   AR., , Prostakov   NS., , Varlamov   AV. . Synthesis of spiro analogs of lilolidine alkaloids. . Chem Heterocycl Compd . 1993; ;29: 11 : 1296– 1299 .
    [Google Scholar]
  16. [16]. Aly   MF., , Younes   MI., , Metwally   SAM. . Non-decarboxylative 1,3-dipolar cycloadditions of imines of α-amino acids as a route to proline derivatives. . Tetrahedron . 1994; ;50: 10 : 3159– 3168 .
    [Google Scholar]
  17. [17]. Lodhi   RS., , Srivastava   SD. . Synthesis of 2-(substituted)-3-N9-carbazolylacetmidyl)-4-oxothiazolidines and their 5-arylidiene derivatives as antifungal agents. . Indian J Chem B . 1997; ;36: : 947– 950 .
    [Google Scholar]
  18. [18]. Shukla   YK. . Synthesis of some new aryl α-(-3-substituted-carbazol-9-yl)acetates/propionates as possible anti-inflammatory and analgesic agents. . Indian J Chem B . 1994; ;33: : 799– 802 .
    [Google Scholar]
  19. [19]. Shukla   YK., , Srivastava   SD. . Synthesis and pharmacological activity of some novel phenylesters of carbazole-9-acetic/propionic acid. . Indian J Pharm Sci . 1994; ;56: 1 : 30– 33 .
    [Google Scholar]
  20. [20]. Shukla   YK., , Srivastava   SD. . Synthesis of N-substituted mono- and tri-heterocycles as antiinflammatory, anticonvulsant and anthelmintic agents. . Indian J Chem B . 1994; ;33: : 397– 399 .
    [Google Scholar]
  21. [21]. Das   BP., , Begum   NA., , Choudhury   DN., , Banerji   J. . Synthesis of some N-substituted carbazoles and their larvicidal studies. . J Indian Chem Soc . 2005; ;82: 2 : 158– 160 .
    [Google Scholar]
  22. [22]. a) Jain PK, Srivastava SK. Synthesis and biological evaluation of some novel N[-2-(phenoxy/bromo/nitro/substitutedphenoxy)acetyl/propionyl]carbazole. Journal of Indian Chemistry Society. 1990;67(9):775–776; b) Jain PK, Srivastava SK. Biological and pharmacological activities of new phenoxy and naphthoxyacetyl/propionyl carbazole, indole and pyrrole derivaties. Journal of Indian Chemistry Society. 1992;69(7):402–403 .
  23. [23]. Rastogi   SN., , Anand   N., , Dua   PR., , Srimal   RC. . Synthesis, neuroleptic and anti-inflammatory of 4a,11a-cis- and trans-2-[γ-(p-fluorobenzoyl)propyl]-1,2,3,4,4a,5,11,11a-octahydro-6H-pyrido(4,3-b)carbazole and related derivatives. . Indian J Chem B . 1987; ;26: : 335– 340 .
    [Google Scholar]
  24. [24]. Ellman   JA., , Owens   TD., , Tang   TP. . N-tert-butanesulfinyl imines: versatile intermediates for the asymmetric synthesis of amines. . Acc Chem Res . 2002; ;35: 11 : 984– 985 .
    [Google Scholar]
  25. [25]. Bode   CM., , Ting   A., , Schaus   SE. . A general organic catalyst for asymmetric addition of stabilized nucleophiles to acyl imines. . Tetrahedron . 2006; ;62: 49 : 11499– 11505 .
    [Google Scholar]
  26. [26]. Vazquez   MA., , Landa   M., , Reyes   L., , Miranda   R., , Tamariz   J., , Delgado   F. . Infrared irradiation: effective promoter in the formation of N-benzylideneanilines in the absence of solvent. . Synth Commun . 2004; ;34: 15 : 2705– 2718 .
    [Google Scholar]
  27. [27]. Suresh   R., , Kamalakkannan   D., , Ranganathan   K., , Arulkumaran   R., , Sundararajan   R., , Sakthinathan   SP., , Vijayakumar   S., , Sathiyamoorthi   K., , Mala   V., , Vanangamudi   G., , Thirumurthy   K., , Mayavel   P., , Thirunarayanan   G. . Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl imines. . Spectrochim Acta A . 2013; ;101: : 239– 248 .
    [Google Scholar]
  28. [28]. Bauer   AW., , Kirby   WM., , Sherris   JC., , Turck   M. . Antibiotic susceptibility testing by a standardized single disk method. . American J Clin Pathol . 1966; ;45: 4 : 493– 496 .
    [Google Scholar]
  29. [29]. a) Sakthinathan SP, Vanangamudi G, Thirunarayanan G. Synthesis, spectral studies and antimicrobial activities of some 2-naphthylpyrazoline derivatives. Spectrochimica Acta A. 2012;95:693–700; b) Thirunarayanan G, Vanangamudi G. Synthesis, spectral studies, antimicrobial, antioxidant and insect antifeedant activities of some 9H-fluorene-2-yl keto-oxiranes. Spectrochimica Acta A. 2011;81(1):390–396; c) Thirunarayanan G, Gopalakrishnan M, Vanangamudi G. IR and NMR spectral studies of 4-bromo-1-naphthyl chalcones-assessement of substituent effects. Spectrochimica Acta A. 2007;67(3–4):1106–1117 .
  30. [30]. a) Jovanovic BZ, Misic-Vukovic M, Marinkovic AD, Vajs V. Effect of substituents on the 13C chemical shifts of the azomethine carbon atom of N-(phenyl substituted)pyridine-3- and -2-aldimines. Journal of Molecular Structure. 2002;642(1–3):113–118; b) Jovanovic BZ, Misic-Vukovic M, Marinkovic AD, Vajs V. Effect of substituents on the 13C chemical shifts of the azomethine carbon atom of N-(phenyl substituted)pyridine-4-aldimines. Journal of Molecular Structure. 1999;482(1):375–378; c) Jovanovic BZ, Marinkovic AD, Assaleh FH, Csanadi J. Effect of substituents on the 13C chemical shifts of the azomethine carbon atoms of N-(substituted phenylmethylene)-3- and -4-aminobenzoic acids. Journal of Molecular Structure. 2005;744–747:411–416 .
  31. [31]. a) Drmanic SZ, Marinkovic AD, Nikolic JB, Jovanovic BZ. The substituent effects on the 13C chemical shifts of the azomethine carbon atom of N-(phenyl substituted)salycilaldimines. Journal of the Serbian Chemical Society. 2002;77:1–13; b) Echevarria AMD, Nascimento MG, Geronimo V, Miller J, Giesbrecht A. NMR spectroscopy, Hammett correlation and biological activity of some Schiff's bases derived from piperonal. Journal of the Brazilian Chemical Society. 1999;10:60–64; c) Fadhil GF, Essa AH. Substituent effects in the 13C NMR chemical shifts of para-(para-substituted benzylidene amino)benzonitrile and para-(ortho-substituted benzylidene amino)benzonitrile. Journal of the Iranian Chemical Society. 2009;6(4):808–811 .
  32. [32]. Swain   CG., , Lupton   EC. . Field and resonance components of substituent effects. . J Am Chem Soc . 1968; ;90: 16 : 4328– 4337 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2014.11
Loading
/content/journals/10.5339/connect.2014.11
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error