Volume 2013, Issue 1

Abstract

The anisotropy factor as a function of fiber arrangement, fiber fineness and sample thickness has been derived from the theories of soundwave transformation due to phase changing. The sound absorption coefficient of the anisotropic fibrous material is then theoretically calculated. The fibrous materials were prepared so that the fibers are arranged parallel (perpendicularly laid fiber web called STRUTO technology) in the direction of soundwave propagation or perpendicularly (longitudinally laid fiber web) to the direction of sound propagation. The sound absorption coefficient was measured due to the Impedance tube. The theoretical results are in good agreement with experimental findings.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.3
2013-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.3.html?itemId=/content/journals/10.5339/connect.2013.3&mimeType=html&fmt=ahah

References

  1. Dahl MD, Rice EJ, Groesbeck DE. Effect of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material. J Acoust Soc Am. 1990; 87:1:5466
    [Google Scholar]
  2. Kawasima Y. Sound propagation in a fiber block as a composite medium. Acustica. 1960; 10::208217
    [Google Scholar]
  3. Lambert RF. Acoustic resonance in highly porous, flexible, layered fine fiber materials. J Acoust Soc Am. 1993; 93:3:12271234
    [Google Scholar]
  4. Zwikker C, Kosten CW. Sound Absorbing Materials. NY: Elsevier 1949;
    [Google Scholar]
  5. Shoshani Y, Yakubov Y. A model of calculating the noise absorption capacity of nonwoven fiber webs. Textile Res J. 1999; 69:7:519526
    [Google Scholar]
  6. Shoshani Y, Yakubov Y. Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Appl Acoust. 2000; 59:1:7787
    [Google Scholar]
  7. Shoshani Y, Yakubov Y. Generalization of Zwikker and Kosten theory for sound absorption in flexible porous media to the case of variable parameters. J Comput Acoust. 2000; 8:3:415441
    [Google Scholar]
  8. Sides DJ, Attenborough K, Mulholland KA. Application of a generalized acoustic propagation theory to fibrous absorbents. J Sound Vibration. 1971; 19:1:4964
    [Google Scholar]
  9. Lambert RF, Tesar JS. Acoustic structure and propagation in highly porous, layered, fibrous materials. J Acoust Soc Am. 1984; 76:4:12311237
    [Google Scholar]
  10. Lambert RF. Low-frequency acoustic behavior of highly porous, layered, flexible, fine fiber materials. J Acoust Soc Am. 1995; 97:2:818821
    [Google Scholar]
  11. Škvor Z. Akustika a elektroakustika. 1st ed. Praha: Academia 2001;
    [Google Scholar]
  12. Horák Z, Krupka F, Šindelář V. Technická fysika. 2nd ed. Praha: SNTL 1960;
    [Google Scholar]
  13. Neckář B, Ibrahim S. Theoretical approach for determining pore characteristics between fibers. Textile Res J. 2003; 73:7:611619
    [Google Scholar]
  14. Jirsák O, Sadikoglu TG, Ozipek B, Pan N. Thermo-insulating properties of perpendicular-laid versus cross-laid lofty nonwoven fabrics. Textile Res J. 2000; 70:2:2128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.3
Loading
/content/journals/10.5339/connect.2013.3
Loading

Data & Media loading...

Keyword(s): anisotropy factorNonwovens and sound absorption

Most Cited Most Cited RSS feed